Skip to main content
Erschienen in: Inflammation 2/2023

28.10.2022 | Original Article

A NF-κB-Based High-Throughput Screening for Immune Adjuvants and Inhibitors

verfasst von: Boyang Yu, Boye Li, Tian Chen, Jinning Yang, Xiaoli Wang, Bo Peng, Qin Hu

Erschienen in: Inflammation | Ausgabe 2/2023

Einloggen, um Zugang zu erhalten

Abstract

The nuclear factor-κB (NF-κB) family is crucial for regulating immune and inflammatory responses. The activation of the immune cell signaling pathway usually activates NF-κB, causing a protective immune response. NF-κB can also cause excessive inflammatory responses by activating a cascade reaction of pro-inflammatory mediators such as cytokines. In this study, we used an NF-κB luciferase reporter gene system. Out of more than 800 compounds screened, four NF-κB agonists were identified with strong activity at nontoxic concentrations. Subsequently, the adjuvant effect was verified on mouse bone marrow-derived dendritic cells (BMDCs) and macrophages RAW264.7. It was found that fostamatinib (R788) disodium increased the production of IL-6, IL-12p40, and TNF-α, indicating that R788 disodium could induce the maturation of antigen-presenting cells (APCs). In addition, three compounds were screened to significantly inhibit NF-κB at nontoxic doses, including dehydrocostus lactone (DHL)–a known NF-κB inhibitor. The results showed that DHL significantly reduced the release of LPS-induced inflammatory cytokines (including TNF-α, IL-6, and IL-12). Our findings indicate that the NF-κB-based high-throughput screening can be used to discover potential immune adjuvants and anti-inflammatory molecules.

