Skip to main content
Erschienen in: Inflammation 2/2023

21.10.2022 | Original Article

Treatment with 1,25-Dihydroxyvitamin D3 Delays Choroid Plexus Infiltration and BCSFB Injury in MRL/lpr Mice Coinciding with Activation of the PPARγ/NF-κB/TNF-α Pathway and Suppression of TGF-β/Smad Signaling

verfasst von: Xuewei Li, Shuangli Xu, Jie Liu, Yingzhe Zhao, Huirong Han, Xiangling Li, Yanqiang Wang

Erschienen in: Inflammation | Ausgabe 2/2023

Einloggen, um Zugang zu erhalten

Abstract

Neuropsychiatric systemic lupus erythematosus (NPSLE) is a serious complication of systemic lupus erythematosus (SLE) involving the nervous system with high morbidity and mortality. A key hypothesis in NPSLE is that a disrupted barrier allows autoantibodies and immune components of peripheral blood to penetrate into the central nervous system (CNS), resulting in inflammation and damage. The blood cerebrospinal fluid barrier (BCSFB), which consists of the choroid plexus and the hypothalamic tanycytes, has long been regarded as an immunological sanctuary site. 1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] is the active form of vitamin D, which plays multiple roles in inflammation and immunoregulation. In this study, we investigated the possible protective effects of 1,25-dihydroxyvitamin D3 against BCSFB dysfunction in NPSLE in MRL/lpr mice and explored the mechanism by which 1,25-dihydroxyvitamin D3 inhibits the progression of NPSLE. In this study, we found that supplementation with 1,25-dihydroxyvitamin D3 markedly improved serological and immunological indices, delayed inflammatory infiltration, delayed neuronal deformation, and upregulated the expression of brain-derived neurotrophic factor (BDNF) proteins in the brain. Furthermore, 1,25-dihydroxyvitamin D3 downregulated proinflammatory cytokines such as nuclear factor kappa-B (NF-κB) and tumor necrosis factor-α (TNF-α) by activating peroxisome proliferator-activated receptor γ (PPARγ), and it reduced the expression of the TGF-β/Smad signaling pathway. Our findings demonstrate that 1,25-dihydroxyvitamin D3 delayed cell infiltration into the choroid plexus and decreased markers suggestive of cognitive decline in MRL/lpr mice, and the mechanism may be related to protection against BCSFB disruption through activation of the anti-inflammatory PPARγ/NF-κB/TNF-α pathway as well as upregulation of BDNF and inhibition of the TGF-β/Smad signaling pathway. These findings provide a novel direction for the study of NPSLE.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kiriakidou, M., and C.L. Ching. 2020. Systemic lupus erythematosus. Annals of Internal Medicine 172(11):ITC81-ITC96. Kiriakidou, M., and C.L. Ching. 2020. Systemic lupus erythematosus. Annals of Internal Medicine 172(11):ITC81-ITC96.
2.
Zurück zum Zitat Hanly, J.G., E. Kozora, S.D. Beyea, et al. 2019. Review: Nervous system disease in systemic lupus erythematosus: Current status and future directions. Arthritis & Rhematology 71 (1): 33–42.CrossRef Hanly, J.G., E. Kozora, S.D. Beyea, et al. 2019. Review: Nervous system disease in systemic lupus erythematosus: Current status and future directions. Arthritis & Rhematology 71 (1): 33–42.CrossRef
3.
Zurück zum Zitat Tanaka, Y. 2019. Neuropsychiatric systemic lupus erythematosus. Brain and Nerve 71 (5): 445–458.PubMed Tanaka, Y. 2019. Neuropsychiatric systemic lupus erythematosus. Brain and Nerve 71 (5): 445–458.PubMed
4.
