Skip to main content
Erschienen in: Inflammation 4/2023

18.04.2023 | REVIEW

Transient Receptor Potential Canonical 6 (TRPC6) Channel in the Pathogenesis of Diseases: A Jack of Many Trades

verfasst von: Uzma Saqib, Sreepadaarchana Munjuluri, Sutripta Sarkar, Subir Biswas, Oyshi Mukherjee, Hargopal Satsangi, Mirza S. Baig, Alexander G. Obukhov, Krishnan Hajela

Erschienen in: Inflammation | Ausgabe 4/2023

Einloggen, um Zugang zu erhalten

Abstract

The mammalian Transient Receptor Potential Canonical (TRPC) subfamily comprises seven transmembrane proteins (TRPC1–7) forming cation channels in the plasma membrane of mammalian cells. TRPC channels mediate Ca2+ and Na+ influx into the cells. Amongst TRPCs, TRPC6 deficiency or increased activity due to gain-of-function mutations has been associated with a multitude of diseases, such as kidney disease, pulmonary disease, and neurological disease. Indeed, the TRPC6 protein is expressed in various organs and is involved in diverse signalling pathways. The last decade saw a surge in the investigative studies concerning the physiological roles of TRPC6 and describing the development of new pharmacological tools modulating TRPC6 activity. The current review summarizes the progress achieved in those investigations.
Literatur
1.
Zurück zum Zitat Chen, X., G. Sooch, I.S. Demaree, F.A. White, and A.G. Obukhov. 2020. Transient Receptor Potential Canonical (TRPC) channels: then and now, Cells. 9. Chen, X., G. Sooch, I.S. Demaree, F.A. White, and A.G. Obukhov. 2020. Transient Receptor Potential Canonical (TRPC) channels: then and now, Cells. 9.
2.
Zurück zum Zitat Wes, P.D., J. Chevesich, A. Jeromin, C. Rosenberg, G. Stetten, and C. Montell. 1995. TRPC1, a human homolog of a Drosophila store-operated channel. Proceedings of the National Academy of Sciences USA 92: 9652–9656.CrossRef Wes, P.D., J. Chevesich, A. Jeromin, C. Rosenberg, G. Stetten, and C. Montell. 1995. TRPC1, a human homolog of a Drosophila store-operated channel. Proceedings of the National Academy of Sciences USA 92: 9652–9656.CrossRef
3.
Zurück zum Zitat Zhu, X., P.B. Chu, M. Peyton, and L. Birnbaumer. 1995. Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Letters 373: 193–198.PubMedCrossRef Zhu, X., P.B. Chu, M. Peyton, and L. Birnbaumer. 1995. Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Letters 373: 193–198.PubMedCrossRef
4.
Zurück zum Zitat Fan, C., W. Choi, W. Sun, J. Du, and W. Lu. 2018. Structure of the human lipid-gated cation channel TRPC3. Elife. 7. Fan, C., W. Choi, W. Sun, J. Du, and W. Lu. 2018. Structure of the human lipid-gated cation channel TRPC3. Elife. 7.
5.
Zurück zum Zitat Sierra-Valdez, F., C.M. Azumaya, L.O. Romero, T. Nakagawa, and J.F. Cordero-Morales. 2018. Structure-function analyses of the ion channel TRPC3 reveal that its cytoplasmic domain allosterically modulates channel gating. Journal of Biological Chemistry 293: 16102–16114.PubMedPubMedCentralCrossRef Sierra-Valdez, F., C.M. Azumaya, L.O. Romero, T. Nakagawa, and J.F. Cordero-Morales. 2018. Structure-function analyses of the ion channel TRPC3 reveal that its cytoplasmic domain allosterically modulates channel gating. Journal of Biological Chemistry 293: 16102–16114.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Tang, Q., W. Guo, L. Zheng, J.X. Wu, M. Liu, X. Zhou, X. Zhang, and L. Chen. 2018. Structure of the receptor-activated human TRPC6 and TRPC3 ion channels. Cell Research 28: 746–755.PubMedPubMedCentralCrossRef Tang, Q., W. Guo, L. Zheng, J.X. Wu, M. Liu, X. Zhou, X. Zhang, and L. Chen. 2018. Structure of the receptor-activated human TRPC6 and TRPC3 ion channels. Cell Research 28: 746–755.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Azumaya, C.M., F. Sierra-Valdez, J.F. Cordero-Morales, and T. Nakagawa. 2018. Cryo-EM structure of the cytoplasmic domain of murine transient receptor potential cation channel subfamily C member 6 (TRPC6). Journal of Biological Chemistry 293: 10381–10391.PubMedPubMedCentralCrossRef Azumaya, C.M., F. Sierra-Valdez, J.F. Cordero-Morales, and T. Nakagawa. 2018. Cryo-EM structure of the cytoplasmic domain of murine transient receptor potential cation channel subfamily C member 6 (TRPC6). Journal of Biological Chemistry 293: 10381–10391.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Vinayagam, D., T. Mager, A. Apelbaum, A. Bothe, F. Merino, O. Hofnagel, C. Gatsogiannis, and S. Raunser. 2018. Electron cryo-microscopy structure of the canonical TRPC4 ion channel. Elife 7. Vinayagam, D., T. Mager, A. Apelbaum, A. Bothe, F. Merino, O. Hofnagel, C. Gatsogiannis, and S. Raunser. 2018. Electron cryo-microscopy structure of the canonical TRPC4 ion channel. Elife 7.
9.
Zurück zum Zitat Duan, J., J. Li, B. Zeng, G.L. Chen, X. Peng, Y. Zhang, J. Wang, D.E. Clapham, Z. Li, and J. Zhang. 2018. Structure of the mouse TRPC4 ion channel. Nature Communications 9: 3102.PubMedPubMedCentralCrossRef Duan, J., J. Li, B. Zeng, G.L. Chen, X. Peng, Y. Zhang, J. Wang, D.E. Clapham, Z. Li, and J. Zhang. 2018. Structure of the mouse TRPC4 ion channel. Nature Communications 9: 3102.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Duan, J., J. Li, G.L. Chen, Y. Ge, J. Liu, K. Xie, X. Peng, W. Zhou, J. Zhong, Y. Zhang, J. Xu, C. Xue, B. Liang, L. Zhu, W. Liu, C. Zhang, X.L. Tian, J. Wang, D.E. Clapham, B. Zeng, Z. Li, and J. Zhang. 2019. Cryo-EM structure of TRPC5 at 2.8-A resolution reveals unique and conserved structural elements essential for channel function. Science Advances 5: eaaw7935. Duan, J., J. Li, G.L. Chen, Y. Ge, J. Liu, K. Xie, X. Peng, W. Zhou, J. Zhong, Y. Zhang, J. Xu, C. Xue, B. Liang, L. Zhu, W. Liu, C. Zhang, X.L. Tian, J. Wang, D.E. Clapham, B. Zeng, Z. Li, and J. Zhang. 2019. Cryo-EM structure of TRPC5 at 2.8-A resolution reveals unique and conserved structural elements essential for channel function. Science Advances 5: eaaw7935.
11.
Zurück zum Zitat D’Esposito, M., M. Strazzullo, M. Cuccurese, C. Spalluto, M. Rocchi, M. D’Urso, and A. Ciccodicola. 1998. Identification and assignment of the human Transient Receptor Potential Channel 6 gene TRPC6 to chromosome 11q21–>q22. Cytogenetics and Cell Genetics 83: 46–47.PubMedCrossRef D’Esposito, M., M. Strazzullo, M. Cuccurese, C. Spalluto, M. Rocchi, M. D’Urso, and A. Ciccodicola. 1998. Identification and assignment of the human Transient Receptor Potential Channel 6 gene TRPC6 to chromosome 11q21–>q22. Cytogenetics and Cell Genetics 83: 46–47.PubMedCrossRef
12.
Zurück zum Zitat Hassock, S.R., M.X. Zhu, C. Trost, V. Flockerzi, and K.S. Authi. 2002. Expression and role of TRPC proteins in human platelets: Evidence that TRPC6 forms the store-independent calcium entry channel. Blood 100: 2801–2811.PubMedCrossRef Hassock, S.R., M.X. Zhu, C. Trost, V. Flockerzi, and K.S. Authi. 2002. Expression and role of TRPC proteins in human platelets: Evidence that TRPC6 forms the store-independent calcium entry channel. Blood 100: 2801–2811.PubMedCrossRef
13.
Zurück zum Zitat Buess, M., O. Engler, H.H. Hirsch, and C. Moroni. 1999. Search for oncogenic regulators in an autocrine tumor model using differential display PCR: Identification of novel candidate genes including the calcium channel mtrp6. Oncogene 18: 1487–1494.PubMedCrossRef Buess, M., O. Engler, H.H. Hirsch, and C. Moroni. 1999. Search for oncogenic regulators in an autocrine tumor model using differential display PCR: Identification of novel candidate genes including the calcium channel mtrp6. Oncogene 18: 1487–1494.PubMedCrossRef
14.
Zurück zum Zitat Dalrymple, A., D.M. Slater, D. Beech, L. Poston, and R.M. Tribe. 2002. Molecular identification and localization of Trp homologues, putative calcium channels, in pregnant human uterus. Molecular Human Reproduction 8: 946–951.PubMedCrossRef Dalrymple, A., D.M. Slater, D. Beech, L. Poston, and R.M. Tribe. 2002. Molecular identification and localization of Trp homologues, putative calcium channels, in pregnant human uterus. Molecular Human Reproduction 8: 946–951.PubMedCrossRef
15.
Zurück zum Zitat Wang, J., L.G. Laurier, S.M. Sims, and H.G. Preiksaitis. 2003. Enhanced capacitative calcium entry and TRPC channel gene expression in human LES smooth muscle. American Journal of Physiology. Gastrointestinal and Liver Physiology 284: G1074–G1083.PubMedCrossRef Wang, J., L.G. Laurier, S.M. Sims, and H.G. Preiksaitis. 2003. Enhanced capacitative calcium entry and TRPC channel gene expression in human LES smooth muscle. American Journal of Physiology. Gastrointestinal and Liver Physiology 284: G1074–G1083.PubMedCrossRef
16.
Zurück zum Zitat Riccio, A., A.D. Medhurst, C. Mattei, R.E. Kelsell, A.R. Calver, A.D. Randall, C.D. Benham, and M.N. Pangalos. 2002. mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Research. Molecular Brain Research 109: 95–104.PubMedCrossRef Riccio, A., A.D. Medhurst, C. Mattei, R.E. Kelsell, A.R. Calver, A.D. Randall, C.D. Benham, and M.N. Pangalos. 2002. mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Research. Molecular Brain Research 109: 95–104.PubMedCrossRef
17.
