Skip to main content
Erschienen in: Inflammation 2/2023

29.12.2022 | Original Article

IRAK-M Regulates Proliferative and Invasive Phenotypes of Lung Fibroblasts

verfasst von: Zhoude Zheng, Jia Li, Ye Cui, Wei Wang, Mingqiang Zhang, Youming Zhang, Yan Bai, Sun Ying, Jinming Gao

Erschienen in: Inflammation | Ausgabe 2/2023

Einloggen, um Zugang zu erhalten

Abstract

Lung fibroblasts play an important role in subepithelial fibrosis, one feature for airway remodeling. IL-1 receptor-associated kinase (IRAK)-M was shown to involve fibrosis formation in airways and lung through regulation of inflammatory responses. IRAK-M is expressed by lung fibroblasts, whether IRAK-M has direct impact on lung fibroblasts remains unclear. In this investigation, we evaluated in vitro effect of IRAK-M on phenotypes of lung fibroblasts by silencing or overexpressing IRAK-M. Murine lung fibroblasts (MLg) were stimulated with house dust mite (HDM), IL-33, and transforming growth factor (TGF) β1. Techniques of small interfering RNA or expression plasmid were employed to silence or overexpress IRAK-M in MLg fibroblast cells. Proliferation, migration, invasiveness, and fibrosis-related events were evaluated. Significant upregulation of IRAK-M expression in MLg cells was caused by these stimuli. Silencing IRAK-M significantly increased proliferation, migration, and invasiveness of lung fibroblasts regardless of stimulating conditions. By contrast, IRAK-M overexpression significantly inhibited proliferation and motility of MLg lung fibroblasts. IRAK-M overexpression also significantly decreased the expression of fibronectin, collagen I, and α-SMA in MLg cells. Under stimulation with TGFβ1 or IL-33, IRAK-M silencing reduced MMP9 production, while IRAK-M overexpression increased MMP9 production. Modulation of IRAK-M expression affected cytokines production, either decreased or increased expression of TNFα and CXCL10 by the cells regardless of stimulation. Our in vitro data reveal that IRAK-M directly impacts on lung fibroblasts through modulation of cellular motility, release of inflammatory, and fibrotic cytokines of lung fibroblasts. These might suggest a new target by regulation of IRAK-M in slowing airway remodeling.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Prakash, Y.S., A.J. Halayko, R. Gosens, R.A. Panettieri Jr., B. Camoretti-Mercado, R.B. Penn, and ATS Assembly on Respiratory Structure and Function. 2017. An official American Thoracic Society research statement: Current challenges facing research and therapeutic advances in airway remodeling. American Journal of Respiratory and Critical Care Medicine 195: e4–e19.PubMedCrossRef Prakash, Y.S., A.J. Halayko, R. Gosens, R.A. Panettieri Jr., B. Camoretti-Mercado, R.B. Penn, and ATS Assembly on Respiratory Structure and Function. 2017. An official American Thoracic Society research statement: Current challenges facing research and therapeutic advances in airway remodeling. American Journal of Respiratory and Critical Care Medicine 195: e4–e19.PubMedCrossRef
2.
3.
Zurück zum Zitat James, A.L., and S. Wenzel. 2007. Clinical relevance of airway remodelling in airway diseases. European Respiratory Journal 30: 134–155.PubMedCrossRef James, A.L., and S. Wenzel. 2007. Clinical relevance of airway remodelling in airway diseases. European Respiratory Journal 30: 134–155.PubMedCrossRef
4.
Zurück zum Zitat Bumbacea, D., D. Campbell, L. Nguyen, D. Carr, P.J. Barnes, D. Robinson, and K.F. Chung. 2004. Parameters associated with persistent airflow obstruction in chronic severe asthma. European Respiratory Journal 24: 122–128.PubMedCrossRef Bumbacea, D., D. Campbell, L. Nguyen, D. Carr, P.J. Barnes, D. Robinson, and K.F. Chung. 2004. Parameters associated with persistent airflow obstruction in chronic severe asthma. European Respiratory Journal 24: 122–128.PubMedCrossRef
5.