Zurück zum Zitat Moore, E., M.W. Huang, and C. Putterman. 2020. Advances in the diagnosis, pathogenesis and treatment of neuropsychiatric systemic lupus erythematosus. Current Opinion in Rheumatology 32 (2): 152–158.PubMedPubMedCentralCrossRef Moore, E., M.W. Huang, and C. Putterman. 2020. Advances in the diagnosis, pathogenesis and treatment of neuropsychiatric systemic lupus erythematosus. Current Opinion in Rheumatology 32 (2): 152–158.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Schwartz, N., A.D. Stock, and C. Putterman. 2019. Neuropsychiatric lupus: New mechanistic insights and future treatment directions. Nature Reviews Rheumatology 15 (3): 137–152.PubMedPubMedCentralCrossRef Schwartz, N., A.D. Stock, and C. Putterman. 2019. Neuropsychiatric lupus: New mechanistic insights and future treatment directions. Nature Reviews Rheumatology 15 (3): 137–152.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Lee, S.M., A.H. Carlson, M. Onal, et al. 2019. A control region near the fibroblast growth factor 23 gene mediates response to phosphate, 1,25(OH)2D3, and LPS in vivo. Endocrinology 160 (12): 2877–2891.PubMedPubMedCentralCrossRef Lee, S.M., A.H. Carlson, M. Onal, et al. 2019. A control region near the fibroblast growth factor 23 gene mediates response to phosphate, 1,25(OH)2D3, and LPS in vivo. Endocrinology 160 (12): 2877–2891.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Park, C.Y., T.Y. Kim, J.S. Yoo, et al. 2020. Effects of 1,25-dihydroxyvitamin D3 on the inflammatory responses of stromal vascular cells and adipocytes from lean and obese mice. Nutrients 12 (2): 364.PubMedPubMedCentralCrossRef Park, C.Y., T.Y. Kim, J.S. Yoo, et al. 2020. Effects of 1,25-dihydroxyvitamin D3 on the inflammatory responses of stromal vascular cells and adipocytes from lean and obese mice. Nutrients 12 (2): 364.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Franco, A.S., T.Q. Freitas, W.M. Bernardo, et al. 2017. Vitamin D supplementation and disease activity in patients with immune-mediated rheumatic diseases: A systematic review and meta-analysis. Medicine (Baltimore) 96 (23): e7024.PubMedCrossRef Franco, A.S., T.Q. Freitas, W.M. Bernardo, et al. 2017. Vitamin D supplementation and disease activity in patients with immune-mediated rheumatic diseases: A systematic review and meta-analysis. Medicine (Baltimore) 96 (23): e7024.PubMedCrossRef
9.
Zurück zum Zitat Wang, X., and Y. Xia. 2019. Anti-double stranded DNA antibodies: Origin, pathogenicity, and targeted therapies. Frontiers in Immunology 10: 1667.PubMedPubMedCentralCrossRef Wang, X., and Y. Xia. 2019. Anti-double stranded DNA antibodies: Origin, pathogenicity, and targeted therapies. Frontiers in Immunology 10: 1667.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Petri, M.A., J. Conklin, T. O’Malley, et al. 2019. Platelet-bound C4d, low C3 and lupus anticoagulant associate with thrombosis in SLE. Lupus Sci Med 6 (1): e000318.PubMedPubMedCentralCrossRef Petri, M.A., J. Conklin, T. O’Malley, et al. 2019. Platelet-bound C4d, low C3 and lupus anticoagulant associate with thrombosis in SLE. Lupus Sci Med 6 (1): e000318.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Dunn, J.F., and A.M. Isaacs. 2021. The impact of hypoxia on blood-brain, blood-CSF, and CSF-brain barriers. Journal of Applied Physiology (1985) 131(3):977–985. Dunn, J.F., and A.M. Isaacs. 2021. The impact of hypoxia on blood-brain, blood-CSF, and CSF-brain barriers. Journal of Applied Physiology (1985) 131(3):977–985.
12.
Zurück zum Zitat Gelb, S., A.D. Stock, S. Anzi, et al. 2018. Mechanisms of neuropsychiatric lupus: The relative roles of the blood-cerebrospinal fluid barrier versus blood-brain barrier. Journal of Autoimmunity 91: 34–44.PubMedPubMedCentralCrossRef Gelb, S., A.D. Stock, S. Anzi, et al. 2018. Mechanisms of neuropsychiatric lupus: The relative roles of the blood-cerebrospinal fluid barrier versus blood-brain barrier. Journal of Autoimmunity 91: 34–44.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Villapol, S. 2018. Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cellular and Molecular Neurobiology 38 (1): 121–132.PubMedCrossRef Villapol, S. 2018. Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cellular and Molecular Neurobiology 38 (1): 121–132.PubMedCrossRef
14.