Zurück zum Zitat Yu, Y., I. Fantozzi, C.V. Remillard, J.W. Landsberg, N. Kunichika, O. Platoshyn, D.D. Tigno, P.A. Thistlethwaite, L.J. Rubin, and J.X. Yuan. 2004. Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proceedings of the National Academy of Sciences USA 101: 13861–13866.CrossRef Yu, Y., I. Fantozzi, C.V. Remillard, J.W. Landsberg, N. Kunichika, O. Platoshyn, D.D. Tigno, P.A. Thistlethwaite, L.J. Rubin, and J.X. Yuan. 2004. Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proceedings of the National Academy of Sciences USA 101: 13861–13866.CrossRef
18.
Zurück zum Zitat Reiser, J., K.R. Polu, C.C. Moller, P. Kenlan, M.M. Altintas, C. Wei, C. Faul, S. Herbert, I. Villegas, C. Avila-Casado, M. McGee, H. Sugimoto, D. Brown, R. Kalluri, P. Mundel, P.L. Smith, D.E. Clapham, and M.R. Pollak. 2005. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nature Genetics 37: 739–744.PubMedPubMedCentralCrossRef Reiser, J., K.R. Polu, C.C. Moller, P. Kenlan, M.M. Altintas, C. Wei, C. Faul, S. Herbert, I. Villegas, C. Avila-Casado, M. McGee, H. Sugimoto, D. Brown, R. Kalluri, P. Mundel, P.L. Smith, D.E. Clapham, and M.R. Pollak. 2005. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nature Genetics 37: 739–744.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Guilbert, A., I. Dhennin-Duthille, Y.E. Hiani, N. Haren, H. Khorsi, H. Sevestre, A. Ahidouch, and H. Ouadid-Ahidouch. 2008. Expression of TRPC6 channels in human epithelial breast cancer cells. BMC Cancer 8: 125.PubMedPubMedCentralCrossRef Guilbert, A., I. Dhennin-Duthille, Y.E. Hiani, N. Haren, H. Khorsi, H. Sevestre, A. Ahidouch, and H. Ouadid-Ahidouch. 2008. Expression of TRPC6 channels in human epithelial breast cancer cells. BMC Cancer 8: 125.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Yue, D., Y. Wang, J.Y. Xiao, P. Wang, and C.S. Ren. 2009. Expression of TRPC6 in benign and malignant human prostate tissues. Asian Journal of Andrology 11: 541–547.PubMedPubMedCentralCrossRef Yue, D., Y. Wang, J.Y. Xiao, P. Wang, and C.S. Ren. 2009. Expression of TRPC6 in benign and malignant human prostate tissues. Asian Journal of Andrology 11: 541–547.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Hofmann, T., A.G. Obukhov, M. Schaefer, C. Harteneck, T. Gudermann, and G. Schultz. 1999. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397: 259–263.PubMedCrossRef Hofmann, T., A.G. Obukhov, M. Schaefer, C. Harteneck, T. Gudermann, and G. Schultz. 1999. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397: 259–263.PubMedCrossRef
22.
Zurück zum Zitat Winn, M.P., P.J. Conlon, K.L. Lynn, M.K. Farrington, T. Creazzo, A.F. Hawkins, N. Daskalakis, S.Y. Kwan, S. Ebersviller, J.L. Burchette, M.A. Pericak-Vance, D.N. Howell, J.M. Vance, and P.B. Rosenberg. 2005. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308: 1801–1804.PubMedCrossRef Winn, M.P., P.J. Conlon, K.L. Lynn, M.K. Farrington, T. Creazzo, A.F. Hawkins, N. Daskalakis, S.Y. Kwan, S. Ebersviller, J.L. Burchette, M.A. Pericak-Vance, D.N. Howell, J.M. Vance, and P.B. Rosenberg. 2005. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308: 1801–1804.PubMedCrossRef
23.
Zurück zum Zitat Kim, E.Y., and S.E. Dryer. 2021. Effects of TRPC6 inactivation on glomerulosclerosis and renal fibrosis in aging rats. Cells 10. Kim, E.Y., and S.E. Dryer. 2021. Effects of TRPC6 inactivation on glomerulosclerosis and renal fibrosis in aging rats. Cells 10.
24.
25.
Zurück zum Zitat Wang, Z., Y. Fu, and do Carmo, J. M., da Silva, A. A., Li, X., Mouton, A., Omoto, A. C. M., Sears, J. & Hall, J. E. 2022. Transient receptor potential cation channel 6 contributes to kidney injury induced by diabetes and hypertension. American Journal of Physiology. Renal Physiology 322: F76–F88.PubMedCrossRef Wang, Z., Y. Fu, and do Carmo, J. M., da Silva, A. A., Li, X., Mouton, A., Omoto, A. C. M., Sears, J. & Hall, J. E. 2022. Transient receptor potential cation channel 6 contributes to kidney injury induced by diabetes and hypertension. American Journal of Physiology. Renal Physiology 322: F76–F88.PubMedCrossRef
26.
Zurück zum Zitat Spires, D., D.V. Ilatovskaya, V. Levchenko, P.E. North, A.M. Geurts, O. Palygin, and A. Staruschenko. 2018. Protective role of TRPC6 knockout in the progression of diabetic kidney disease. American Journal of Physiology. Renal Physiology 315: F1091–F1097.PubMedPubMedCentralCrossRef Spires, D., D.V. Ilatovskaya, V. Levchenko, P.E. North, A.M. Geurts, O. Palygin, and A. Staruschenko. 2018. Protective role of TRPC6 knockout in the progression of diabetic kidney disease. American Journal of Physiology. Renal Physiology 315: F1091–F1097.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Ilatovskaya, D.V., V. Levchenko, A. Lowing, L.S. Shuyskiy, O. Palygin, and A. Staruschenko. 2015. Podocyte injury in diabetic nephropathy: Implications of angiotensin II-dependent activation of TRPC channels. Science and Reports 5: 17637.CrossRef Ilatovskaya, D.V., V. Levchenko, A. Lowing, L.S. Shuyskiy, O. Palygin, and A. Staruschenko. 2015. Podocyte injury in diabetic nephropathy: Implications of angiotensin II-dependent activation of TRPC channels. Science and Reports 5: 17637.CrossRef
28.
Zurück zum Zitat Hunt, J.L., M.R. Pollak, and B.M. Denker. 2005. Cultured podocytes establish a size-selective barrier regulated by specific signaling pathways and demonstrate synchronized barrier assembly in a calcium switch model of junction formation. Journal of the American Society of Nephrology 16: 1593–1602.PubMedCrossRef Hunt, J.L., M.R. Pollak, and B.M. Denker. 2005. Cultured podocytes establish a size-selective barrier regulated by specific signaling pathways and demonstrate synchronized barrier assembly in a calcium switch model of junction formation. Journal of the American Society of Nephrology 16: 1593–1602.PubMedCrossRef
29.
Zurück zum Zitat Ilatovskaya, D.V., O. Palygin, V. Chubinskiy-Nadezhdin, Y.A. Negulyaev, R. Ma, L. Birnbaumer, and A. Staruschenko. 2014. Angiotensin II has acute effects on TRPC6 channels in podocytes of freshly isolated glomeruli. Kidney International 86: 506–514.PubMedPubMedCentralCrossRef Ilatovskaya, D.V., O. Palygin, V. Chubinskiy-Nadezhdin, Y.A. Negulyaev, R. Ma, L. Birnbaumer, and A. Staruschenko. 2014. Angiotensin II has acute effects on TRPC6 channels in podocytes of freshly isolated glomeruli. Kidney International 86: 506–514.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Ilatovskaya, D.V., G. Blass, O. Palygin, V. Levchenko, T.S. Pavlov, M.N. Grzybowski, K. Winsor, L.S. Shuyskiy, A.M. Geurts, A.W. Cowley Jr., L. Birnbaumer, and A. Staruschenko. 2018. A NOX4/TRPC6 pathway in podocyte calcium regulation and renal damage in diabetic kidney disease. Journal of the American Society of Nephrology 29: 1917–1927.PubMedPubMedCentralCrossRef Ilatovskaya, D.V., G. Blass, O. Palygin, V. Levchenko, T.S. Pavlov, M.N. Grzybowski, K. Winsor, L.S. Shuyskiy, A.M. Geurts, A.W. Cowley Jr., L. Birnbaumer, and A. Staruschenko. 2018. A NOX4/TRPC6 pathway in podocyte calcium regulation and renal damage in diabetic kidney disease. Journal of the American Society of Nephrology 29: 1917–1927.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Staruschenko, A., R. Ma, O. Palygin, and S.E. Dryer. 2023. Ion channels and channelopathies in glomeruli. Physiological Reviews 103: 787–854.PubMedCrossRef Staruschenko, A., R. Ma, O. Palygin, and S.E. Dryer. 2023. Ion channels and channelopathies in glomeruli. Physiological Reviews 103: 787–854.PubMedCrossRef
32.
Zurück zum Zitat Chen, Y., L. Lin, X. Tao, Y. Song, J. Cui, and J. Wan. 2019. The role of podocyte damage in the etiology of ischemia-reperfusion acute kidney injury and post-injury fibrosis. BMC Nephrology 20: 106.PubMedPubMedCentralCrossRef Chen, Y., L. Lin, X. Tao, Y. Song, J. Cui, and J. Wan. 2019. The role of podocyte damage in the etiology of ischemia-reperfusion acute kidney injury and post-injury fibrosis. BMC Nephrology 20: 106.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Yu, Y., L. Zhang, G. Xu, Z. Wu, Q. Li, Y. Gu, and J. Niu. 2018. Angiotensin II type i receptor agonistic autoantibody induces podocyte injury via activation of the TRPC6-calcium/calcineurin pathway in pre-eclampsia. Kidney & Blood Pressure Research 43: 1666–1676.CrossRef Yu, Y., L. Zhang, G. Xu, Z. Wu, Q. Li, Y. Gu, and J. Niu. 2018. Angiotensin II type i receptor agonistic autoantibody induces podocyte injury via activation of the TRPC6-calcium/calcineurin pathway in pre-eclampsia. Kidney & Blood Pressure Research 43: 1666–1676.CrossRef
34.
Zurück zum Zitat Wu, Y.L., J. Xie, S.W. An, N. Oliver, N.X. Barrezueta, M.H. Lin, L. Birnbaumer, and C.L. Huang. 2017. Inhibition of TRPC6 channels ameliorates renal fibrosis and contributes to renal protection by soluble klotho. Kidney International 91: 830–841.PubMedCrossRef Wu, Y.L., J. Xie, S.W. An, N. Oliver, N.X. Barrezueta, M.H. Lin, L. Birnbaumer, and C.L. Huang. 2017. Inhibition of TRPC6 channels ameliorates renal fibrosis and contributes to renal protection by soluble klotho. Kidney International 91: 830–841.PubMedCrossRef
35.
Zurück zum Zitat Kim, E.Y., and S.E. Dryer. 2021. RAGE and alphaVbeta3-integrin are essential for suPAR signaling in podocytes. Biochimica et Biophysica Acta, Molecular Basis of Disease 1867: 166186.PubMedCrossRef Kim, E.Y., and S.E. Dryer. 2021. RAGE and alphaVbeta3-integrin are essential for suPAR signaling in podocytes. Biochimica et Biophysica Acta, Molecular Basis of Disease 1867: 166186.PubMedCrossRef
36.