Zurück zum Zitat Woodruff, P.G., B. Modrek, D.F. Choy, G. Jia, A.R. Abbas, A. Ellwanger, L.L. Koth, J.R. Arron, and J.V. Fahy. 2009. T-helper type 2-driven inflammation defines major subphenotypes of asthma. American Journal of Respiratory and Critical Care Medicine 180: 388–395.PubMedPubMedCentralCrossRef Woodruff, P.G., B. Modrek, D.F. Choy, G. Jia, A.R. Abbas, A. Ellwanger, L.L. Koth, J.R. Arron, and J.V. Fahy. 2009. T-helper type 2-driven inflammation defines major subphenotypes of asthma. American Journal of Respiratory and Critical Care Medicine 180: 388–395.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Chung, K.F., S.E. Wenzel, J.L. Brozek, A. Bush, M. Castro, P.J. Sterk, I.M. Adcock, E.D. Bateman, E.H. Bel, E.R. Bleecker, L.P. Boulet, C. Brightling, P. Chanez, S.E. Dahlen, R. Djukanovic, U. Frey, M. Gaga, P. Gibson, Q. Hamid, N.N. Jajour, T. Mauad, R.L. Sorkness, and W.G. Teague. 2014. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. European Respiratory Journal 43: 343–373.PubMedCrossRef Chung, K.F., S.E. Wenzel, J.L. Brozek, A. Bush, M. Castro, P.J. Sterk, I.M. Adcock, E.D. Bateman, E.H. Bel, E.R. Bleecker, L.P. Boulet, C. Brightling, P. Chanez, S.E. Dahlen, R. Djukanovic, U. Frey, M. Gaga, P. Gibson, Q. Hamid, N.N. Jajour, T. Mauad, R.L. Sorkness, and W.G. Teague. 2014. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. European Respiratory Journal 43: 343–373.PubMedCrossRef
7.
Zurück zum Zitat Tliba, O., and R.A. Panettieri Jr. 2019. Paucigranulocytic asthma: Uncoupling of airway obstruction from inflammation. The Journal of Allergy and Clinical Immunology 143: 1287–1294.PubMedCrossRef Tliba, O., and R.A. Panettieri Jr. 2019. Paucigranulocytic asthma: Uncoupling of airway obstruction from inflammation. The Journal of Allergy and Clinical Immunology 143: 1287–1294.PubMedCrossRef
8.
Zurück zum Zitat Roche, W.R., R. Beasley, J.H. Williams, and S.T. Holgate. 1989. Subepithelial fibrosis in the bronchi of asthmatics. Lancet 1: 520–524.PubMedCrossRef Roche, W.R., R. Beasley, J.H. Williams, and S.T. Holgate. 1989. Subepithelial fibrosis in the bronchi of asthmatics. Lancet 1: 520–524.PubMedCrossRef
9.
Zurück zum Zitat Lewis, C.C., H.W. Chu, J.Y. Westcott, A. Tucker, E.L. Langmack, E.R. Sutherland, and M. Kraft. 2005. Airway fibroblasts exhibit a synthetic phenotype in severe asthma. The Journal of Allergy and Clinical Immunology 115: 534–540.PubMedCrossRef Lewis, C.C., H.W. Chu, J.Y. Westcott, A. Tucker, E.L. Langmack, E.R. Sutherland, and M. Kraft. 2005. Airway fibroblasts exhibit a synthetic phenotype in severe asthma. The Journal of Allergy and Clinical Immunology 115: 534–540.PubMedCrossRef
10.
Zurück zum Zitat Ingram, J.L., M.J. Huggins, T.D. Church, Y. Li, D.C. Francisco, S. Degan, R. Firszt, D.M. Beaver, N.L. Lugogo, Y. Wang, M.E. Sunday, P.W. Noble, and M. Kraft. 2011. Airway fibroblasts in asthma manifest an invasive phenotype. American Journal of Respiratory and Critical Care Medicine 183: 1625–1632.PubMedPubMedCentralCrossRef Ingram, J.L., M.J. Huggins, T.D. Church, Y. Li, D.C. Francisco, S. Degan, R. Firszt, D.M. Beaver, N.L. Lugogo, Y. Wang, M.E. Sunday, P.W. Noble, and M. Kraft. 2011. Airway fibroblasts in asthma manifest an invasive phenotype. American Journal of Respiratory and Critical Care Medicine 183: 1625–1632.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Reeves, S.R., T. Kolstad, T.Y. Lien, M. Elliott, S.F. Ziegler, T.N. Wight, and J.S. Debley. 2014. Asthmatic airway epithelial cells differentially regulate fibroblast expression of extracellular matrix components. The Journal of Allergy and Clinical Immunology 134: 663–670 e1.PubMedPubMedCentralCrossRef Reeves, S.R., T. Kolstad, T.Y. Lien, M. Elliott, S.F. Ziegler, T.N. Wight, and J.S. Debley. 2014. Asthmatic airway epithelial cells differentially regulate fibroblast expression of extracellular matrix components. The Journal of Allergy and Clinical Immunology 134: 663–670 e1.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Flannery, S., and A.G. Bowie. 2010. The interleukin-1 receptor-associated kinases: Critical regulators of innate immune signalling. Biochemical Pharmacology 80: 1981–1991.PubMedCrossRef Flannery, S., and A.G. Bowie. 2010. The interleukin-1 receptor-associated kinases: Critical regulators of innate immune signalling. Biochemical Pharmacology 80: 1981–1991.PubMedCrossRef
13.
Zurück zum Zitat Hammad, H., M. Chieppa, F. Perros, M.A. Willart, R.N. Germain, and B.N. Lambrecht. 2009. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nature Medicine 15: 410–416.PubMedPubMedCentralCrossRef Hammad, H., M. Chieppa, F. Perros, M.A. Willart, R.N. Germain, and B.N. Lambrecht. 2009. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nature Medicine 15: 410–416.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Kobayashi, K., L.D. Hernandez, J.E. Galan, C.A. Janeway Jr., R. Medzhitov, and R.A. Flavell. 2002. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110: 191–202.PubMedCrossRef Kobayashi, K., L.D. Hernandez, J.E. Galan, C.A. Janeway Jr., R. Medzhitov, and R.A. Flavell. 2002. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110: 191–202.PubMedCrossRef
15.