Graphical Abstract

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Verma, I.M., et al. 1995. Rel/NF-kappa B/I kappa B family: Intimate tales of association and dissociation. Genes & Development 9 (22): 2723–2735.CrossRef Verma, I.M., et al. 1995. Rel/NF-kappa B/I kappa B family: Intimate tales of association and dissociation. Genes & Development 9 (22): 2723–2735.CrossRef
2.
Zurück zum Zitat Hayden, M.S., and S. Ghosh. 2004. Signaling to NF-kappaB. Genes & Development 18 (18): 2195–2224.CrossRef Hayden, M.S., and S. Ghosh. 2004. Signaling to NF-kappaB. Genes & Development 18 (18): 2195–2224.CrossRef
4.
Zurück zum Zitat Desmet, C.J., and K.J. Ishii. 2012. Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nature Reviews Immunology 12 (7): 479–491.PubMedCrossRef Desmet, C.J., and K.J. Ishii. 2012. Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nature Reviews Immunology 12 (7): 479–491.PubMedCrossRef
5.
Zurück zum Zitat Kawai, T., and S. Akira. 2008. Toll-like receptor and RIG-I-like receptor signaling. Annals of the New York Academy of Sciences 1143: 1–20.PubMedCrossRef Kawai, T., and S. Akira. 2008. Toll-like receptor and RIG-I-like receptor signaling. Annals of the New York Academy of Sciences 1143: 1–20.PubMedCrossRef
6.
Zurück zum Zitat Kobayashi, T., et al. 2003. TRAF6 is a critical factor for dendritic cell maturation and development. Immunity 19 (3): 353–363.PubMedCrossRef Kobayashi, T., et al. 2003. TRAF6 is a critical factor for dendritic cell maturation and development. Immunity 19 (3): 353–363.PubMedCrossRef
7.
Zurück zum Zitat Horng, T., G. Barton, and R. Medzhitov. 2001. TIRAP: An adapter molecule in the Toll signaling pathway. Nature Immunology 2 (9): 835–841.PubMedCrossRef Horng, T., G. Barton, and R. Medzhitov. 2001. TIRAP: An adapter molecule in the Toll signaling pathway. Nature Immunology 2 (9): 835–841.PubMedCrossRef
8.
Zurück zum Zitat Matsumoto, M., and T. Seya. 2008. TLR3: Interferon induction by double-stranded RNA including poly(I:C). Advanced Drug Delivery Reviews 60 (7): 805–812.PubMedCrossRef Matsumoto, M., and T. Seya. 2008. TLR3: Interferon induction by double-stranded RNA including poly(I:C). Advanced Drug Delivery Reviews 60 (7): 805–812.PubMedCrossRef
9.
Zurück zum Zitat Gutjahr, A., et al. 2016. Triggering intracellular receptors for vaccine adjuvantation. Trends in Immunology 37 (9): 573–587.PubMedCrossRef Gutjahr, A., et al. 2016. Triggering intracellular receptors for vaccine adjuvantation. Trends in Immunology 37 (9): 573–587.PubMedCrossRef
11.
Zurück zum Zitat Singh, M., and D. O’Hagan. 1999. Advances in vaccine adjuvants. Nature Biotechnology 17 (11): 1075–1081.PubMedCrossRef Singh, M., and D. O’Hagan. 1999. Advances in vaccine adjuvants. Nature Biotechnology 17 (11): 1075–1081.PubMedCrossRef
12.
Zurück zum Zitat McElhaney, J.E., et al. 2013. AS03-adjuvanted versus non-adjuvanted inactivated trivalent influenza vaccine against seasonal influenza in elderly people: A phase 3 randomised trial. The Lancet Infectious Diseases 13 (6): 485–496.PubMedCrossRef McElhaney, J.E., et al. 2013. AS03-adjuvanted versus non-adjuvanted inactivated trivalent influenza vaccine against seasonal influenza in elderly people: A phase 3 randomised trial. The Lancet Infectious Diseases 13 (6): 485–496.PubMedCrossRef
13.
Zurück zum Zitat Didierlaurent, A.M., et al. 2017. Adjuvant system AS01: Helping to overcome the challenges of modern vaccines. Expert Review of Vaccines 16 (1): 55–63.PubMedCrossRef Didierlaurent, A.M., et al. 2017. Adjuvant system AS01: Helping to overcome the challenges of modern vaccines. Expert Review of Vaccines 16 (1): 55–63.PubMedCrossRef
14.
Zurück zum Zitat Didierlaurent, A., et al. 2009. AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. Journal of Immunology 183 (10): 6186–6197.CrossRef Didierlaurent, A., et al. 2009. AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. Journal of Immunology 183 (10): 6186–6197.CrossRef
15.
Zurück zum Zitat Higgins, D., et al. 2007. Immunostimulatory DNA as a vaccine adjuvant. Expert Review of Vaccines 6 (5): 747–759.PubMedCrossRef Higgins, D., et al. 2007. Immunostimulatory DNA as a vaccine adjuvant. Expert Review of Vaccines 6 (5): 747–759.PubMedCrossRef
16.
Zurück zum Zitat Zhang, L., V. Dewan, and H. Yin. 2017. Discovery of small molecules as multi-Toll-like receptor agonists with proinflammatory and anticancer activities. Journal of Medicinal Chemistry 60 (12): 5029–5044.PubMedCrossRef Zhang, L., V. Dewan, and H. Yin. 2017. Discovery of small molecules as multi-Toll-like receptor agonists with proinflammatory and anticancer activities. Journal of Medicinal Chemistry 60 (12): 5029–5044.PubMedCrossRef
17.