Zurück zum Zitat Lin, B.L., D. Matera, J.F. Doerner, N. Zheng, D. Del Camino, S. Mishra, H. Bian, S. Zeveleva, X. Zhen, N.T. Blair, J.A. Chong, D.P. Hessler, D. Bedja, G. Zhu, G.K. Muller, M.J. Ranek, L. Pantages, M. McFarland, M.R. Netherton, A. Berry, D. Wong, G. Rast, H.S. Qian, S.M. Weldon, J.J. Kuo, A. Sauer, C. Sarko, M.M. Moran, D.A. Kass, and S.S. Pullen. 2019. In vivo selective inhibition of TRPC6 by antagonist BI 749327 ameliorates fibrosis and dysfunction in cardiac and renal disease. Proceedings of the National Academy of Sciences USA 116: 10156–10161.CrossRef Lin, B.L., D. Matera, J.F. Doerner, N. Zheng, D. Del Camino, S. Mishra, H. Bian, S. Zeveleva, X. Zhen, N.T. Blair, J.A. Chong, D.P. Hessler, D. Bedja, G. Zhu, G.K. Muller, M.J. Ranek, L. Pantages, M. McFarland, M.R. Netherton, A. Berry, D. Wong, G. Rast, H.S. Qian, S.M. Weldon, J.J. Kuo, A. Sauer, C. Sarko, M.M. Moran, D.A. Kass, and S.S. Pullen. 2019. In vivo selective inhibition of TRPC6 by antagonist BI 749327 ameliorates fibrosis and dysfunction in cardiac and renal disease. Proceedings of the National Academy of Sciences USA 116: 10156–10161.CrossRef
37.
Zurück zum Zitat Du, W., J. Huang, H. Yao, K. Zhou, B. Duan, and Y. Wang. 2010. Inhibition of TRPC6 degradation suppresses ischemic brain damage in rats. The Journal of Clinical Investigation 120: 3480–3492.PubMedPubMedCentralCrossRef Du, W., J. Huang, H. Yao, K. Zhou, B. Duan, and Y. Wang. 2010. Inhibition of TRPC6 degradation suppresses ischemic brain damage in rats. The Journal of Clinical Investigation 120: 3480–3492.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Li, Y., Y.C. Jia, K. Cui, N. Li, Z.Y. Zheng, Y.Z. Wang, and X.B. Yuan. 2005. Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434: 894–898.PubMedCrossRef Li, Y., Y.C. Jia, K. Cui, N. Li, Z.Y. Zheng, Y.Z. Wang, and X.B. Yuan. 2005. Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434: 894–898.PubMedCrossRef
39.
Zurück zum Zitat Jia, Y., J. Zhou, Y. Tai, and Y. Wang. 2007. TRPC channels promote cerebellar granule neuron survival. Nature Neuroscience 10: 559–567.PubMedCrossRef Jia, Y., J. Zhou, Y. Tai, and Y. Wang. 2007. TRPC channels promote cerebellar granule neuron survival. Nature Neuroscience 10: 559–567.PubMedCrossRef
40.
Zurück zum Zitat Zhou, J., W. Du, K. Zhou, Y. Tai, H. Yao, Y. Jia, Y. Ding, and Y. Wang. 2008. Critical role of TRPC6 channels in the formation of excitatory synapses. Nature Neuroscience 11: 741–743.PubMedCrossRef Zhou, J., W. Du, K. Zhou, Y. Tai, H. Yao, Y. Jia, Y. Ding, and Y. Wang. 2008. Critical role of TRPC6 channels in the formation of excitatory synapses. Nature Neuroscience 11: 741–743.PubMedCrossRef
41.
Zurück zum Zitat Quick, K., J. Zhao, N. Eijkelkamp, J.E. Linley, F. Rugiero, J.J. Cox, R. Raouf, M. Gringhuis, J.E. Sexton, J. Abramowitz, R. Taylor, A. Forge, J. Ashmore, N. Kirkwood, C.J. Kros, G.P. Richardson, M. Freichel, V. Flockerzi, L. Birnbaumer, and J.N. Wood. 2012. TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open Biology 2: 120068.PubMedPubMedCentralCrossRef Quick, K., J. Zhao, N. Eijkelkamp, J.E. Linley, F. Rugiero, J.J. Cox, R. Raouf, M. Gringhuis, J.E. Sexton, J. Abramowitz, R. Taylor, A. Forge, J. Ashmore, N. Kirkwood, C.J. Kros, G.P. Richardson, M. Freichel, V. Flockerzi, L. Birnbaumer, and J.N. Wood. 2012. TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open Biology 2: 120068.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Kumar, S., S. Chakraborty, C. Barbosa, T. Brustovetsky, B. Brustovetsky, and A.G. Obukhov. 2011. Mechanisms controlling neurite outgrowth in a pheochromocytoma cell line: The role of TRPC channels. Journal of Cellular Physiology 227: 1408–1409.CrossRef Kumar, S., S. Chakraborty, C. Barbosa, T. Brustovetsky, B. Brustovetsky, and A.G. Obukhov. 2011. Mechanisms controlling neurite outgrowth in a pheochromocytoma cell line: The role of TRPC channels. Journal of Cellular Physiology 227: 1408–1409.CrossRef
43.
Zurück zum Zitat Lu, R., J. Wang, R. Tao, J. Wang, T. Zhu, W. Guo, Y. Sun, H. Li, Y. Gao, W. Zhang, C.J. Fowler, Q. Li, S. Chen, Z. Wu, C.L. Masters, C. Zhong, N. Jing, Y. Wang, and Y. Wang. 2018. Reduced TRPC6 mRNA levels in the blood cells of patients with Alzheimer’s disease and mild cognitive impairment. Molecular Psychiatry 23: 767–776.PubMedCrossRef Lu, R., J. Wang, R. Tao, J. Wang, T. Zhu, W. Guo, Y. Sun, H. Li, Y. Gao, W. Zhang, C.J. Fowler, Q. Li, S. Chen, Z. Wu, C.L. Masters, C. Zhong, N. Jing, Y. Wang, and Y. Wang. 2018. Reduced TRPC6 mRNA levels in the blood cells of patients with Alzheimer’s disease and mild cognitive impairment. Molecular Psychiatry 23: 767–776.PubMedCrossRef
44.
Zurück zum Zitat Chen, J.M., Q.W. Li, J.S. Liu, G.X. Jiang, J.R. Liu, S.D. Chen, and Q. Cheng. 2019. TRPC6 mRNA levels in peripheral leucocytes of patients with Alzheimer’s disease and mild cognitive impairment: A case-control study. Progress in Neuro-Psychopharmacology and Biological Psychiatry 92: 279–284.PubMedCrossRef Chen, J.M., Q.W. Li, J.S. Liu, G.X. Jiang, J.R. Liu, S.D. Chen, and Q. Cheng. 2019. TRPC6 mRNA levels in peripheral leucocytes of patients with Alzheimer’s disease and mild cognitive impairment: A case-control study. Progress in Neuro-Psychopharmacology and Biological Psychiatry 92: 279–284.PubMedCrossRef
45.
Zurück zum Zitat Wang, J., R. Lu, J. Yang, H. Li, Z. He, N. Jing, X. Wang, and Y. Wang. 2015. TRPC6 specifically interacts with APP to inhibit its cleavage by gamma-secretase and reduce Abeta production. Nature Communications 6: 8876.PubMedCrossRef Wang, J., R. Lu, J. Yang, H. Li, Z. He, N. Jing, X. Wang, and Y. Wang. 2015. TRPC6 specifically interacts with APP to inhibit its cleavage by gamma-secretase and reduce Abeta production. Nature Communications 6: 8876.PubMedCrossRef
46.
Zurück zum Zitat Hartz, A.M., D.S. Miller, and B. Bauer. 2010. Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-beta in a mouse model of Alzheimer’s disease. Molecular Pharmacology 77: 715–723.PubMedPubMedCentralCrossRef Hartz, A.M., D.S. Miller, and B. Bauer. 2010. Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-beta in a mouse model of Alzheimer’s disease. Molecular Pharmacology 77: 715–723.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat He, C., Q. Li, Y. Cui, P. Gao, W. Shu, Q. Zhou, L. Wang, L. Li, Z. Lu, Y. Zhao, H. Ma, X. Chen, H. Jia, H. Zheng, G. Yang, D. Liu, M. Tepel, and Z. Zhu. 2022. Recurrent moderate hypoglycemia accelerates the progression of Alzheimer’s disease through impairment of the TRPC6/GLUT3 pathway. JCI Insight 7. He, C., Q. Li, Y. Cui, P. Gao, W. Shu, Q. Zhou, L. Wang, L. Li, Z. Lu, Y. Zhao, H. Ma, X. Chen, H. Jia, H. Zheng, G. Yang, D. Liu, M. Tepel, and Z. Zhu. 2022. Recurrent moderate hypoglycemia accelerates the progression of Alzheimer’s disease through impairment of the TRPC6/GLUT3 pathway. JCI Insight 7.
48.
Zurück zum Zitat Griesi-Oliveira, K., A. Acab, A.R. Gupta, D.Y. Sunaga, T. Chailangkarn, X. Nicol, Y. Nunez, M.F. Walker, J.D. Murdoch, S.J. Sanders, T.V. Fernandez, W. Ji, R.P. Lifton, E. Vadasz, A. Dietrich, D. Pradhan, H. Song, G.L. Ming, X. Gu, G. Haddad, M.C. Marchetto, N. Spitzer, M.R. Passos-Bueno, M.W. State, and A.R. Muotri. 2015. Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Molecular Psychiatry 20: 1350–1365.PubMedCrossRef Griesi-Oliveira, K., A. Acab, A.R. Gupta, D.Y. Sunaga, T. Chailangkarn, X. Nicol, Y. Nunez, M.F. Walker, J.D. Murdoch, S.J. Sanders, T.V. Fernandez, W. Ji, R.P. Lifton, E. Vadasz, A. Dietrich, D. Pradhan, H. Song, G.L. Ming, X. Gu, G. Haddad, M.C. Marchetto, N. Spitzer, M.R. Passos-Bueno, M.W. State, and A.R. Muotri. 2015. Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Molecular Psychiatry 20: 1350–1365.PubMedCrossRef
49.