Zurück zum Zitat Xie, Z., L. Huang, B. Enkhjargal, et al. 2018. Recombinant Netrin-1 binding UNC5B receptor attenuates neuroinflammation and brain injury via PPARγ/NFκB signaling pathway after subarachnoid hemorrhage in rats. Brain, Behavior, and Immunity 69: 190–202.PubMedCrossRef Xie, Z., L. Huang, B. Enkhjargal, et al. 2018. Recombinant Netrin-1 binding UNC5B receptor attenuates neuroinflammation and brain injury via PPARγ/NFκB signaling pathway after subarachnoid hemorrhage in rats. Brain, Behavior, and Immunity 69: 190–202.PubMedCrossRef
15.
Zurück zum Zitat Guo, T., Y. Wang, Y. Guo, et al. 2018. 1, 25–D3 protects from cerebral ischemia by maintaining BBB permeability via PPAR-γ activation. Frontiers in Cellular Neuroscience 12: 480.PubMedPubMedCentralCrossRef Guo, T., Y. Wang, Y. Guo, et al. 2018. 1, 25–D3 protects from cerebral ischemia by maintaining BBB permeability via PPAR-γ activation. Frontiers in Cellular Neuroscience 12: 480.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Palasz, E., A. Wysocka, A. Gasiorowska, et al. 2020. BDNF as a promising therapeutic agent in Parkinson’s disease. International Journal of Molecular Sciences 21 (3): 1170.PubMedPubMedCentralCrossRef Palasz, E., A. Wysocka, A. Gasiorowska, et al. 2020. BDNF as a promising therapeutic agent in Parkinson’s disease. International Journal of Molecular Sciences 21 (3): 1170.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Vander Ark, A., J. Cao, and X. Li. 2018. TGF-β receptors: In and beyond TGF-β signaling. Cellular Signalling 52: 112–120.PubMedCrossRef Vander Ark, A., J. Cao, and X. Li. 2018. TGF-β receptors: In and beyond TGF-β signaling. Cellular Signalling 52: 112–120.PubMedCrossRef
18.
Zurück zum Zitat Qu, S., L. Yang, and Z. Liu. 2020. MicroRNA-194 reduces inflammatory response and human dermal microvascular endothelial cells permeability through suppression of TGF-β/SMAD pathway by inhibiting THBS1 in chronic idiopathic urticaria. Journal of Cellular Biochemistry 121 (1): 111–124.PubMedCrossRef Qu, S., L. Yang, and Z. Liu. 2020. MicroRNA-194 reduces inflammatory response and human dermal microvascular endothelial cells permeability through suppression of TGF-β/SMAD pathway by inhibiting THBS1 in chronic idiopathic urticaria. Journal of Cellular Biochemistry 121 (1): 111–124.PubMedCrossRef
19.
Zurück zum Zitat Hiew, L.F., C.H. Poon, H.Z. You, et al. 2021. TGF-β/Smad signalling in neurogenesis: Implications for neuropsychiatric diseases. Cell 10 (6): 1382.CrossRef Hiew, L.F., C.H. Poon, H.Z. You, et al. 2021. TGF-β/Smad signalling in neurogenesis: Implications for neuropsychiatric diseases. Cell 10 (6): 1382.CrossRef
20.
Zurück zum Zitat Andrews, B.S., R.A. Eisenberg, and A.N. Theofilopoulos. 1978. Spontaneous murine lupus-like syndromes: Clinical and immunopathological manifestations in several strains. Journal of Experimental Medicine 148 (5): 1198–1215.PubMedCrossRef Andrews, B.S., R.A. Eisenberg, and A.N. Theofilopoulos. 1978. Spontaneous murine lupus-like syndromes: Clinical and immunopathological manifestations in several strains. Journal of Experimental Medicine 148 (5): 1198–1215.PubMedCrossRef
21.