Zurück zum Zitat Rosati, O., and M.U. Martin. 2002. Identification and characterization of murine IRAK-M. Biochemical and Biophysical Research Communications 293: 1472–1477.PubMedCrossRef Rosati, O., and M.U. Martin. 2002. Identification and characterization of murine IRAK-M. Biochemical and Biophysical Research Communications 293: 1472–1477.PubMedCrossRef
16.
Zurück zum Zitat Balaci, L., M.C. Spada, N. Olla, G. Sole, L. Loddo, F. Anedda, S. Naitza, M.A. Zuncheddu, A. Maschio, D. Altea, M. Uda, S. Pilia, S. Sanna, M. Masala, L. Crisponi, M. Fattori, M. Devoto, S. Doratiotto, S. Rassu, S. Mereu, E. Giua, N.G. Cadeddu, R. Atzeni, U. Pelosi, A. Corrias, R. Perra, P.L. Torrazza, P. Pirina, F. Ginesu, S. Marcias, M.G. Schintu, G.S. Del Giacco, P.E. Manconi, G. Malerba, A. Bisognin, E. Trabetti, A. Boner, L. Pescollderungg, P.F. Pignatti, D. Schlessinger, A. Cao, and G. Pilia. 2007. IRAK-M is involved in the pathogenesis of early-onset persistent asthma. American Journal of Human Genetics 80: 1103–1114.PubMedPubMedCentralCrossRef Balaci, L., M.C. Spada, N. Olla, G. Sole, L. Loddo, F. Anedda, S. Naitza, M.A. Zuncheddu, A. Maschio, D. Altea, M. Uda, S. Pilia, S. Sanna, M. Masala, L. Crisponi, M. Fattori, M. Devoto, S. Doratiotto, S. Rassu, S. Mereu, E. Giua, N.G. Cadeddu, R. Atzeni, U. Pelosi, A. Corrias, R. Perra, P.L. Torrazza, P. Pirina, F. Ginesu, S. Marcias, M.G. Schintu, G.S. Del Giacco, P.E. Manconi, G. Malerba, A. Bisognin, E. Trabetti, A. Boner, L. Pescollderungg, P.F. Pignatti, D. Schlessinger, A. Cao, and G. Pilia. 2007. IRAK-M is involved in the pathogenesis of early-onset persistent asthma. American Journal of Human Genetics 80: 1103–1114.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Zhang, M., W. Chen, W. Zhou, Y. Bai, and J. Gao. 2017. Critical role of IRAK-M in regulating antigen-induced airway inflammation. American Journal of Respiratory Cell and Molecular Biology 57: 547–559.PubMedPubMedCentralCrossRef Zhang, M., W. Chen, W. Zhou, Y. Bai, and J. Gao. 2017. Critical role of IRAK-M in regulating antigen-induced airway inflammation. American Journal of Respiratory Cell and Molecular Biology 57: 547–559.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Liu, Y., M. Zhang, L. Lou, L. Li, Y. Zhang, W. Chen, W. Zhou, Y. Bai, and J. Gao. 2019. IRAK-M associates with susceptibility to adult-onset asthma and promotes chronic airway inflammation. The Journal of Immunology 202: 899–911.PubMedCrossRef Liu, Y., M. Zhang, L. Lou, L. Li, Y. Zhang, W. Chen, W. Zhou, Y. Bai, and J. Gao. 2019. IRAK-M associates with susceptibility to adult-onset asthma and promotes chronic airway inflammation. The Journal of Immunology 202: 899–911.PubMedCrossRef
19.
Zurück zum Zitat Zhang, X., M. Zhang, L. Li, W. Chen, W. Zhou, and J. Gao. 2021. IRAK-M knockout promotes allergic airway inflammation, but not airway hyperresponsiveness, in house dust mite-induced experimental asthma model. Journal of Thoracic Disease 13: 1413–1426.PubMedPubMedCentralCrossRef Zhang, X., M. Zhang, L. Li, W. Chen, W. Zhou, and J. Gao. 2021. IRAK-M knockout promotes allergic airway inflammation, but not airway hyperresponsiveness, in house dust mite-induced experimental asthma model. Journal of Thoracic Disease 13: 1413–1426.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Wu, Q., D. Jiang, S. Smith, J. Thaikoottathil, R.J. Martin, R.P. Bowler, and H.W. Chu. 2012. IL-13 dampens human airway epithelial innate immunity through induction of IL-1 receptor-associated kinase M. The Journal of Allergy and Clinical Immunology 129: 825–833 e2.PubMedCrossRef Wu, Q., D. Jiang, S. Smith, J. Thaikoottathil, R.J. Martin, R.P. Bowler, and H.W. Chu. 2012. IL-13 dampens human airway epithelial innate immunity through induction of IL-1 receptor-associated kinase M. The Journal of Allergy and Clinical Immunology 129: 825–833 e2.PubMedCrossRef
21.