Zurück zum Zitat Palacios-Munoz, A., D. de Paula Moreira, V. Silva, I.E. Garcia, F. Aboitiz, M. Zarrei, G. Campos, O. Rennie, J.L. Howe, E. Anagnostou, P. Ambrozewic, S.W. Scherer, M.R. Passos-Bueno, and J. Ewer. 2022. Mutations in trpgamma, the homologue of TRPC6 autism candidate gene, causes autism-like behavioral deficits in Drosophila. Molecular Psychiatry 27: 3328–3342.PubMedPubMedCentralCrossRef Palacios-Munoz, A., D. de Paula Moreira, V. Silva, I.E. Garcia, F. Aboitiz, M. Zarrei, G. Campos, O. Rennie, J.L. Howe, E. Anagnostou, P. Ambrozewic, S.W. Scherer, M.R. Passos-Bueno, and J. Ewer. 2022. Mutations in trpgamma, the homologue of TRPC6 autism candidate gene, causes autism-like behavioral deficits in Drosophila. Molecular Psychiatry 27: 3328–3342.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Shen, H., J. Pan, L. Pan, and N. Zhang. 2013. TRPC6 inhibited NMDA current in cultured hippocampal neurons. Neuromolecular Medicine 15: 389–395.PubMedCrossRef Shen, H., J. Pan, L. Pan, and N. Zhang. 2013. TRPC6 inhibited NMDA current in cultured hippocampal neurons. Neuromolecular Medicine 15: 389–395.PubMedCrossRef
51.
Zurück zum Zitat Li, W., F. Yang, J. Gao, Y. Tang, J. Wang, and Y. Pan. 2019. Over-expression of TRPC6 via CRISPR based synergistic activation mediator in BMSCs ameliorates brain injury in a rat model of cerebral ischemia/reperfusion. Neuroscience 415: 147–160.PubMedCrossRef Li, W., F. Yang, J. Gao, Y. Tang, J. Wang, and Y. Pan. 2019. Over-expression of TRPC6 via CRISPR based synergistic activation mediator in BMSCs ameliorates brain injury in a rat model of cerebral ischemia/reperfusion. Neuroscience 415: 147–160.PubMedCrossRef
52.
Zurück zum Zitat Lin, Y., J.C. Zhang, J. Fu, F. Chen, J. Wang, Z.L. Wu, and S.Y. Yuan. 2013. Hyperforin attenuates brain damage induced by transient middle cerebral artery occlusion (MCAO) in rats via inhibition of TRPC6 channels degradation. Journal of Cerebral Blood Flow and Metabolism 33: 253–262.PubMedCrossRef Lin, Y., J.C. Zhang, J. Fu, F. Chen, J. Wang, Z.L. Wu, and S.Y. Yuan. 2013. Hyperforin attenuates brain damage induced by transient middle cerebral artery occlusion (MCAO) in rats via inhibition of TRPC6 channels degradation. Journal of Cerebral Blood Flow and Metabolism 33: 253–262.PubMedCrossRef
53.
Zurück zum Zitat Jardin, I., R. Diez-Bello, J.J. Lopez, P.C. Redondo, G.M. Salido, T. Smani, and J.A. Rosado. 2018. TRPC6 channels are required for proliferation, migration and invasion of breast cancer cell lines by modulation of Orai1 and Orai3 surface exposure. Cancers (Basel). 10. Jardin, I., R. Diez-Bello, J.J. Lopez, P.C. Redondo, G.M. Salido, T. Smani, and J.A. Rosado. 2018. TRPC6 channels are required for proliferation, migration and invasion of breast cancer cell lines by modulation of Orai1 and Orai3 surface exposure. Cancers (Basel). 10.
54.
Zurück zum Zitat Dhennin-Duthille, I., M. Gautier, M. Faouzi, A. Guilbert, M. Brevet, D. Vaudry, A. Ahidouch, H. Sevestre, and H. Ouadid-Ahidouch. 2011. High expression of transient receptor potential channels in human breast cancer epithelial cells and tissues: Correlation with pathological parameters. Cellular Physiology and Biochemistry 28: 813–822.PubMedCrossRef Dhennin-Duthille, I., M. Gautier, M. Faouzi, A. Guilbert, M. Brevet, D. Vaudry, A. Ahidouch, H. Sevestre, and H. Ouadid-Ahidouch. 2011. High expression of transient receptor potential channels in human breast cancer epithelial cells and tissues: Correlation with pathological parameters. Cellular Physiology and Biochemistry 28: 813–822.PubMedCrossRef
55.
Zurück zum Zitat Shi, Y., X. Ding, Z.H. He, K.C. Zhou, Q. Wang, and Y.Z. Wang. 2009. Critical role of TRPC6 channels in G2 phase transition and the development of human oesophageal cancer. Gut 58: 1443–1450.PubMedCrossRef Shi, Y., X. Ding, Z.H. He, K.C. Zhou, Q. Wang, and Y.Z. Wang. 2009. Critical role of TRPC6 channels in G2 phase transition and the development of human oesophageal cancer. Gut 58: 1443–1450.PubMedCrossRef
56.
Zurück zum Zitat Ding, X., Z. He, K. Zhou, J. Cheng, H. Yao, D. Lu, R. Cai, Y. Jin, B. Dong, Y. Xu, and Y. Wang. 2010. Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. Journal of the National Cancer Institute 102: 1052–1068.PubMedCrossRef Ding, X., Z. He, K. Zhou, J. Cheng, H. Yao, D. Lu, R. Cai, Y. Jin, B. Dong, Y. Xu, and Y. Wang. 2010. Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. Journal of the National Cancer Institute 102: 1052–1068.PubMedCrossRef
57.
Zurück zum Zitat El Boustany, C., G. Bidaux, A. Enfissi, P. Delcourt, N. Prevarskaya, and T. Capiod. 2008. Capacitative calcium entry and Transient Receptor Potential Canonical 6 expression control human hepatoma cell proliferation. Hepatology 47: 2068–2077.PubMedCrossRef El Boustany, C., G. Bidaux, A. Enfissi, P. Delcourt, N. Prevarskaya, and T. Capiod. 2008. Capacitative calcium entry and Transient Receptor Potential Canonical 6 expression control human hepatoma cell proliferation. Hepatology 47: 2068–2077.PubMedCrossRef
58.
Zurück zum Zitat Ge, P., L. Wei, M. Zhang, B. Hu, K. Wang, Y. Li, S. Liu, J. Wang, and Y. Li. 2018. TRPC1/3/6 inhibition attenuates the TGF-beta1-induced epithelial-mesenchymal transition in gastric cancer via the Ras/Raf1/ERK signaling pathway. Cell Biology International 42: 975–984.PubMedCrossRef Ge, P., L. Wei, M. Zhang, B. Hu, K. Wang, Y. Li, S. Liu, J. Wang, and Y. Li. 2018. TRPC1/3/6 inhibition attenuates the TGF-beta1-induced epithelial-mesenchymal transition in gastric cancer via the Ras/Raf1/ERK signaling pathway. Cell Biology International 42: 975–984.PubMedCrossRef
59.
Zurück zum Zitat Cai, R., X. Ding, K. Zhou, Y. Shi, R. Ge, G. Ren, Y. Jin, and Y. Wang. 2009. Blockade of TRPC6 channels induced G2/M phase arrest and suppressed growth in human gastric cancer cells. International Journal of Cancer 125: 2281–2287.PubMedCrossRef Cai, R., X. Ding, K. Zhou, Y. Shi, R. Ge, G. Ren, Y. Jin, and Y. Wang. 2009. Blockade of TRPC6 channels induced G2/M phase arrest and suppressed growth in human gastric cancer cells. International Journal of Cancer 125: 2281–2287.PubMedCrossRef
60.
Zurück zum Zitat Song, J., Y. Wang, X. Li, Y. Shen, M. Yin, Y. Guo, L. Diao, Y. Liu, and D. Yue. 2013. Critical role of TRPC6 channels in the development of human renal cell carcinoma. Molecular Biology Reports 40: 5115–5122.PubMedCrossRef Song, J., Y. Wang, X. Li, Y. Shen, M. Yin, Y. Guo, L. Diao, Y. Liu, and D. Yue. 2013. Critical role of TRPC6 channels in the development of human renal cell carcinoma. Molecular Biology Reports 40: 5115–5122.PubMedCrossRef
61.
Zurück zum Zitat Jiang, H.N., B. Zeng, Y. Zhang, N. Daskoulidou, H. Fan, J.M. Qu, and S.Z. Xu. 2013. Involvement of TRPC channels in lung cancer cell differentiation and the correlation analysis in human non-small cell lung cancer. PLoS ONE 8: e67637.PubMedPubMedCentralCrossRef Jiang, H.N., B. Zeng, Y. Zhang, N. Daskoulidou, H. Fan, J.M. Qu, and S.Z. Xu. 2013. Involvement of TRPC channels in lung cancer cell differentiation and the correlation analysis in human non-small cell lung cancer. PLoS ONE 8: e67637.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Bernaldo de Quiros, S., A. Merlo, P. Secades, I. Zambrano, I.S. de Santa Maria, N. Ugidos, E. Jantus-Lewintre, R. Sirera, C. Suarez, and M.D. Chiara. 2013. Identification of TRPC6 as a possible candidate target gene within an amplicon at 11q21–q22.2 for migratory capacity in head and neck squamous cell carcinomas. BMC Cancer 13: 116. Bernaldo de Quiros, S., A. Merlo, P. Secades, I. Zambrano, I.S. de Santa Maria, N. Ugidos, E. Jantus-Lewintre, R. Sirera, C. Suarez, and M.D. Chiara. 2013. Identification of TRPC6 as a possible candidate target gene within an amplicon at 11q21–q22.2 for migratory capacity in head and neck squamous cell carcinomas. BMC Cancer 13: 116.
63.
Zurück zum Zitat Wan, Q., A. Zheng, X. Liu, Y. Chen, and L. Han. 2012. Expression of Transient Receptor Potential Channel 6 in cervical cancer. Oncotargets and Therapy 5: 171–176.PubMedPubMedCentral Wan, Q., A. Zheng, X. Liu, Y. Chen, and L. Han. 2012. Expression of Transient Receptor Potential Channel 6 in cervical cancer. Oncotargets and Therapy 5: 171–176.PubMedPubMedCentral
64.
Zurück zum Zitat Ma, X., Y. Cai, D. He, C. Zou, P. Zhang, C.Y. Lo, Z. Xu, F.L. Chan, S. Yu, Y. Chen, R. Zhu, J. Lei, J. Jin, and X. Yao. 2012. Transient Receptor Potential Channel TRPC5 is essential for P-glycoprotein induction in drug-resistant cancer cells. Proceedings of the National Academy of Sciences USA 109: 16282–16287.CrossRef Ma, X., Y. Cai, D. He, C. Zou, P. Zhang, C.Y. Lo, Z. Xu, F.L. Chan, S. Yu, Y. Chen, R. Zhu, J. Lei, J. Jin, and X. Yao. 2012. Transient Receptor Potential Channel TRPC5 is essential for P-glycoprotein induction in drug-resistant cancer cells. Proceedings of the National Academy of Sciences USA 109: 16282–16287.CrossRef
65.