Zurück zum Zitat Salyer, A.C.D., et al. 2016. Identification of adjuvantic activity of amphotericin B in a novel, multiplexed, poly-TLR/NLR high-throughput screen. PLoS ONE 11 (2): e0149848.PubMedPubMedCentralCrossRef Salyer, A.C.D., et al. 2016. Identification of adjuvantic activity of amphotericin B in a novel, multiplexed, poly-TLR/NLR high-throughput screen. PLoS ONE 11 (2): e0149848.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Chan, M., et al. 2017. Identification of biologically active pyrimido[5,4-b]indoles that prolong NF-κB activation without intrinsic activity. ACS Combinatorial Science 19 (8): 533–543.PubMedPubMedCentralCrossRef Chan, M., et al. 2017. Identification of biologically active pyrimido[5,4-b]indoles that prolong NF-κB activation without intrinsic activity. ACS Combinatorial Science 19 (8): 533–543.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Ben-Neriah, Y., and M. Karin. 2011. Inflammation meets cancer, with NF-κB as the matchmaker. Nature Immunology 12 (8): 715–723.PubMedCrossRef Ben-Neriah, Y., and M. Karin. 2011. Inflammation meets cancer, with NF-κB as the matchmaker. Nature Immunology 12 (8): 715–723.PubMedCrossRef
22.
Zurück zum Zitat Miagkov, A.V., et al. 1998. NF-kappaB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proceedings of the National Academy of Sciences of the United States of America 95 (23): 13859–13864.PubMedPubMedCentralCrossRef Miagkov, A.V., et al. 1998. NF-kappaB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proceedings of the National Academy of Sciences of the United States of America 95 (23): 13859–13864.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Lawrence, T., et al. 2001. Possible new role for NF-kappaB in the resolution of inflammation. Nature Medicine 7 (12): 1291–1297.PubMedCrossRef Lawrence, T., et al. 2001. Possible new role for NF-kappaB in the resolution of inflammation. Nature Medicine 7 (12): 1291–1297.PubMedCrossRef
24.
Zurück zum Zitat Fong, C.H.Y., et al. 2008. An antiinflammatory role for IKKbeta through the inhibition of “classical” macrophage activation. The Journal of Experimental Medicine 205 (6): 1269–1276.PubMedPubMedCentralCrossRef Fong, C.H.Y., et al. 2008. An antiinflammatory role for IKKbeta through the inhibition of “classical” macrophage activation. The Journal of Experimental Medicine 205 (6): 1269–1276.PubMedPubMedCentralCrossRef
25.
26.
Zurück zum Zitat Jha, P., and H. Das. 2017. KLF2 in regulation of NF-κB-mediated immune cell function and inflammation. International Journal of Molecular Sciences 18 (11): 2383.PubMedPubMedCentralCrossRef Jha, P., and H. Das. 2017. KLF2 in regulation of NF-κB-mediated immune cell function and inflammation. International Journal of Molecular Sciences 18 (11): 2383.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat da Motta, N.A.V., and F.C.F. de Brito. 2016. Cilostazol exerts antiplatelet and anti-inflammatory effects through AMPK activation and NF-kB inhibition on hypercholesterolemic rats. Fundamental & Clinical Pharmacology 30 (4): 327–337.CrossRef da Motta, N.A.V., and F.C.F. de Brito. 2016. Cilostazol exerts antiplatelet and anti-inflammatory effects through AMPK activation and NF-kB inhibition on hypercholesterolemic rats. Fundamental & Clinical Pharmacology 30 (4): 327–337.CrossRef
28.
Zurück zum Zitat Yuan, J., et al. 2020. Geniposide alleviates traumatic brain injury in rats via anti-inflammatory effect and MAPK/NF-kB inhibition. Cellular and Molecular Neurobiology 40 (4): 511–520.PubMedCrossRef Yuan, J., et al. 2020. Geniposide alleviates traumatic brain injury in rats via anti-inflammatory effect and MAPK/NF-kB inhibition. Cellular and Molecular Neurobiology 40 (4): 511–520.PubMedCrossRef
29.
Zurück zum Zitat Kim, E.-A., et al. 2018. Anti-inflammatory effect of Apo-9’-fucoxanthinone via inhibition of MAPKs and NF-kB signaling pathway in LPS-stimulated RAW 264.7 macrophages and zebrafish model. International Immunopharmacology 59: 339–346.PubMedCrossRef Kim, E.-A., et al. 2018. Anti-inflammatory effect of Apo-9’-fucoxanthinone via inhibition of MAPKs and NF-kB signaling pathway in LPS-stimulated RAW 264.7 macrophages and zebrafish model. International Immunopharmacology 59: 339–346.PubMedCrossRef
30.
Zurück zum Zitat Inaba, K., et al. 1992. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. The Journal of Experimental Medicine 176 (6): 1693–1702.PubMedCrossRef Inaba, K., et al. 1992. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. The Journal of Experimental Medicine 176 (6): 1693–1702.PubMedCrossRef
31.
Zurück zum Zitat Pfeffer, L.M. 2011. The role of nuclear factor κB in the interferon response. Journal of Interferon & Cytokine Research: The Official Journal of the International Society For Interferon and Cytokine Research 31 (7): 553–559.CrossRef Pfeffer, L.M. 2011. The role of nuclear factor κB in the interferon response. Journal of Interferon & Cytokine Research: The Official Journal of the International Society For Interferon and Cytokine Research 31 (7): 553–559.CrossRef