Zurück zum Zitat Ballinger, M.N., M.W. Newstead, X. Zeng, U. Bhan, X.M. Mo, S.L. Kunkel, B.B. Moore, R. Flavell, J.W. Christman, and T.J. Standiford. 2015. IRAK-M promotes alternative macrophage activation and fibroproliferation in bleomycin-induced lung injury. The Journal of Immunology 194: 1894–1904.PubMedCrossRef Ballinger, M.N., M.W. Newstead, X. Zeng, U. Bhan, X.M. Mo, S.L. Kunkel, B.B. Moore, R. Flavell, J.W. Christman, and T.J. Standiford. 2015. IRAK-M promotes alternative macrophage activation and fibroproliferation in bleomycin-induced lung injury. The Journal of Immunology 194: 1894–1904.PubMedCrossRef
22.
Zurück zum Zitat Steiger, S., S.V. Kumar, M. Honarpisheh, G. Lorenz, R. Günthner, S. Romoli, R. Gröbmayr, H.E. Susanti, J. Potempa, J. Koziel, and M. Lech. 2017. Immunomodulatory molecule IRAK-M balances macrophage polarization and determines macrophage responses during renal fibrosis. The Journal of Immunology 199: 1440–1452.PubMedCrossRef Steiger, S., S.V. Kumar, M. Honarpisheh, G. Lorenz, R. Günthner, S. Romoli, R. Gröbmayr, H.E. Susanti, J. Potempa, J. Koziel, and M. Lech. 2017. Immunomodulatory molecule IRAK-M balances macrophage polarization and determines macrophage responses during renal fibrosis. The Journal of Immunology 199: 1440–1452.PubMedCrossRef
23.
Zurück zum Zitat Chen, W., A. Saxena, N. Li, J. Sun, A. Gupta, D.W. Lee, Q. Tian, M. Dobaczewski, and N.G. Frangogiannis. 2012. Endogenous IRAK-M attenuates postinfarction remodeling through effects on macrophages and fibroblasts. Arteriosclerosis, Thrombosis, and Vascular Biology 32: 2598–2608.PubMedPubMedCentralCrossRef Chen, W., A. Saxena, N. Li, J. Sun, A. Gupta, D.W. Lee, Q. Tian, M. Dobaczewski, and N.G. Frangogiannis. 2012. Endogenous IRAK-M attenuates postinfarction remodeling through effects on macrophages and fibroblasts. Arteriosclerosis, Thrombosis, and Vascular Biology 32: 2598–2608.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Saxena, A., A.V. Shinde, Z. Haque, Y.J. Wu, W. Chen, Y. Su, and N.G. Frangogiannis. 2015. The role of interleukin receptor associated kinase (IRAK)-M in regulation of myofibroblast phenotype in vitro, and in an experimental model of non-reperfused myocardial infarction. Journal of Molecular and Cellular Cardiology 89: 223–231.PubMedPubMedCentralCrossRef Saxena, A., A.V. Shinde, Z. Haque, Y.J. Wu, W. Chen, Y. Su, and N.G. Frangogiannis. 2015. The role of interleukin receptor associated kinase (IRAK)-M in regulation of myofibroblast phenotype in vitro, and in an experimental model of non-reperfused myocardial infarction. Journal of Molecular and Cellular Cardiology 89: 223–231.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Miyata, M., J.Y. Lee, S. Susuki-Miyata, W.Y. Wang, H. Xu, H. Kai, K.S. Kobayashi, R.A. Flavell, and J.D. Li. 2015. Glucocorticoids suppress inflammation via the upregulation of negative regulator IRAK-M. Nature Communications 6: 6062.PubMedCrossRef Miyata, M., J.Y. Lee, S. Susuki-Miyata, W.Y. Wang, H. Xu, H. Kai, K.S. Kobayashi, R.A. Flavell, and J.D. Li. 2015. Glucocorticoids suppress inflammation via the upregulation of negative regulator IRAK-M. Nature Communications 6: 6062.PubMedCrossRef
26.
27.