Zurück zum Zitat Aydar, E., S. Yeo, M. Djamgoz, and C. Palmer. 2009. Abnormal expression, localization and interaction of canonical transient receptor potential ion channels in human breast cancer cell lines and tissues: A potential target for breast cancer diagnosis and therapy. Cancer Cell International 9: 23.PubMedPubMedCentralCrossRef Aydar, E., S. Yeo, M. Djamgoz, and C. Palmer. 2009. Abnormal expression, localization and interaction of canonical transient receptor potential ion channels in human breast cancer cell lines and tissues: A potential target for breast cancer diagnosis and therapy. Cancer Cell International 9: 23.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Girault, A., A. Ahidouch, and H. Ouadid-Ahidouch. 2020. Roles for Ca(2+) and K(+) channels in cancer cells exposed to the hypoxic tumour microenvironment. Biochimica et Biophysica Acta, Molecular Cell Research 1867: 118644.PubMedCrossRef Girault, A., A. Ahidouch, and H. Ouadid-Ahidouch. 2020. Roles for Ca(2+) and K(+) channels in cancer cells exposed to the hypoxic tumour microenvironment. Biochimica et Biophysica Acta, Molecular Cell Research 1867: 118644.PubMedCrossRef
67.
Zurück zum Zitat Hisatsune, C., Y. Kuroda, K. Nakamura, T. Inoue, T. Nakamura, T. Michikawa, A. Mizutani, and K. Mikoshiba. 2004. Regulation of TRPC6 channel activity by tyrosine phosphorylation. Journal of Biological Chemistry 279: 18887–18894.PubMedCrossRef Hisatsune, C., Y. Kuroda, K. Nakamura, T. Inoue, T. Nakamura, T. Michikawa, A. Mizutani, and K. Mikoshiba. 2004. Regulation of TRPC6 channel activity by tyrosine phosphorylation. Journal of Biological Chemistry 279: 18887–18894.PubMedCrossRef
68.
Zurück zum Zitat Xie, Y.G., Y. Yu, L.K. Hou, X. Wang, B. Zhang, and X.C. Cao. 2016. FYN promotes breast cancer progression through epithelial-mesenchymal transition. Oncology Reports 36: 1000–1006.PubMedCrossRef Xie, Y.G., Y. Yu, L.K. Hou, X. Wang, B. Zhang, and X.C. Cao. 2016. FYN promotes breast cancer progression through epithelial-mesenchymal transition. Oncology Reports 36: 1000–1006.PubMedCrossRef
69.
Zurück zum Zitat Bagu, E.T., S. Miah, C. Dai, T. Spriggs, Y. Ogunbolude, E. Beaton, M. Sanders, R.K. Goel, K. Bonham, and K.E. Lukong. 2017. Repression of Fyn-related kinase in breast cancer cells is associated with promoter site-specific CpG methylation. Oncotarget 8: 11442–11459.PubMedPubMedCentralCrossRef Bagu, E.T., S. Miah, C. Dai, T. Spriggs, Y. Ogunbolude, E. Beaton, M. Sanders, R.K. Goel, K. Bonham, and K.E. Lukong. 2017. Repression of Fyn-related kinase in breast cancer cells is associated with promoter site-specific CpG methylation. Oncotarget 8: 11442–11459.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Lussier, M.P., S. Cayouette, P.K. Lepage, C.L. Bernier, N. Francoeur, M. St-Hilaire, M. Pinard, and G. Boulay. 2005. MxA, a member of the dynamin superfamily, interacts with the ankyrin-like repeat domain of TRPC. Journal of Biological Chemistry 280: 19393–19400.PubMedCrossRef Lussier, M.P., S. Cayouette, P.K. Lepage, C.L. Bernier, N. Francoeur, M. St-Hilaire, M. Pinard, and G. Boulay. 2005. MxA, a member of the dynamin superfamily, interacts with the ankyrin-like repeat domain of TRPC. Journal of Biological Chemistry 280: 19393–19400.PubMedCrossRef
71.
Zurück zum Zitat Zhang, S.S., J. Wen, F. Yang, X.L. Cai, H. Yang, K.J. Luo, Q.W. Liu, R.G. Hu, X. Xie, Q.Y. Huang, J.Y. Chen, J.H. Fu, and Y. Hu. 2013. High expression of transient potential receptor C6 correlated with poor prognosis in patients with esophageal squamous cell carcinoma. Medical Oncology 30: 607.PubMedCrossRef Zhang, S.S., J. Wen, F. Yang, X.L. Cai, H. Yang, K.J. Luo, Q.W. Liu, R.G. Hu, X. Xie, Q.Y. Huang, J.Y. Chen, J.H. Fu, and Y. Hu. 2013. High expression of transient potential receptor C6 correlated with poor prognosis in patients with esophageal squamous cell carcinoma. Medical Oncology 30: 607.PubMedCrossRef
72.
Zurück zum Zitat Yin, H., H. Cheng, P. Li, and Z. Yang. 2022. TRPC6 interacted with K(Ca)1.1 channels to regulate the proliferation and apoptosis of glioma cells. Archives of Biochemistry and Biophysics 725: 109268. Yin, H., H. Cheng, P. Li, and Z. Yang. 2022. TRPC6 interacted with K(Ca)1.1 channels to regulate the proliferation and apoptosis of glioma cells. Archives of Biochemistry and Biophysics 725: 109268.
73.
Zurück zum Zitat Wen, L., C. Liang, E. Chen, W. Chen, F. Liang, X. Zhi, T. Wei, F. Xue, G. Li, Q. Yang, W. Gong, X. Feng, X. Bai, and T. Liang. 2016. Regulation of multi-drug resistance in hepatocellular carcinoma cells is TRPC6/calcium dependent. Science and Reports 6: 23269.CrossRef Wen, L., C. Liang, E. Chen, W. Chen, F. Liang, X. Zhi, T. Wei, F. Xue, G. Li, Q. Yang, W. Gong, X. Feng, X. Bai, and T. Liang. 2016. Regulation of multi-drug resistance in hepatocellular carcinoma cells is TRPC6/calcium dependent. Science and Reports 6: 23269.CrossRef
74.
Zurück zum Zitat Kim, J.H., K.H. Hwang, M. Eom, M. Kim, E.Y. Park, Y. Jeong, K.S. Park, and S.K. Cha. 2019. WNK1 promotes renal tumor progression by activating TRPC6-NFAT pathway. The FASEB Journal 33: 8588–8599.PubMedCrossRef Kim, J.H., K.H. Hwang, M. Eom, M. Kim, E.Y. Park, Y. Jeong, K.S. Park, and S.K. Cha. 2019. WNK1 promotes renal tumor progression by activating TRPC6-NFAT pathway. The FASEB Journal 33: 8588–8599.PubMedCrossRef
75.
Zurück zum Zitat Yang, L.L., B.C. Liu, X.Y. Lu, Y. Yan, Y.J. Zhai, Q. Bao, P.W. Doetsch, X. Deng, T.L. Thai, A.A. Alli, D.C. Eaton, B.Z. Shen, and H.P. Ma. 2017. Inhibition of TRPC6 reduces non-small cell lung cancer cell proliferation and invasion. Oncotarget 8: 5123–5134.PubMedCrossRef Yang, L.L., B.C. Liu, X.Y. Lu, Y. Yan, Y.J. Zhai, Q. Bao, P.W. Doetsch, X. Deng, T.L. Thai, A.A. Alli, D.C. Eaton, B.Z. Shen, and H.P. Ma. 2017. Inhibition of TRPC6 reduces non-small cell lung cancer cell proliferation and invasion. Oncotarget 8: 5123–5134.PubMedCrossRef
76.
Zurück zum Zitat Wang, Y., J. He, H. Jiang, Q. Zhang, H. Yang, X. Xu, C. Zhang, C. Xu, J. Wang, and W. Lu. 2018. Nicotine enhances store-operated calcium entry by upregulating HIF-1alpha and SOCC components in non-small cell lung cancer cells. Oncology Reports 40: 2097–2104.PubMed Wang, Y., J. He, H. Jiang, Q. Zhang, H. Yang, X. Xu, C. Zhang, C. Xu, J. Wang, and W. Lu. 2018. Nicotine enhances store-operated calcium entry by upregulating HIF-1alpha and SOCC components in non-small cell lung cancer cells. Oncology Reports 40: 2097–2104.PubMed
77.
Zurück zum Zitat Thebault, S., M. Flourakis, K. Vanoverberghe, F. Vandermoere, M. Roudbaraki, V. Lehen’kyi, C. Slomianny, B. Beck, P. Mariot, J.L. Bonnal, B. Mauroy, Y. Shuba, T. Capiod, R. Skryma, and N. Prevarskaya. 2006. Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Research 66: 2038–2047.PubMedCrossRef Thebault, S., M. Flourakis, K. Vanoverberghe, F. Vandermoere, M. Roudbaraki, V. Lehen’kyi, C. Slomianny, B. Beck, P. Mariot, J.L. Bonnal, B. Mauroy, Y. Shuba, T. Capiod, R. Skryma, and N. Prevarskaya. 2006. Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Research 66: 2038–2047.PubMedCrossRef
78.
Zurück zum Zitat Wang, D., X. Li, J. Liu, J. Li, L.J. Li, and M.X. Qiu. 2014. Effects of TRPC6 on invasibility of low-differentiated prostate cancer cells. Asian Pacific Journal of Tropical Medicine 7: 44–47.PubMedCrossRef Wang, D., X. Li, J. Liu, J. Li, L.J. Li, and M.X. Qiu. 2014. Effects of TRPC6 on invasibility of low-differentiated prostate cancer cells. Asian Pacific Journal of Tropical Medicine 7: 44–47.PubMedCrossRef
79.
Zurück zum Zitat Wang, Y., D. Yue, K. Li, Y.L. Liu, C.S. Ren, and P. Wang. 2010. The role of TRPC6 in HGF-induced cell proliferation of human prostate cancer DU145 and PC3 cells. Asian Journal of Andrology 12: 841–852.PubMedPubMedCentralCrossRef Wang, Y., D. Yue, K. Li, Y.L. Liu, C.S. Ren, and P. Wang. 2010. The role of TRPC6 in HGF-induced cell proliferation of human prostate cancer DU145 and PC3 cells. Asian Journal of Andrology 12: 841–852.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Bernichtein, S., N. Pigat, N. Barry Delongchamps, F. Boutillon, V. Verkarre, P. Camparo, E. Reyes-Gomez, A. Mejean, S.M. Oudard, E.M. Lepicard, M. Viltard, J.C. Souberbielle, G. Friedlander, T. Capiod, and V. Goffin. 2017. Vitamin D3 prevents calcium-induced progression of early-stage prostate tumors by counteracting TRPC6 and calcium sensing receptor upregulation. Cancer Research 77: 355–365.PubMedCrossRef Bernichtein, S., N. Pigat, N. Barry Delongchamps, F. Boutillon, V. Verkarre, P. Camparo, E. Reyes-Gomez, A. Mejean, S.M. Oudard, E.M. Lepicard, M. Viltard, J.C. Souberbielle, G. Friedlander, T. Capiod, and V. Goffin. 2017. Vitamin D3 prevents calcium-induced progression of early-stage prostate tumors by counteracting TRPC6 and calcium sensing receptor upregulation. Cancer Research 77: 355–365.PubMedCrossRef
81.