Zurück zum Zitat Li, Y., A.R. Eskelund, H. Zhou, et al. 2015. Behavioral deficits are accompanied by immunological and neurochemical changes in a mouse model for neuropsychiatric lupus (NP-SLE). International Journal of Molecular Sciences 16 (7): 15150–15171.PubMedPubMedCentralCrossRef Li, Y., A.R. Eskelund, H. Zhou, et al. 2015. Behavioral deficits are accompanied by immunological and neurochemical changes in a mouse model for neuropsychiatric lupus (NP-SLE). International Journal of Molecular Sciences 16 (7): 15150–15171.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Szechtman, H., and Saki´c B, Denburg JA. 1997. Behaviour of MRL mice: An animal model of disturbed behaviour in systemic autoimmune disease. Lupus 6: 223–229.PubMedCrossRef Szechtman, H., and Saki´c B, Denburg JA. 1997. Behaviour of MRL mice: An animal model of disturbed behaviour in systemic autoimmune disease. Lupus 6: 223–229.PubMedCrossRef
23.
Zurück zum Zitat Stielke, S., G. Keilhoff, E. Kirches, et al. 2012. Adhesion molecule expression precedes brain damages of lupus-prone mice and correlates with kidney pathology. Neuroimmunology 252: 24–32.CrossRef Stielke, S., G. Keilhoff, E. Kirches, et al. 2012. Adhesion molecule expression precedes brain damages of lupus-prone mice and correlates with kidney pathology. Neuroimmunology 252: 24–32.CrossRef
24.
Zurück zum Zitat Nystad, A.E., R.R. Lereim, S. Wergeland, et al. 2020. Fingolimod downregulates brain sphingosine-1-phosphate receptor 1 levels but does not promote remyelination or neuroprotection in the cuprizone model. Neuroimmunology 339: 577091 Nystad, A.E., R.R. Lereim, S. Wergeland, et al. 2020. Fingolimod downregulates brain sphingosine-1-phosphate receptor 1 levels but does not promote remyelination or neuroprotection in the cuprizone model. Neuroimmunology 339: 577091
25.
Zurück zum Zitat Mike, E.V., H.M. Makinde, M. Gulinello, et al. 2018. Lipocalin-2 is a pathogenic determinant and biomarker of neuropsychiatric lupus. Autoimmun 96: 59–73.CrossRef Mike, E.V., H.M. Makinde, M. Gulinello, et al. 2018. Lipocalin-2 is a pathogenic determinant and biomarker of neuropsychiatric lupus. Autoimmun 96: 59–73.CrossRef
26.
Zurück zum Zitat Chen, E.Y., C.M. Tan, Y. Kou, et al. 2013. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14 (1): 128.PubMedPubMedCentralCrossRef Chen, E.Y., C.M. Tan, Y. Kou, et al. 2013. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14 (1): 128.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Kuleshov, M.V., M.R. Jones, A.D. Rouillard, et al. 2016. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research 44 (W1): W90–W97.PubMedPubMedCentralCrossRef Kuleshov, M.V., M.R. Jones, A.D. Rouillard, et al. 2016. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research 44 (W1): W90–W97.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Chen, X., T.W. Laudeman, P.J. Rushton, et al. 2007. CGKB: An annotation knowledge base for cowpea (Vigna unguiculata L.) methylation filtered genomic genespace sequences. BMC Bioinformatics 8:129. Chen, X., T.W. Laudeman, P.J. Rushton, et al. 2007. CGKB: An annotation knowledge base for cowpea (Vigna unguiculata L.) methylation filtered genomic genespace sequences. BMC Bioinformatics 8:129.
30.
Zurück zum Zitat Wang, J., Y. Liu, X. Cheng, et al. 2017. The effects of LW-AFC on the hippocampal transcriptome in senescence-accelerated mouse prone 8 strain, a mouse model of Alzheimer’s disease. Journal of Alzheimer’s Disease 57 (1): 227–240.PubMedCrossRef Wang, J., Y. Liu, X. Cheng, et al. 2017. The effects of LW-AFC on the hippocampal transcriptome in senescence-accelerated mouse prone 8 strain, a mouse model of Alzheimer’s disease. Journal of Alzheimer’s Disease 57 (1): 227–240.PubMedCrossRef
31.
Zurück zum Zitat Qiao, X., H. Wang, L. Lu, et al. 2021. Hippocampal microglia CD40 mediates NPSLE cognitive dysfunction in mice. Journal of Neuroimmunology 357: 577620.PubMedCrossRef Qiao, X., H. Wang, L. Lu, et al. 2021. Hippocampal microglia CD40 mediates NPSLE cognitive dysfunction in mice. Journal of Neuroimmunology 357: 577620.PubMedCrossRef
32.