Zurück zum Zitat Reeves, S.R., T. Kolstad, T.Y. Lien, S. Herrington-Shaner, and J.S. Debley. 2015. Fibroblast-myofibroblast transition is differentially regulated by bronchial epithelial cells from asthmatic children. Respiratory Research 16: 21.PubMedPubMedCentralCrossRef Reeves, S.R., T. Kolstad, T.Y. Lien, S. Herrington-Shaner, and J.S. Debley. 2015. Fibroblast-myofibroblast transition is differentially regulated by bronchial epithelial cells from asthmatic children. Respiratory Research 16: 21.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Liang, J., N. Liu, X. Liu, J.M. Mena, T. Xie, Y. Geng, C. Huan, Y. Zhang, F. Taghavifar, G. Huang, A. Kurkciyan, V. Barron, D. Jiang, and P.W. Noble. 2019. Mitogen-activated protein kinase-activated protein kinase 2 inhibition attenuates fibroblast invasion and severe lung fibrosis. American Journal of Respiratory Cell and Molecular Biology 60: 41–48.PubMedPubMedCentralCrossRef Liang, J., N. Liu, X. Liu, J.M. Mena, T. Xie, Y. Geng, C. Huan, Y. Zhang, F. Taghavifar, G. Huang, A. Kurkciyan, V. Barron, D. Jiang, and P.W. Noble. 2019. Mitogen-activated protein kinase-activated protein kinase 2 inhibition attenuates fibroblast invasion and severe lung fibrosis. American Journal of Respiratory Cell and Molecular Biology 60: 41–48.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Halwani, R., S. Al-Muhsen, H. Al-Jahdali, and Q. Hamid. 2011. Role of transforming growth factor-beta in airway remodeling in asthma. American Journal of Respiratory Cell and Molecular Biology 44: 127–133.PubMedCrossRef Halwani, R., S. Al-Muhsen, H. Al-Jahdali, and Q. Hamid. 2011. Role of transforming growth factor-beta in airway remodeling in asthma. American Journal of Respiratory Cell and Molecular Biology 44: 127–133.PubMedCrossRef
30.
Zurück zum Zitat Nechama, M., J. Kwon, S. Wei, A.T. Kyi, R.S. Welner, I.Z. Ben-Dov, M.S. Arredouani, J.M. Asara, C.H. Chen, C.Y. Tsai, K.F. Nelson, K.S. Kobayashi, E. Israel, X.Z. Zhou, L.K. Nicholson, and K.P. Lu. 2018. The IL-33-PIN1-IRAK-M axis is critical for type 2 immunity in IL-33-induced allergic airway inflammation. Nature Communications 9: 1603.PubMedPubMedCentralCrossRef Nechama, M., J. Kwon, S. Wei, A.T. Kyi, R.S. Welner, I.Z. Ben-Dov, M.S. Arredouani, J.M. Asara, C.H. Chen, C.Y. Tsai, K.F. Nelson, K.S. Kobayashi, E. Israel, X.Z. Zhou, L.K. Nicholson, and K.P. Lu. 2018. The IL-33-PIN1-IRAK-M axis is critical for type 2 immunity in IL-33-induced allergic airway inflammation. Nature Communications 9: 1603.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Kraft, M., C. Lewis, D. Pham, and H.W. Chu. 2001. IL-4, IL-13, and dexamethasone augment fibroblast proliferation in asthma. The Journal of Allergy and Clinical Immunology 107: 602–606.PubMedCrossRef Kraft, M., C. Lewis, D. Pham, and H.W. Chu. 2001. IL-4, IL-13, and dexamethasone augment fibroblast proliferation in asthma. The Journal of Allergy and Clinical Immunology 107: 602–606.PubMedCrossRef
32.
33.
Zurück zum Zitat Hinz, B., S.H. Phan, V.J. Thannickal, A. Galli, M.L. Bochaton-Piallat, and G. Gabbiani. 2007. The myofibroblast: One function, multiple origins. American Journal of Pathology 170: 1807–1816.PubMedPubMedCentralCrossRef Hinz, B., S.H. Phan, V.J. Thannickal, A. Galli, M.L. Bochaton-Piallat, and G. Gabbiani. 2007. The myofibroblast: One function, multiple origins. American Journal of Pathology 170: 1807–1816.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Li, Y., D. Jiang, J. Liang, E.B. Meltzer, A. Gray, R. Miura, L. Wogensen, Y. Yamaguchi, and P.W. Noble. 2011. Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. Journal of Experimental Medicine 208: 1459–1471.PubMedPubMedCentralCrossRef Li, Y., D. Jiang, J. Liang, E.B. Meltzer, A. Gray, R. Miura, L. Wogensen, Y. Yamaguchi, and P.W. Noble. 2011. Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. Journal of Experimental Medicine 208: 1459–1471.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Ingram, J.L., D. Slade, T.D. Church, D. Francisco, K. Heck, R.W. Sigmon, M. Ghio, A. Murillo, R. Firszt, N.L. Lugogo, L. Que, M.E. Sunday, and M. Kraft. 2016. Role of matrix metalloproteinases-1 and -2 in interleukin-13-suppressed elastin in airway fibroblasts in asthma. American Journal of Respiratory Cell and Molecular Biology 54: 41–50.PubMedPubMedCentralCrossRef Ingram, J.L., D. Slade, T.D. Church, D. Francisco, K. Heck, R.W. Sigmon, M. Ghio, A. Murillo, R. Firszt, N.L. Lugogo, L. Que, M.E. Sunday, and M. Kraft. 2016. Role of matrix metalloproteinases-1 and -2 in interleukin-13-suppressed elastin in airway fibroblasts in asthma. American Journal of Respiratory Cell and Molecular Biology 54: 41–50.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Brilha, S., D.L.W. Chong, A.A. Khawaja, C.W.M. Ong, N.J. Guppy, J.C. Porter, and J.S. Friedland. 2018. Integrin α2β1 expression regulates matrix metalloproteinase-1-dependent bronchial epithelial repair in pulmonary tuberculosis. Frontiers in Immunology 9: 1348.PubMedPubMedCentralCrossRef Brilha, S., D.L.W. Chong, A.A. Khawaja, C.W.M. Ong, N.J. Guppy, J.C. Porter, and J.S. Friedland. 2018. Integrin α2β1 expression regulates matrix metalloproteinase-1-dependent bronchial epithelial repair in pulmonary tuberculosis. Frontiers in Immunology 9: 1348.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Ichiyasu, H., J.M. McCormack, K.M. McCarthy, D. Dombkowski, F.I. Preffer, and E.E. Schneeberger. 2004. Matrix metalloproteinase-9-deficient dendritic cells have impaired migration through tracheal epithelial tight junctions. American Journal of Respiratory Cell and Molecular Biology 30: 761–770.PubMedCrossRef Ichiyasu, H., J.M. McCormack, K.M. McCarthy, D. Dombkowski, F.I. Preffer, and E.E. Schneeberger. 2004. Matrix metalloproteinase-9-deficient dendritic cells have impaired migration through tracheal epithelial tight junctions. American Journal of Respiratory Cell and Molecular Biology 30: 761–770.PubMedCrossRef
38.