Zurück zum Zitat Zeng, B., C. Yuan, X. Yang, S.L. Atkin, and S.Z. Xu. 2013. TRPC channels and their splice variants are essential for promoting human ovarian cancer cell proliferation and tumorigenesis. Current Cancer Drug Targets 13: 103–116.PubMedCrossRef Zeng, B., C. Yuan, X. Yang, S.L. Atkin, and S.Z. Xu. 2013. TRPC channels and their splice variants are essential for promoting human ovarian cancer cell proliferation and tumorigenesis. Current Cancer Drug Targets 13: 103–116.PubMedCrossRef
82.
Zurück zum Zitat Bai, L.P., Y.L. Chen, and A. Zheng. 2022. Pharmacological targeting Transient Receptor Potential Canonical channel 6 modulates biological behaviors for cervical cancer HeLa and SiHA cell. Cancer Cell International 22: 145.PubMedPubMedCentralCrossRef Bai, L.P., Y.L. Chen, and A. Zheng. 2022. Pharmacological targeting Transient Receptor Potential Canonical channel 6 modulates biological behaviors for cervical cancer HeLa and SiHA cell. Cancer Cell International 22: 145.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Yamaguchi, Y., G. Iribe, M. Nishida, and K. Naruse. 2017. Role of TRPC3 and TRPC6 channels in the myocardial response to stretch: Linking physiology and pathophysiology. Progress in Biophysics and Molecular Biology 130: 264–272.PubMedCrossRef Yamaguchi, Y., G. Iribe, M. Nishida, and K. Naruse. 2017. Role of TRPC3 and TRPC6 channels in the myocardial response to stretch: Linking physiology and pathophysiology. Progress in Biophysics and Molecular Biology 130: 264–272.PubMedCrossRef
84.
Zurück zum Zitat Oda, S., T. Numaga-Tomita, N. Kitajima, T. Toyama, E. Harada, T. Shimauchi, A. Nishimura, T. Ishikawa, Y. Kumagai, L. Birnbaumer, and M. Nishida. 2017. TRPC6 counteracts TRPC3-Nox2 protein complex leading to attenuation of hyperglycemia-induced heart failure in mice. Science and Reports 7: 7511.CrossRef Oda, S., T. Numaga-Tomita, N. Kitajima, T. Toyama, E. Harada, T. Shimauchi, A. Nishimura, T. Ishikawa, Y. Kumagai, L. Birnbaumer, and M. Nishida. 2017. TRPC6 counteracts TRPC3-Nox2 protein complex leading to attenuation of hyperglycemia-induced heart failure in mice. Science and Reports 7: 7511.CrossRef
85.
Zurück zum Zitat Kuwahara, K., Y. Wang, J. McAnally, J.A. Richardson, R. Bassel-Duby, J.A. Hill, and E.N. Olson. 2006. TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. The Journal of Clinical Investigation 116: 3114–3126.PubMedPubMedCentralCrossRef Kuwahara, K., Y. Wang, J. McAnally, J.A. Richardson, R. Bassel-Duby, J.A. Hill, and E.N. Olson. 2006. TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. The Journal of Clinical Investigation 116: 3114–3126.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Nishida, M., and H. Kurose. 2008. Roles of TRP channels in the development of cardiac hypertrophy. Naunyn-Schmiedeberg’s Archives of Pharmacology 378: 395–406.PubMedCrossRef Nishida, M., and H. Kurose. 2008. Roles of TRP channels in the development of cardiac hypertrophy. Naunyn-Schmiedeberg’s Archives of Pharmacology 378: 395–406.PubMedCrossRef
87.
Zurück zum Zitat Bogdanova, E., O. Beresneva, O. Galkina, I. Zubina, G. Ivanova, M. Parastaeva, N. Semenova, and V. Dobronravov. 2021. Myocardial hypertrophy and fibrosis are associated with cardiomyocyte beta-catenin and TRPC6/calcineurin/NFAT signaling in spontaneously hypertensive rats with 5/6 nephrectomy. International Journal of Molecular Sciences 22. Bogdanova, E., O. Beresneva, O. Galkina, I. Zubina, G. Ivanova, M. Parastaeva, N. Semenova, and V. Dobronravov. 2021. Myocardial hypertrophy and fibrosis are associated with cardiomyocyte beta-catenin and TRPC6/calcineurin/NFAT signaling in spontaneously hypertensive rats with 5/6 nephrectomy. International Journal of Molecular Sciences 22.
88.
Zurück zum Zitat Xie, J., S.K. Cha, S.W. An, O.M. Kuro, L. Birnbaumer, and C.L. Huang. 2012. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nature Communications 3: 1238.PubMedCrossRef Xie, J., S.K. Cha, S.W. An, O.M. Kuro, L. Birnbaumer, and C.L. Huang. 2012. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nature Communications 3: 1238.PubMedCrossRef
89.
Zurück zum Zitat Zhou, R., P. Hang, W. Zhu, Z. Su, H. Liang, and Z. Du. 2011. Whole genome network analysis of ion channels and connexins in myocardial infarction. Cellular Physiology and Biochemistry 27: 299–304.PubMedCrossRef Zhou, R., P. Hang, W. Zhu, Z. Su, H. Liang, and Z. Du. 2011. Whole genome network analysis of ion channels and connexins in myocardial infarction. Cellular Physiology and Biochemistry 27: 299–304.PubMedCrossRef
90.
Zurück zum Zitat Kinoshita, H., K. Kuwahara, M. Nishida, Z. Jian, X. Rong, S. Kiyonaka, Y. Kuwabara, H. Kurose, R. Inoue, Y. Mori, Y. Li, Y. Nakagawa, S. Usami, M. Fujiwara, Y. Yamada, T. Minami, K. Ueshima, and K. Nakao. 2010. Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart. Circulation Research 106: 1849–1860.PubMedCrossRef Kinoshita, H., K. Kuwahara, M. Nishida, Z. Jian, X. Rong, S. Kiyonaka, Y. Kuwabara, H. Kurose, R. Inoue, Y. Mori, Y. Li, Y. Nakagawa, S. Usami, M. Fujiwara, Y. Yamada, T. Minami, K. Ueshima, and K. Nakao. 2010. Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart. Circulation Research 106: 1849–1860.PubMedCrossRef
91.
Zurück zum Zitat Nikolova-Krstevski, V., S. Wagner, Z.Y. Yu, C.D. Cox, J. Cvetkovska, A.P. Hill, I.G. Huttner, V. Benson, A.A. Werdich, C. MacRae, M.P. Feneley, O. Friedrich, B. Martinac, and D. Fatkin. 2017. Endocardial TRPC-6 channels act as atrial mechanosensors and load-dependent modulators of endocardial/myocardial cross-talk. JACC: Basic to Translational Science 2: 575–590.PubMedPubMedCentral Nikolova-Krstevski, V., S. Wagner, Z.Y. Yu, C.D. Cox, J. Cvetkovska, A.P. Hill, I.G. Huttner, V. Benson, A.A. Werdich, C. MacRae, M.P. Feneley, O. Friedrich, B. Martinac, and D. Fatkin. 2017. Endocardial TRPC-6 channels act as atrial mechanosensors and load-dependent modulators of endocardial/myocardial cross-talk. JACC: Basic to Translational Science 2: 575–590.PubMedPubMedCentral
92.
Zurück zum Zitat Yu, Y., S.H. Keller, C.V. Remillard, O. Safrina, A. Nicholson, S.L. Zhang, W. Jiang, N. Vangala, J.W. Landsberg, J.Y. Wang, P.A. Thistlethwaite, R.N. Channick, I.M. Robbins, J.E. Loyd, H.A. Ghofrani, F. Grimminger, R.T. Schermuly, M.D. Cahalan, L.J. Rubin, and J.X. Yuan. 2009. A functional single-nucleotide polymorphism in the TRPC6 gene promoter associated with idiopathic pulmonary arterial hypertension. Circulation 119: 2313–2322.PubMedPubMedCentralCrossRef Yu, Y., S.H. Keller, C.V. Remillard, O. Safrina, A. Nicholson, S.L. Zhang, W. Jiang, N. Vangala, J.W. Landsberg, J.Y. Wang, P.A. Thistlethwaite, R.N. Channick, I.M. Robbins, J.E. Loyd, H.A. Ghofrani, F. Grimminger, R.T. Schermuly, M.D. Cahalan, L.J. Rubin, and J.X. Yuan. 2009. A functional single-nucleotide polymorphism in the TRPC6 gene promoter associated with idiopathic pulmonary arterial hypertension. Circulation 119: 2313–2322.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Li, W., X. Chen, A.M. Riley, S.C. Hiett, C.J. Temm, E. Beli, X. Long, S. Chakraborty, M. Alloosh, F.A. White, M.B. Grant, M. Sturek, and A.G. Obukhov. 2017. Long-term spironolactone treatment reduces coronary TRPC expression, vasoconstriction, and atherosclerosis in metabolic syndrome pigs. Basic ResCardiol. 112: 54.CrossRef Li, W., X. Chen, A.M. Riley, S.C. Hiett, C.J. Temm, E. Beli, X. Long, S. Chakraborty, M. Alloosh, F.A. White, M.B. Grant, M. Sturek, and A.G. Obukhov. 2017. Long-term spironolactone treatment reduces coronary TRPC expression, vasoconstriction, and atherosclerosis in metabolic syndrome pigs. Basic ResCardiol. 112: 54.CrossRef
94.
Zurück zum Zitat Antigny, F., C. Norez, L. Dannhoffer, J. Bertrand, D. Raveau, P. Corbi, C. Jayle, F. Becq, and C. Vandebrouck. 2011. Transient Receptor Potential Canonical channel 6 links Ca2+ mishandling to cystic fibrosis transmembrane conductance regulator channel dysfunction in cystic fibrosis. American Journal of Respiratory Cell and Molecular Biology 44: 83–90.PubMedCrossRef Antigny, F., C. Norez, L. Dannhoffer, J. Bertrand, D. Raveau, P. Corbi, C. Jayle, F. Becq, and C. Vandebrouck. 2011. Transient Receptor Potential Canonical channel 6 links Ca2+ mishandling to cystic fibrosis transmembrane conductance regulator channel dysfunction in cystic fibrosis. American Journal of Respiratory Cell and Molecular Biology 44: 83–90.PubMedCrossRef
95.
Zurück zum Zitat Finney-Hayward, T.K., M.O. Popa, P. Bahra, S. Li, C.T. Poll, M. Gosling, A.G. Nicholson, R.E. Russell, O.M. Kon, G. Jarai, J. Westwick, P.J. Barnes, and L.E. Donnelly. 2010. Expression of transient receptor potential C6 channels in human lung macrophages. American Journal of Respiratory Cell and Molecular Biology 43: 296–304.PubMedCrossRef Finney-Hayward, T.K., M.O. Popa, P. Bahra, S. Li, C.T. Poll, M. Gosling, A.G. Nicholson, R.E. Russell, O.M. Kon, G. Jarai, J. Westwick, P.J. Barnes, and L.E. Donnelly. 2010. Expression of transient receptor potential C6 channels in human lung macrophages. American Journal of Respiratory Cell and Molecular Biology 43: 296–304.PubMedCrossRef
96.