Zurück zum Zitat Sato, S., J. Temmoku, Y. Fujita, et al. 2020. Autoantibodies associated with neuropsychiatric systemic lupus erythematosus: The quest for symptom-specific biomarkers. Fukushima Journal of Medical Sciences 66 (1): 1–9.CrossRef Sato, S., J. Temmoku, Y. Fujita, et al. 2020. Autoantibodies associated with neuropsychiatric systemic lupus erythematosus: The quest for symptom-specific biomarkers. Fukushima Journal of Medical Sciences 66 (1): 1–9.CrossRef
33.
Zurück zum Zitat Wen, J., J. Doerner, K. Weidenheim, et al. 2015. TNF-like weak inducer of apoptosis promotes blood brain barrier disruption and increases neuronal cell death in MRL/lpr mice. Journal of Autoimmunity 60: 40–50.PubMedPubMedCentralCrossRef Wen, J., J. Doerner, K. Weidenheim, et al. 2015. TNF-like weak inducer of apoptosis promotes blood brain barrier disruption and increases neuronal cell death in MRL/lpr mice. Journal of Autoimmunity 60: 40–50.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Ramsey-Goldman, R., J. Li, T. Dervieux, et al. 2017. Cell-bound complement activation products in SLE. Lupus Science and Medicine 4(1): e000236 Ramsey-Goldman, R., J. Li, T. Dervieux, et al. 2017. Cell-bound complement activation products in SLE. Lupus Science and Medicine 4(1): e000236
35.
Zurück zum Zitat Fanouriakis, A., D.T. Boumpas, and G.K. Bertsias. 2013. Pathogenesis and treatment of CNS lupus. Current Opinion in Rheumatology 25 (5): 577–583.PubMedCrossRef Fanouriakis, A., D.T. Boumpas, and G.K. Bertsias. 2013. Pathogenesis and treatment of CNS lupus. Current Opinion in Rheumatology 25 (5): 577–583.PubMedCrossRef
36.
Zurück zum Zitat Lu, L., H. Wang, X. Liu, et al. 2021. Pyruvate kinase isoform M2 impairs cognition in systemic lupus erythematosus by promoting microglial synaptic pruning via the β-catenin signaling pathway. Neuroinflammation 18 (1): 229.CrossRef Lu, L., H. Wang, X. Liu, et al. 2021. Pyruvate kinase isoform M2 impairs cognition in systemic lupus erythematosus by promoting microglial synaptic pruning via the β-catenin signaling pathway. Neuroinflammation 18 (1): 229.CrossRef
37.
Zurück zum Zitat Duarte-Delgado, N.P., G. Vásquez, and B.L. Ortiz-Reyes. 2019. Blood-brain barrier disruption and neuroinflammation as pathophysiological mechanisms of the diffuse manifestations of neuropsychiatric systemic lupus erythematosus. Autoimmunity Reviews 18 (4): 426–432.PubMedCrossRef Duarte-Delgado, N.P., G. Vásquez, and B.L. Ortiz-Reyes. 2019. Blood-brain barrier disruption and neuroinflammation as pathophysiological mechanisms of the diffuse manifestations of neuropsychiatric systemic lupus erythematosus. Autoimmunity Reviews 18 (4): 426–432.PubMedCrossRef
38.
Zurück zum Zitat Wang, J., Y. Liu, X. Cheng, et al. 2017. The effects of LW-AFC on the hippocampal transcriptome in senescence-accelerated mouse prone 8 strain, a mouse model of Alzheimer’s disease. Alzheimers Dis 57: 227–240.CrossRef Wang, J., Y. Liu, X. Cheng, et al. 2017. The effects of LW-AFC on the hippocampal transcriptome in senescence-accelerated mouse prone 8 strain, a mouse model of Alzheimer’s disease. Alzheimers Dis 57: 227–240.CrossRef
39.