32.
33.
Zurück zum Zitat Efremov, D.G., and L. Laurenti. 2011. The Syk kinase as a therapeutic target in leukemia and lymphoma. Expert Opinion on Investigational Drugs 20 (5): 623–636.PubMedCrossRef Efremov, D.G., and L. Laurenti. 2011. The Syk kinase as a therapeutic target in leukemia and lymphoma. Expert Opinion on Investigational Drugs 20 (5): 623–636.PubMedCrossRef
34.
Zurück zum Zitat Trinchieri, G. 1998. Interleukin-12: A cytokine at the interface of inflammation and immunity. Advances in Immunology 70: 83–243.PubMedCrossRef Trinchieri, G. 1998. Interleukin-12: A cytokine at the interface of inflammation and immunity. Advances in Immunology 70: 83–243.PubMedCrossRef
35.
Zurück zum Zitat Gately, M.K., et al. 1998. The interleukin-12/interleukin-12-receptor system: Role in normal and pathologic immune responses. Annual Review of Immunology 16: 495–521.PubMedCrossRef Gately, M.K., et al. 1998. The interleukin-12/interleukin-12-receptor system: Role in normal and pathologic immune responses. Annual Review of Immunology 16: 495–521.PubMedCrossRef
36.
Zurück zum Zitat Koerber, R.-M., et al. 2015. Analysis of the anti-proliferative and the pro-apoptotic efficacy of Syk inhibition in multiple myeloma. Experimental Hematology & Oncology 4: 21.CrossRef Koerber, R.-M., et al. 2015. Analysis of the anti-proliferative and the pro-apoptotic efficacy of Syk inhibition in multiple myeloma. Experimental Hematology & Oncology 4: 21.CrossRef
37.
Zurück zum Zitat Pandori, W.J., et al. 2019. Toxoplasma gondii activates a Syk-CARD9-NF-κB signaling axis and gasdermin D-independent release of IL-1β during infection of primary human monocytes. PLoS Pathogens 15 (8): e1007923.PubMedPubMedCentralCrossRef Pandori, W.J., et al. 2019. Toxoplasma gondii activates a Syk-CARD9-NF-κB signaling axis and gasdermin D-independent release of IL-1β during infection of primary human monocytes. PLoS Pathogens 15 (8): e1007923.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Ho, W.E., et al. 2014. Artemisinins: Pharmacological actions beyond anti-malarial. Pharmacology & Therapeutics 142 (1): 126–139.CrossRef Ho, W.E., et al. 2014. Artemisinins: Pharmacological actions beyond anti-malarial. Pharmacology & Therapeutics 142 (1): 126–139.CrossRef
39.
Zurück zum Zitat Singireesu, S.S.N.R., et al. 2018. Dehydrocostus lactone induces prominent apoptosis in kidney distal tubular epithelial cells and interstitial fibroblasts along with cell cycle arrest in ovarian epithelial cells. Biomedicine & Pharmacotherapy 99: 956–969.CrossRef Singireesu, S.S.N.R., et al. 2018. Dehydrocostus lactone induces prominent apoptosis in kidney distal tubular epithelial cells and interstitial fibroblasts along with cell cycle arrest in ovarian epithelial cells. Biomedicine & Pharmacotherapy 99: 956–969.CrossRef
40.
Zurück zum Zitat Wang, J., et al. 2017. Dehydrocostus lactone, a natural sesquiterpene lactone, suppresses the biological characteristics of glioma, through inhibition of the NF-κB/COX-2 signaling pathway by targeting IKKβ. American Journal of Cancer Research 7 (6): 1270–1284.PubMedPubMedCentral Wang, J., et al. 2017. Dehydrocostus lactone, a natural sesquiterpene lactone, suppresses the biological characteristics of glioma, through inhibition of the NF-κB/COX-2 signaling pathway by targeting IKKβ. American Journal of Cancer Research 7 (6): 1270–1284.PubMedPubMedCentral
41.
Zurück zum Zitat Atri, C., F.Z. Guerfali, and D. Laouini. 2018. Role of human macrophage polarization in inflammation during infectious diseases. International Journal of Molecular Sciences 19 (6): 1801.PubMedPubMedCentralCrossRef Atri, C., F.Z. Guerfali, and D. Laouini. 2018. Role of human macrophage polarization in inflammation during infectious diseases. International Journal of Molecular Sciences 19 (6): 1801.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Nie, Y., et al. 2019. Dehydrocostus lactone suppresses LPS-induced acute lung injury and macrophage activation through NF-κB signaling pathway mediated by p38 MAPK and Akt. Molecules 24 (8): 1510.PubMedPubMedCentralCrossRef Nie, Y., et al. 2019. Dehydrocostus lactone suppresses LPS-induced acute lung injury and macrophage activation through NF-κB signaling pathway mediated by p38 MAPK and Akt. Molecules 24 (8): 1510.PubMedPubMedCentralCrossRef
Metadaten
Titel
A NF-κB-Based High-Throughput Screening for Immune Adjuvants and Inhibitors
verfasst von
Boyang Yu
Boye Li
Tian Chen
Jinning Yang
Xiaoli Wang
Bo Peng
Qin Hu
Publikationsdatum
28.10.2022
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01758-2

Weitere Artikel der Ausgabe 2/2023

Inflammation 2/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.