Zurück zum Zitat Wang, Y.X., and Y.M. Zheng. 2011. Molecular expression and functional role of canonical transient receptor potential channels in airway smooth muscle cells. Advances in Experimental Medicine and Biology 704: 731–747.PubMedPubMedCentralCrossRef Wang, Y.X., and Y.M. Zheng. 2011. Molecular expression and functional role of canonical transient receptor potential channels in airway smooth muscle cells. Advances in Experimental Medicine and Biology 704: 731–747.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Hofmann, K., S. Fiedler, S. Vierkotten, J. Weber, S. Klee, J. Jia, W. Zwickenpflug, V. Flockerzi, U. Storch, A.O. Yildirim, T. Gudermann, M. Konigshoff, and A. Dietrich. 2017. Classical Transient Receptor Potential 6 (TRPC6) channels support myofibroblast differentiation and development of experimental pulmonary fibrosis. Biochimica et Biophysica Acta, Molecular Basis of Disease 1863: 560–568.PubMedCrossRef Hofmann, K., S. Fiedler, S. Vierkotten, J. Weber, S. Klee, J. Jia, W. Zwickenpflug, V. Flockerzi, U. Storch, A.O. Yildirim, T. Gudermann, M. Konigshoff, and A. Dietrich. 2017. Classical Transient Receptor Potential 6 (TRPC6) channels support myofibroblast differentiation and development of experimental pulmonary fibrosis. Biochimica et Biophysica Acta, Molecular Basis of Disease 1863: 560–568.PubMedCrossRef
98.
Zurück zum Zitat Weissmann, N., A. Sydykov, H. Kalwa, U. Storch, B. Fuchs, and Mederos y Schnitzler, M., Brandes, R. P., Grimminger, F., Meissner, M., Freichel, M., Offermanns, S., Veit, F., Pak, O., Krause, K. H., Schermuly, R. T., Brewer, A. C., Schmidt, H. H., Seeger, W., Shah, A. M., Gudermann, T., Ghofrani, H. A. & Dietrich, A. 2012. Activation of TRPC6 channels is essential for lung ischaemia-reperfusion induced oedema in mice. Nature Communications 3: 649.PubMedCrossRef Weissmann, N., A. Sydykov, H. Kalwa, U. Storch, B. Fuchs, and Mederos y Schnitzler, M., Brandes, R. P., Grimminger, F., Meissner, M., Freichel, M., Offermanns, S., Veit, F., Pak, O., Krause, K. H., Schermuly, R. T., Brewer, A. C., Schmidt, H. H., Seeger, W., Shah, A. M., Gudermann, T., Ghofrani, H. A. & Dietrich, A. 2012. Activation of TRPC6 channels is essential for lung ischaemia-reperfusion induced oedema in mice. Nature Communications 3: 649.PubMedCrossRef
99.
Zurück zum Zitat Tauseef, M., N. Knezevic, K.R. Chava, M. Smith, S. Sukriti, N. Gianaris, A.G. Obukhov, S.M. Vogel, D.E. Schraufnagel, A. Dietrich, L. Birnbaumer, A.B. Malik, and D. Mehta. 2012. TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation. Journal of Experimental Medicine 209: 1953–1968.PubMedPubMedCentralCrossRef Tauseef, M., N. Knezevic, K.R. Chava, M. Smith, S. Sukriti, N. Gianaris, A.G. Obukhov, S.M. Vogel, D.E. Schraufnagel, A. Dietrich, L. Birnbaumer, A.B. Malik, and D. Mehta. 2012. TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation. Journal of Experimental Medicine 209: 1953–1968.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Hong, W., G. Peng, B. Hao, B. Liao, Z. Zhao, Y. Zhou, F. Peng, X. Ye, L. Huang, M. Zheng, J. Pu, C. Liang, E. Yi, H. Peng, B. Li, and P. Ran. 2017. Nicotine-induced airway smooth muscle cell proliferation involves TRPC6-dependent calcium influx via alpha7 nAChR. Cellular Physiology and Biochemistry 43: 986–1002.PubMedCrossRef Hong, W., G. Peng, B. Hao, B. Liao, Z. Zhao, Y. Zhou, F. Peng, X. Ye, L. Huang, M. Zheng, J. Pu, C. Liang, E. Yi, H. Peng, B. Li, and P. Ran. 2017. Nicotine-induced airway smooth muscle cell proliferation involves TRPC6-dependent calcium influx via alpha7 nAChR. Cellular Physiology and Biochemistry 43: 986–1002.PubMedCrossRef
101.
Zurück zum Zitat Samapati, R., Y. Yang, J. Yin, C. Stoerger, C. Arenz, A. Dietrich, T. Gudermann, D. Adam, S. Wu, M. Freichel, V. Flockerzi, S. Uhlig, and W.M. Kuebler. 2012. Lung endothelial Ca2+ and permeability response to platelet-activating factor is mediated by acid sphingomyelinase and Transient Receptor Potential Classical 6. American Journal of Respiratory and Critical Care Medicine 185: 160–170.PubMedCrossRef Samapati, R., Y. Yang, J. Yin, C. Stoerger, C. Arenz, A. Dietrich, T. Gudermann, D. Adam, S. Wu, M. Freichel, V. Flockerzi, S. Uhlig, and W.M. Kuebler. 2012. Lung endothelial Ca2+ and permeability response to platelet-activating factor is mediated by acid sphingomyelinase and Transient Receptor Potential Classical 6. American Journal of Respiratory and Critical Care Medicine 185: 160–170.PubMedCrossRef
102.
Zurück zum Zitat Jiang, T., R. Samapati, S. Klassen, D. Lei, L. Erfinanda, V. Jankowski, S. Simmons, J. Yin, C. Arenz, A. Dietrich, T. Gudermann, D. Adam, M. Schaefer, J. Jankowski, V. Flockerzi, R. Nusing, S. Uhlig, and W.M. Kuebler. 2022. Stimulation of the EP(3) receptor causes lung oedema by activation of TRPC6 in pulmonary endothelial cells. European Respiratory Journal 60. Jiang, T., R. Samapati, S. Klassen, D. Lei, L. Erfinanda, V. Jankowski, S. Simmons, J. Yin, C. Arenz, A. Dietrich, T. Gudermann, D. Adam, M. Schaefer, J. Jankowski, V. Flockerzi, R. Nusing, S. Uhlig, and W.M. Kuebler. 2022. Stimulation of the EP(3) receptor causes lung oedema by activation of TRPC6 in pulmonary endothelial cells. European Respiratory Journal 60.
103.
Zurück zum Zitat Leidinger, G., F. Flockerzi, J. Hohneck, R.M. Bohle, A. Fieguth, and T. Tschernig. 2022. TRPC6 is altered in COVID-19 pneumonia. Chemico-Biological Interactions 362: 109982.PubMedPubMedCentralCrossRef Leidinger, G., F. Flockerzi, J. Hohneck, R.M. Bohle, A. Fieguth, and T. Tschernig. 2022. TRPC6 is altered in COVID-19 pneumonia. Chemico-Biological Interactions 362: 109982.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Chen, Q., Y. Zhou, L. Zhou, Z. Fu, C. Yang, L. Zhao, S. Li, Y. Chen, Y. Wu, Z. Ling, Y. Wang, J. Huang, and J. Li. 2020. TRPC6-dependent Ca(2+) signaling mediates airway inflammation in response to oxidative stress via ERK pathway. Cell Death & Disease 11: 170.CrossRef Chen, Q., Y. Zhou, L. Zhou, Z. Fu, C. Yang, L. Zhao, S. Li, Y. Chen, Y. Wu, Z. Ling, Y. Wang, J. Huang, and J. Li. 2020. TRPC6-dependent Ca(2+) signaling mediates airway inflammation in response to oxidative stress via ERK pathway. Cell Death & Disease 11: 170.CrossRef
105.
Zurück zum Zitat Wang, J., L. Weigand, W. Lu, J.T. Sylvester, G.L. Semenza, and L.A. Shimoda. 2006. Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circulation Research 98: 1528–1537.PubMedCrossRef Wang, J., L. Weigand, W. Lu, J.T. Sylvester, G.L. Semenza, and L.A. Shimoda. 2006. Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circulation Research 98: 1528–1537.PubMedCrossRef
106.
Zurück zum Zitat Weissmann, N., A. Dietrich, B. Fuchs, H. Kalwa, M. Ay, R. Dumitrascu, A. Olschewski, U. Storch, M. Schnitzler, H.A. Ghofrani, R.T. Schermuly, O. Pinkenburg, W. Seeger, F. Grimminger, and T. Gudermann. 2006. Classical Transient Receptor Potential Channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proceedings of the National Academy of Sciences USA 103: 19093–19098.CrossRef Weissmann, N., A. Dietrich, B. Fuchs, H. Kalwa, M. Ay, R. Dumitrascu, A. Olschewski, U. Storch, M. Schnitzler, H.A. Ghofrani, R.T. Schermuly, O. Pinkenburg, W. Seeger, F. Grimminger, and T. Gudermann. 2006. Classical Transient Receptor Potential Channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proceedings of the National Academy of Sciences USA 103: 19093–19098.CrossRef
107.
Zurück zum Zitat Malczyk, M., C. Veith, B. Fuchs, K. Hofmann, U. Storch, R.T. Schermuly, M. Witzenrath, K. Ahlbrecht, C. Fecher-Trost, V. Flockerzi, H.A. Ghofrani, F. Grimminger, W. Seeger, T. Gudermann, A. Dietrich, and N. Weissmann. 2013. Classical Transient Receptor Potential Channel 1 in hypoxia-induced pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine 188: 1451–1459.PubMedCrossRef Malczyk, M., C. Veith, B. Fuchs, K. Hofmann, U. Storch, R.T. Schermuly, M. Witzenrath, K. Ahlbrecht, C. Fecher-Trost, V. Flockerzi, H.A. Ghofrani, F. Grimminger, W. Seeger, T. Gudermann, A. Dietrich, and N. Weissmann. 2013. Classical Transient Receptor Potential Channel 1 in hypoxia-induced pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine 188: 1451–1459.PubMedCrossRef
108.