Zurück zum Zitat Wang, J., H.B. Yan, Q. Zhang, W.Y. Liu, Y.H. Jiang, G. Peng, F.Z. Wu, X. Liu, P.Y. Yang, and F. Liu. 2021. Enhancement of E-cadherin expression and processing and driving of cancer cell metastasis by ARID1A deficiency. Oncogene 40: 5468–5481.PubMedCrossRef Wang, J., H.B. Yan, Q. Zhang, W.Y. Liu, Y.H. Jiang, G. Peng, F.Z. Wu, X. Liu, P.Y. Yang, and F. Liu. 2021. Enhancement of E-cadherin expression and processing and driving of cancer cell metastasis by ARID1A deficiency. Oncogene 40: 5468–5481.PubMedCrossRef
39.
Zurück zum Zitat Sears, M.R., J.M. Greene, A.R. Willan, E.M. Wiecek, D.R. Taylor, E.M. Flannery, J.O. Cowan, G.P. Herbison, P.A. Silva, and R. Poulton. 2003. A longitudinal, population-based, cohort study of childhood asthma followed to adulthood. New England Journal of Medicine 349: 1414–1422.PubMedCrossRef Sears, M.R., J.M. Greene, A.R. Willan, E.M. Wiecek, D.R. Taylor, E.M. Flannery, J.O. Cowan, G.P. Herbison, P.A. Silva, and R. Poulton. 2003. A longitudinal, population-based, cohort study of childhood asthma followed to adulthood. New England Journal of Medicine 349: 1414–1422.PubMedCrossRef
40.
Zurück zum Zitat Saglani, S., D.N. Payne, J. Zhu, Z. Wang, A.G. Nicholson, A. Bush, and P.K. Jeffery. 2007. Early detection of airway wall remodeling and eosinophilic inflammation in preschool wheezers. American Journal of Respiratory and Critical Care Medicine 176: 858–864.PubMedCrossRef Saglani, S., D.N. Payne, J. Zhu, Z. Wang, A.G. Nicholson, A. Bush, and P.K. Jeffery. 2007. Early detection of airway wall remodeling and eosinophilic inflammation in preschool wheezers. American Journal of Respiratory and Critical Care Medicine 176: 858–864.PubMedCrossRef
41.
Zurück zum Zitat Al-Muhsen, S., J.R. Johnson, and Q. Hamid. 2011. Remodeling in asthma. The Journal of Allergy and Clinical Immunology 128: 451–462 quiz 63–4.PubMedCrossRef Al-Muhsen, S., J.R. Johnson, and Q. Hamid. 2011. Remodeling in asthma. The Journal of Allergy and Clinical Immunology 128: 451–462 quiz 63–4.PubMedCrossRef
42.
Zurück zum Zitat Deng, J.C., G. Cheng, M.W. Newstead, X. Zeng, K. Kobayashi, R.A. Flavell, and T.J. Standiford. 2006. Sepsis-induced suppression of lung innate immunity is mediated by IRAK-M. The Journal of Clinical Investigation 116: 2532–2542.PubMedPubMedCentral Deng, J.C., G. Cheng, M.W. Newstead, X. Zeng, K. Kobayashi, R.A. Flavell, and T.J. Standiford. 2006. Sepsis-induced suppression of lung innate immunity is mediated by IRAK-M. The Journal of Clinical Investigation 116: 2532–2542.PubMedPubMedCentral
43.