Zurück zum Zitat Bărbulescu, A.L., R.E. Sandu, A.F. Vreju, et al. 2019. Neuroinflammation in systemic lupus erythematosus - A review. Romanian Journal of Morphology and Embryology 60 (3): 781–786.PubMed Bărbulescu, A.L., R.E. Sandu, A.F. Vreju, et al. 2019. Neuroinflammation in systemic lupus erythematosus - A review. Romanian Journal of Morphology and Embryology 60 (3): 781–786.PubMed
40.
Zurück zum Zitat Faust, T.W., E.H. Chang, C. Kowal, et al. 2010. Neurotoxic lupus autoantibodies alter brain function through two distinct mechanisms. Proceedings of the National Academy of Sciences USA 107 (43): 18569–18574.CrossRef Faust, T.W., E.H. Chang, C. Kowal, et al. 2010. Neurotoxic lupus autoantibodies alter brain function through two distinct mechanisms. Proceedings of the National Academy of Sciences USA 107 (43): 18569–18574.CrossRef
41.
Zurück zum Zitat DeGiorgio, L.A., K.N. Konstantinov, S.C. Lee, et al. 2001. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nature Medicine 7 (11): 1189–1193.PubMedCrossRef DeGiorgio, L.A., K.N. Konstantinov, S.C. Lee, et al. 2001. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nature Medicine 7 (11): 1189–1193.PubMedCrossRef
42.
Zurück zum Zitat Kowal, C., L.A. Degiorgio, J.Y. Lee, et al. 2006. Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. Proceedings of the National Academy of Sciences USA 103 (52): 19854–19859.CrossRef Kowal, C., L.A. Degiorgio, J.Y. Lee, et al. 2006. Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. Proceedings of the National Academy of Sciences USA 103 (52): 19854–19859.CrossRef
43.
Zurück zum Zitat Stock, A.D., S. Gelb, O. Pasternak, et al. 2017. The blood brain barrier and neuropsychiatric lupus: New perspectives in light of advances in understanding the neuroimmune interface. Autoimmunity Reviews 16 (6): 612–619.PubMedCrossRef Stock, A.D., S. Gelb, O. Pasternak, et al. 2017. The blood brain barrier and neuropsychiatric lupus: New perspectives in light of advances in understanding the neuroimmune interface. Autoimmunity Reviews 16 (6): 612–619.PubMedCrossRef
44.
Zurück zum Zitat Erickson, M.A., and W.A. Banks. 2019. Age-associated changes in the immune system and blood-brain barrier functions. International Journal of Molecular Sciences 20 (7): 1632.PubMedPubMedCentralCrossRef Erickson, M.A., and W.A. Banks. 2019. Age-associated changes in the immune system and blood-brain barrier functions. International Journal of Molecular Sciences 20 (7): 1632.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Liu, L., and X. Liu. 2019. Contributions of drug transporters to blood-brain barriers. Advances in Experimental Medicine and Biology 1141: 407–466.PubMedCrossRef Liu, L., and X. Liu. 2019. Contributions of drug transporters to blood-brain barriers. Advances in Experimental Medicine and Biology 1141: 407–466.PubMedCrossRef
46.
Zurück zum Zitat Erb, U., C. Schwerk, H. Schroten, et al. 2020. Review of functional in vitro models of the blood-cerebrospinal fluid barrier in leukaemia research. Journal of Neuroscience Methods 329: 108478.PubMedCrossRef Erb, U., C. Schwerk, H. Schroten, et al. 2020. Review of functional in vitro models of the blood-cerebrospinal fluid barrier in leukaemia research. Journal of Neuroscience Methods 329: 108478.PubMedCrossRef
47.
Zurück zum Zitat Solár, P., A. Zamani, L. Kubíčková, et al. 2020. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS 17 (1): 35.PubMedPubMedCentralCrossRef Solár, P., A. Zamani, L. Kubíčková, et al. 2020. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS 17 (1): 35.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Zanotto, C., F. Simão, M.S. Gasparin, et al. 2017. Exendin-4 reverses biochemical and functional alterations in the blood-brain and blood-CSF barriers in diabetic rats. Molecular Neurobiology 54 (3): 2154–2166.PubMedCrossRef Zanotto, C., F. Simão, M.S. Gasparin, et al. 2017. Exendin-4 reverses biochemical and functional alterations in the blood-brain and blood-CSF barriers in diabetic rats. Molecular Neurobiology 54 (3): 2154–2166.PubMedCrossRef
49.