Zurück zum Zitat Gong, H., T. Liu, W. Chen, W. Zhou, and J. Gao. 2017. Effect of IRAK-M on airway inflammation induced by cigarette smoking. Mediators of Inflammation 2017: 6506953.PubMedPubMedCentralCrossRef Gong, H., T. Liu, W. Chen, W. Zhou, and J. Gao. 2017. Effect of IRAK-M on airway inflammation induced by cigarette smoking. Mediators of Inflammation 2017: 6506953.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Wesche, H., X. Gao, X. Li, C.J. Kirschning, G.R. Stark, and Z. Cao. 1999. IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family. Journal of Biological Chemistry 274: 19403–19410.PubMedCrossRef Wesche, H., X. Gao, X. Li, C.J. Kirschning, G.R. Stark, and Z. Cao. 1999. IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family. Journal of Biological Chemistry 274: 19403–19410.PubMedCrossRef
45.
Zurück zum Zitat Derynck, R., and Y.E. Zhang. 2003. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425: 577–584.PubMedCrossRef Derynck, R., and Y.E. Zhang. 2003. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425: 577–584.PubMedCrossRef
46.
Zurück zum Zitat Standiford, T.J., R. Kuick, U. Bhan, J. Chen, M. Newstead, and V.G. Keshamouni. 2011. TGF-beta-induced IRAK-M expression in tumor-associated macrophages regulates lung tumor growth. Oncogene 30: 2475–2484.PubMedPubMedCentralCrossRef Standiford, T.J., R. Kuick, U. Bhan, J. Chen, M. Newstead, and V.G. Keshamouni. 2011. TGF-beta-induced IRAK-M expression in tumor-associated macrophages regulates lung tumor growth. Oncogene 30: 2475–2484.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Wang, Y., H. Yang, X. Su, A. Cao, F. Chen, P. Chen, F. Yan, and H. Hu. 2021. TGF-β1/SMOC2/AKT and ERK axis regulates proliferation, migration, and fibroblast to myofibroblast transformation in lung fibroblast, contributing with the asthma progression. Hereditas 158: 47.PubMedPubMedCentralCrossRef Wang, Y., H. Yang, X. Su, A. Cao, F. Chen, P. Chen, F. Yan, and H. Hu. 2021. TGF-β1/SMOC2/AKT and ERK axis regulates proliferation, migration, and fibroblast to myofibroblast transformation in lung fibroblast, contributing with the asthma progression. Hereditas 158: 47.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Trompette, A., S. Divanovic, A. Visintin, C. Blanchard, R.S. Hegde, R. Madan, P.S. Thorne, M. Wills-Karp, T.L. Gioannini, J.P. Weiss, and C.L. Karp. 2009. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457: 585–588.PubMedCrossRef Trompette, A., S. Divanovic, A. Visintin, C. Blanchard, R.S. Hegde, R. Madan, P.S. Thorne, M. Wills-Karp, T.L. Gioannini, J.P. Weiss, and C.L. Karp. 2009. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457: 585–588.PubMedCrossRef
49.
Zurück zum Zitat Svee, K., J. White, P. Vaillant, J. Jessurun, U. Roongta, M. Krumwiede, D. Johnson, and C. Henke. 1996. Acute lung injury fibroblast migration and invasion of a fibrin matrix is mediated by CD44. The Journal of Clinical Investigation 98: 1713–1727.PubMedPubMedCentralCrossRef Svee, K., J. White, P. Vaillant, J. Jessurun, U. Roongta, M. Krumwiede, D. Johnson, and C. Henke. 1996. Acute lung injury fibroblast migration and invasion of a fibrin matrix is mediated by CD44. The Journal of Clinical Investigation 98: 1713–1727.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Huang, Q., C.D. Li, Y.R. Yang, X.F. Qin, J.J. Wang, X. Zhang, X.N. Du, X. Yang, Y. Wang, L. Li, M. Mu, Z. Lv, Y. Cui, K. Huang, C.J. Corrigan, W. Wang, and S. Ying. 2021. Role of the IL-33/ST2 axis in cigarette smoke-induced airways remodelling in chronic obstructive pulmonary disease. Thorax 76: 750–762.CrossRef Huang, Q., C.D. Li, Y.R. Yang, X.F. Qin, J.J. Wang, X. Zhang, X.N. Du, X. Yang, Y. Wang, L. Li, M. Mu, Z. Lv, Y. Cui, K. Huang, C.J. Corrigan, W. Wang, and S. Ying. 2021. Role of the IL-33/ST2 axis in cigarette smoke-induced airways remodelling in chronic obstructive pulmonary disease. Thorax 76: 750–762.CrossRef
51.
Zurück zum Zitat Kelly, E.A., and N.N. Jarjour. 2003. Role of matrix metalloproteinases in asthma. Current Opinion in Pulmonary Medicine 9: 28–33.PubMedCrossRef Kelly, E.A., and N.N. Jarjour. 2003. Role of matrix metalloproteinases in asthma. Current Opinion in Pulmonary Medicine 9: 28–33.PubMedCrossRef
52.