Zurück zum Zitat Abdelrahman, M., A. Sivarajah, and C. Thiemermann. 2005. Beneficial effects of PPAR-gamma ligands in ischemia-reperfusion injury, inflammation and shock. Cardiovascular Research 65: 772–781.PubMedCrossRef Abdelrahman, M., A. Sivarajah, and C. Thiemermann. 2005. Beneficial effects of PPAR-gamma ligands in ischemia-reperfusion injury, inflammation and shock. Cardiovascular Research 65: 772–781.PubMedCrossRef
50.
Zurück zum Zitat Akiyama, T.E., P.T. Meinke, and J.P. Berger. 2005. PPAR ligands: Potential therapies for metabolic syndrome. Current Diabetes Reports 5: 45–52.PubMedCrossRef Akiyama, T.E., P.T. Meinke, and J.P. Berger. 2005. PPAR ligands: Potential therapies for metabolic syndrome. Current Diabetes Reports 5: 45–52.PubMedCrossRef
51.
Zurück zum Zitat Bernardo, A., and L. Minghetti. 2006. PPAR-gamma agonists as regulators of microglial activation and brain inflammation. Current Pharmaceutical Design 12: 93–109.PubMedCrossRef Bernardo, A., and L. Minghetti. 2006. PPAR-gamma agonists as regulators of microglial activation and brain inflammation. Current Pharmaceutical Design 12: 93–109.PubMedCrossRef
52.
Zurück zum Zitat He, X., W. Liu, M. Shi, et al. 2017. Docosahexaenoic acid attenuates LPS-stimulated inflammatory response by regulating the PPARγ/NF-κB pathways in primary bovine mammary epithelial cells. Research in Veterinary Science 112: 7–12.PubMedCrossRef He, X., W. Liu, M. Shi, et al. 2017. Docosahexaenoic acid attenuates LPS-stimulated inflammatory response by regulating the PPARγ/NF-κB pathways in primary bovine mammary epithelial cells. Research in Veterinary Science 112: 7–12.PubMedCrossRef
53.
Zurück zum Zitat Zhang, X., M. Zhou, Y. Guo, et al. 2015. 1,25-Dihydroxyvitamin D3 promotes high glucose-induced M1 macrophage switching to M2 via the VDR-PPARγ signaling pathway. BioMed Research International 2015: 157834.PubMedPubMedCentral Zhang, X., M. Zhou, Y. Guo, et al. 2015. 1,25-Dihydroxyvitamin D3 promotes high glucose-induced M1 macrophage switching to M2 via the VDR-PPARγ signaling pathway. BioMed Research International 2015: 157834.PubMedPubMedCentral
54.
Zurück zum Zitat Kowiański, P., G. Lietzau, E. Czuba, et al. 2018. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cellular and Molecular Neurobiology 38 (3): 579–593.PubMedCrossRef Kowiański, P., G. Lietzau, E. Czuba, et al. 2018. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cellular and Molecular Neurobiology 38 (3): 579–593.PubMedCrossRef
55.
Zurück zum Zitat Hiew, L.F., C.H. Poon, H.Z. You, et al. 2021.TGF-β/Smad signalling in neurogenesis: implications for neuropsychiatric diseases. Cells 10(6):1382. Hiew, L.F., C.H. Poon, H.Z. You, et al. 2021.TGF-β/Smad signalling in neurogenesis: implications for neuropsychiatric diseases. Cells 10(6):1382.
56.
Zurück zum Zitat Garcia-Bueno, B., J.R. Caso, and J.C. Leza. 2008. Stress as a neuroinflammatory condition in brain: Damaging and protective mechanisms. Neuroscience and Biobehavioral Reviews 32: 1136–1151.PubMedCrossRef Garcia-Bueno, B., J.R. Caso, and J.C. Leza. 2008. Stress as a neuroinflammatory condition in brain: Damaging and protective mechanisms. Neuroscience and Biobehavioral Reviews 32: 1136–1151.PubMedCrossRef
57.
Zurück zum Zitat Sotiropoulos, M.G., and T. Chitnis. 2020. Opposing and potentially antagonistic effects of BMP and TGF-β in multiple sclerosis: The “Yin and Yang” of neuro-immune Signaling. Journal of Neuroimmunology 347: 577358.PubMedCrossRef Sotiropoulos, M.G., and T. Chitnis. 2020. Opposing and potentially antagonistic effects of BMP and TGF-β in multiple sclerosis: The “Yin and Yang” of neuro-immune Signaling. Journal of Neuroimmunology 347: 577358.PubMedCrossRef
58.
Zurück zum Zitat Vogel, T., S. Ahrens, N. Büttner, et al. 2010. Transforming growth factor beta promotes neuronal cell fate of mouse cortical and hippocampal progenitors in vitro and in vivo: Identification of Nedd9 as an essential signaling component. Cerebral Cortex 20 (3): 661–671.PubMedCrossRef Vogel, T., S. Ahrens, N. Büttner, et al. 2010. Transforming growth factor beta promotes neuronal cell fate of mouse cortical and hippocampal progenitors in vitro and in vivo: Identification of Nedd9 as an essential signaling component. Cerebral Cortex 20 (3): 661–671.PubMedCrossRef
59.
Zurück zum Zitat Wachs, F.P., B. Winner, S. Couillard-Despres, et al. 2006. Transforming growth factor-beta1 is a negative modulator of adult neurogenesis. Journal of Neuropathology & Experimental Neurology 65: 358–370.CrossRef Wachs, F.P., B. Winner, S. Couillard-Despres, et al. 2006. Transforming growth factor-beta1 is a negative modulator of adult neurogenesis. Journal of Neuropathology & Experimental Neurology 65: 358–370.CrossRef
60.
Zurück zum Zitat Chao, C.C., S. Hu, W.H. Frey, et al. 1994. Transforming growth factor beta in Alzheimer’s disease. Clinical and Diagnostic Laboratory Immunology 1: 109–110.PubMedPubMedCentralCrossRef Chao, C.C., S. Hu, W.H. Frey, et al. 1994. Transforming growth factor beta in Alzheimer’s disease. Clinical and Diagnostic Laboratory Immunology 1: 109–110.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Vawter, M.P., O. Dillon-Carter, W.W. Tourtellotte, et al. 1996. TGFbeta1 and TGFbeta2 concentrations are elevated in Parkinson’s disease in ventricular cerebrospinal fluid. Experimental Neurology 142: 313–322.PubMedCrossRef Vawter, M.P., O. Dillon-Carter, W.W. Tourtellotte, et al. 1996. TGFbeta1 and TGFbeta2 concentrations are elevated in Parkinson’s disease in ventricular cerebrospinal fluid. Experimental Neurology 142: 313–322.PubMedCrossRef
62.
Zurück zum Zitat Tzavlaki, K., and A. Moustakas. 2020. TGF-β signaling. Biomolecule 10 (3): 487.CrossRef Tzavlaki, K., and A. Moustakas. 2020. TGF-β signaling. Biomolecule 10 (3): 487.CrossRef
63.
Zurück zum Zitat El-Sawaf, E.S., S. Saleh, D.M. Abdallah, et al. 2021. Vitamin D and rosuvastatin obliterate peripheral neuropathy in a type-2 diabetes model through modulating Notch1, Wnt-10α, TGF-β and NRF-1 crosstalk. Life Sciences 279: 119697.PubMedCrossRef El-Sawaf, E.S., S. Saleh, D.M. Abdallah, et al. 2021. Vitamin D and rosuvastatin obliterate peripheral neuropathy in a type-2 diabetes model through modulating Notch1, Wnt-10α, TGF-β and NRF-1 crosstalk. Life Sciences 279: 119697.PubMedCrossRef
Metadaten
Titel
Treatment with 1,25-Dihydroxyvitamin D3 Delays Choroid Plexus Infiltration and BCSFB Injury in MRL/lpr Mice Coinciding with Activation of the PPARγ/NF-κB/TNF-α Pathway and Suppression of TGF-β/Smad Signaling
verfasst von
Xuewei Li
Shuangli Xu
Jie Liu
Yingzhe Zhao
Huirong Han
Xiangling Li
Yanqiang Wang
Publikationsdatum
21.10.2022
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01755-5

Weitere Artikel der Ausgabe 2/2023

Inflammation 2/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.