Zurück zum Zitat Kang, H.R., S.J. Cho, C.G. Lee, R.J. Homer, and J.A. Elias. 2007. Transforming growth factor (TGF)-beta1 stimulates pulmonary fibrosis and inflammation via a Bax-dependent, bid-activated pathway that involves matrix metalloproteinase-12. Journal of Biological Chemistry 282: 7723–7732.PubMedCrossRef Kang, H.R., S.J. Cho, C.G. Lee, R.J. Homer, and J.A. Elias. 2007. Transforming growth factor (TGF)-beta1 stimulates pulmonary fibrosis and inflammation via a Bax-dependent, bid-activated pathway that involves matrix metalloproteinase-12. Journal of Biological Chemistry 282: 7723–7732.PubMedCrossRef
53.
Zurück zum Zitat Jordana, M., B. Sarnstrand, P.J. Sime, and I. Ramis. 1994. Immune-inflammatory functions of fibroblasts. European Respiratory Journal 7: 2212–2222.PubMedCrossRef Jordana, M., B. Sarnstrand, P.J. Sime, and I. Ramis. 1994. Immune-inflammatory functions of fibroblasts. European Respiratory Journal 7: 2212–2222.PubMedCrossRef
54.
Zurück zum Zitat Zhou, H., M. Yu, K. Fukuda, J. Im, P. Yao, W. Cui, K. Bulek, J. Zepp, Y. Wan, T.W. Kim, W. Yin, V. Ma, J. Thomas, J. Gu, J.A. Wang, P.E. DiCorleto, P.L. Fox, J. Qin, and X. Li. 2013. IRAK-M mediates Toll-like receptor/IL-1R-induced NFkappaB activation and cytokine production. EMBO Journal 32: 583–596.PubMedPubMedCentralCrossRef Zhou, H., M. Yu, K. Fukuda, J. Im, P. Yao, W. Cui, K. Bulek, J. Zepp, Y. Wan, T.W. Kim, W. Yin, V. Ma, J. Thomas, J. Gu, J.A. Wang, P.E. DiCorleto, P.L. Fox, J. Qin, and X. Li. 2013. IRAK-M mediates Toll-like receptor/IL-1R-induced NFkappaB activation and cytokine production. EMBO Journal 32: 583–596.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Zhu, Y., Y. Liu, W. Zhou, R. Xiang, L. Jiang, K. Huang, Y. Xiao, Z. Guo, and J. Gao. 2010. A prostacyclin analogue, iloprost, protects from bleomycin-induced pulmonary fibrosis in mice. Respiratory Research 11: 34.PubMedPubMedCentralCrossRef Zhu, Y., Y. Liu, W. Zhou, R. Xiang, L. Jiang, K. Huang, Y. Xiao, Z. Guo, and J. Gao. 2010. A prostacyclin analogue, iloprost, protects from bleomycin-induced pulmonary fibrosis in mice. Respiratory Research 11: 34.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Tager, A.M., R.L. Kradin, P. LaCamera, S.D. Bercury, G.S. Campanella, C.P. Leary, V. Polosukhin, L.H. Zhao, H. Sakamoto, T.S. Blackwell, and A.D. Luster. 2004. Inhibition of pulmonary fibrosis by the chemokine IP-10/CXCL10. American Journal of Respiratory Cell and Molecular Biology 31: 395–404.PubMedCrossRef Tager, A.M., R.L. Kradin, P. LaCamera, S.D. Bercury, G.S. Campanella, C.P. Leary, V. Polosukhin, L.H. Zhao, H. Sakamoto, T.S. Blackwell, and A.D. Luster. 2004. Inhibition of pulmonary fibrosis by the chemokine IP-10/CXCL10. American Journal of Respiratory Cell and Molecular Biology 31: 395–404.PubMedCrossRef
57.
Zurück zum Zitat Ganesan, S., D. Pham, Y. Jing, M. Farazuddin, M.H. Hudy, B. Unger, A.T. Comstock, D. Proud, A.S. Lauring, and U.S. Sajjan. 2016. TLR2 activation limits rhinovirus-stimulated CXCL-10 by attenuating IRAK-1-dependent IL-33 receptor signaling in human bronchial epithelial cells. The Journal of Immunology 197: 2409–2420.PubMedCrossRef Ganesan, S., D. Pham, Y. Jing, M. Farazuddin, M.H. Hudy, B. Unger, A.T. Comstock, D. Proud, A.S. Lauring, and U.S. Sajjan. 2016. TLR2 activation limits rhinovirus-stimulated CXCL-10 by attenuating IRAK-1-dependent IL-33 receptor signaling in human bronchial epithelial cells. The Journal of Immunology 197: 2409–2420.PubMedCrossRef
Metadaten
Titel
IRAK-M Regulates Proliferative and Invasive Phenotypes of Lung Fibroblasts
verfasst von
Zhoude Zheng
Jia Li
Ye Cui
Wei Wang
Mingqiang Zhang
Youming Zhang
Yan Bai
Sun Ying
Jinming Gao
Publikationsdatum
29.12.2022
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01772-4

Weitere Artikel der Ausgabe 2/2023

Inflammation 2/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.