Zurück zum Zitat He, X., S. Song, R.J. Ayon, A. Balisterieri, S.M. Black, A. Makino, W.G. Wier, W.J. Zang, and J.X. Yuan. 2018. Hypoxia selectively upregulates cation channels and increases cytosolic [Ca(2+)] in pulmonary, but not coronary, arterial smooth muscle cells. American Journal of Physiology. Cell Physiology 314: C504–C517.PubMedPubMedCentralCrossRef He, X., S. Song, R.J. Ayon, A. Balisterieri, S.M. Black, A. Makino, W.G. Wier, W.J. Zang, and J.X. Yuan. 2018. Hypoxia selectively upregulates cation channels and increases cytosolic [Ca(2+)] in pulmonary, but not coronary, arterial smooth muscle cells. American Journal of Physiology. Cell Physiology 314: C504–C517.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Xia, Y., X.R. Yang, Z. Fu, O. Paudel, J. Abramowitz, L. Birnbaumer, and J.S. Sham. 2014. Classical Transient Receptor Potential 1 and 6 contribute to hypoxic pulmonary hypertension through differential regulation of pulmonary vascular functions. Hypertension 63: 173–180.PubMedCrossRef Xia, Y., X.R. Yang, Z. Fu, O. Paudel, J. Abramowitz, L. Birnbaumer, and J.S. Sham. 2014. Classical Transient Receptor Potential 1 and 6 contribute to hypoxic pulmonary hypertension through differential regulation of pulmonary vascular functions. Hypertension 63: 173–180.PubMedCrossRef
110.
Zurück zum Zitat Lin, M.J., G.P. Leung, W.M. Zhang, X.R. Yang, K.P. Yip, C.M. Tse, and J.S. Sham. 2004. Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells: A novel mechanism of hypoxic pulmonary hypertension. Circulation Research 95: 496–505.PubMedCrossRef Lin, M.J., G.P. Leung, W.M. Zhang, X.R. Yang, K.P. Yip, C.M. Tse, and J.S. Sham. 2004. Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells: A novel mechanism of hypoxic pulmonary hypertension. Circulation Research 95: 496–505.PubMedCrossRef
111.
Zurück zum Zitat Zhao, T., S. Parmisano, Z. Soroureddin, M. Zhao, L. Yung, P.A. Thistlethwaite, A. Makino, and J.X. Yuan. 2022. Mechanosensitive cation currents through TRPC6 and Piezo1 channels in human pulmonary arterial endothelial cells. American Journal of Physiology. Cell Physiology 323: C959–C973.PubMedCrossRef Zhao, T., S. Parmisano, Z. Soroureddin, M. Zhao, L. Yung, P.A. Thistlethwaite, A. Makino, and J.X. Yuan. 2022. Mechanosensitive cation currents through TRPC6 and Piezo1 channels in human pulmonary arterial endothelial cells. American Journal of Physiology. Cell Physiology 323: C959–C973.PubMedCrossRef
112.
Zurück zum Zitat Bai, Y., X. Yu, H. Chen, D. Horne, R. White, X. Wu, P. Lee, Y. Gu, S. Ghimire-Rijal, D.C. Lin, and X. Huang. 2020. Structural basis for pharmacological modulation of the TRPC6 channel. Elife 9. Bai, Y., X. Yu, H. Chen, D. Horne, R. White, X. Wu, P. Lee, Y. Gu, S. Ghimire-Rijal, D.C. Lin, and X. Huang. 2020. Structural basis for pharmacological modulation of the TRPC6 channel. Elife 9.
113.
Zurück zum Zitat Lin, B.L., J.Y. Shin, W.P. Jeffreys, N. Wang, C.A. Lukban, M.C. Moorer, E. Velarde, O.A. Hanselman, S. Kwon, S. Kannan, R.C. Riddle, C.W. Ward, S.S. Pullen, A. Filareto, and D.A. Kass. 2022. Pharmacological TRPC6 inhibition improves survival and muscle function in mice with Duchenne muscular dystrophy. JCI Insight 7. Lin, B.L., J.Y. Shin, W.P. Jeffreys, N. Wang, C.A. Lukban, M.C. Moorer, E. Velarde, O.A. Hanselman, S. Kwon, S. Kannan, R.C. Riddle, C.W. Ward, S.S. Pullen, A. Filareto, and D.A. Kass. 2022. Pharmacological TRPC6 inhibition improves survival and muscle function in mice with Duchenne muscular dystrophy. JCI Insight 7.
114.
Zurück zum Zitat Maier, T., M. Follmann, G. Hessler, H.W. Kleemann, S. Hachtel, B. Fuchs, N. Weissmann, W. Linz, T. Schmidt, M. Lohn, K. Schroeter, L. Wang, H. Rutten, and C. Strubing. 2015. Discovery and pharmacological characterization of a novel potent inhibitor of diacylglycerol-sensitive TRPC cation channels. British Journal of Pharmacology 172: 3650–3660.PubMedPubMedCentralCrossRef Maier, T., M. Follmann, G. Hessler, H.W. Kleemann, S. Hachtel, B. Fuchs, N. Weissmann, W. Linz, T. Schmidt, M. Lohn, K. Schroeter, L. Wang, H. Rutten, and C. Strubing. 2015. Discovery and pharmacological characterization of a novel potent inhibitor of diacylglycerol-sensitive TRPC cation channels. British Journal of Pharmacology 172: 3650–3660.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Hafner, S., F. Burg, M. Kannler, N. Urban, P. Mayer, A. Dietrich, D. Trauner, J. Broichhagen, and M. Schaefer. 2018. A (+)-larixol congener with high affinity and subtype selectivity toward TRPC6. ChemMedChem 13: 1028–1035.PubMedCrossRef Hafner, S., F. Burg, M. Kannler, N. Urban, P. Mayer, A. Dietrich, D. Trauner, J. Broichhagen, and M. Schaefer. 2018. A (+)-larixol congener with high affinity and subtype selectivity toward TRPC6. ChemMedChem 13: 1028–1035.PubMedCrossRef
116.
Zurück zum Zitat Zheng, Z., Y. Xu, U. Krugel, M. Schaefer, T. Grune, B. Nurnberg, M.B. Kohler, M. Gollasch, D. Tsvetkov, and L. Marko. 2022. In vivo inhibition of TRPC6 by SH045 attenuates renal fibrosis in a New Zealand Obese (NZO) mouse model of metabolic syndrome. International Journal of Molecular Sciences 23. Zheng, Z., Y. Xu, U. Krugel, M. Schaefer, T. Grune, B. Nurnberg, M.B. Kohler, M. Gollasch, D. Tsvetkov, and L. Marko. 2022. In vivo inhibition of TRPC6 by SH045 attenuates renal fibrosis in a New Zealand Obese (NZO) mouse model of metabolic syndrome. International Journal of Molecular Sciences 23.
117.
Zurück zum Zitat Shimauchi, T., T. Numaga-Tomita, Y. Kato, H. Morimoto, K. Sakata, R. Matsukane, A. Nishimura, K. Nishiyama, A. Shibuta, Y. Horiuchi, H. Kurose, S.G. Kim, Y. Urano, T. Ohshima, and M. Nishida. 2022. A TRPC3/6 channel inhibitor promotes arteriogenesis after hind-limb ischemia. Cells 11. Shimauchi, T., T. Numaga-Tomita, Y. Kato, H. Morimoto, K. Sakata, R. Matsukane, A. Nishimura, K. Nishiyama, A. Shibuta, Y. Horiuchi, H. Kurose, S.G. Kim, Y. Urano, T. Ohshima, and M. Nishida. 2022. A TRPC3/6 channel inhibitor promotes arteriogenesis after hind-limb ischemia. Cells 11.
118.
Zurück zum Zitat Yang, P.L., X.H. Li, J. Wang, X.F. Ma, B.Y. Zhou, Y.F. Jiao, W.H. Wang, P. Cao, M.X. Zhu, P.W. Li, Z.H. Xiao, C.Z. Li, C.R. Guo, Y.T. Lei, and Y. Yu. 2021. GSK1702934A and M085 directly activate TRPC6 via a mechanism of stimulating the extracellular cavity formed by the pore helix and transmembrane helix S6. Journal of Biological Chemistry 297: 101125.PubMedPubMedCentralCrossRef Yang, P.L., X.H. Li, J. Wang, X.F. Ma, B.Y. Zhou, Y.F. Jiao, W.H. Wang, P. Cao, M.X. Zhu, P.W. Li, Z.H. Xiao, C.Z. Li, C.R. Guo, Y.T. Lei, and Y. Yu. 2021. GSK1702934A and M085 directly activate TRPC6 via a mechanism of stimulating the extracellular cavity formed by the pore helix and transmembrane helix S6. Journal of Biological Chemistry 297: 101125.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Qu, C., M. Ding, Y. Zhu, Y. Lu, J. Du, M. Miller, J. Tian, J. Zhu, J. Xu, M. Wen, A. Er-Bu, J. Wang, Y. Xiao, M. Wu, O.B. McManus, M. Li, J. Wu, H.R. Luo, Z. Cao, B. Shen, H. Wang, M.X. Zhu, and X. Hong. 2017. Pyrazolopyrimidines as potent stimulators for Transient Receptor Potential Canonical 3/6/7 channels. Journal of Medicinal Chemistry 60: 4680–4692.PubMedPubMedCentralCrossRef Qu, C., M. Ding, Y. Zhu, Y. Lu, J. Du, M. Miller, J. Tian, J. Zhu, J. Xu, M. Wen, A. Er-Bu, J. Wang, Y. Xiao, M. Wu, O.B. McManus, M. Li, J. Wu, H.R. Luo, Z. Cao, B. Shen, H. Wang, M.X. Zhu, and X. Hong. 2017. Pyrazolopyrimidines as potent stimulators for Transient Receptor Potential Canonical 3/6/7 channels. Journal of Medicinal Chemistry 60: 4680–4692.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Leuner, K., J.H. Heiser, S. Derksen, M.I. Mladenov, C.J. Fehske, R. Schubert, M. Gollasch, G. Schneider, C. Harteneck, S.S. Chatterjee, and W.E. Muller. 2010. Simple 2,4 diacylphloroglucinols as TRPC6 activators — identification of a novel pharmacophore. Molecular Pharmacology 77: 368–377.PubMedCrossRef Leuner, K., J.H. Heiser, S. Derksen, M.I. Mladenov, C.J. Fehske, R. Schubert, M. Gollasch, G. Schneider, C. Harteneck, S.S. Chatterjee, and W.E. Muller. 2010. Simple 2,4 diacylphloroglucinols as TRPC6 activators — identification of a novel pharmacophore. Molecular Pharmacology 77: 368–377.PubMedCrossRef
121.
Zurück zum Zitat Sell, T.S., T. Belkacemi, V. Flockerzi, and A. Beck. 2014. Protonophore properties of hyperforin are essential for its pharmacological activity. Science and Reports 4: 7500.CrossRef Sell, T.S., T. Belkacemi, V. Flockerzi, and A. Beck. 2014. Protonophore properties of hyperforin are essential for its pharmacological activity. Science and Reports 4: 7500.CrossRef
122.
Zurück zum Zitat Kong, W., T.N. Haschler, B. Nurnberg, S. Kramer, M. Gollasch, and L. Marko. 2019. Renal fibrosis, immune cell infiltration and changes of TRPC channel expression after unilateral ureteral obstruction in TRPC6−/− mice. Cellular Physiology and Biochemistry 52: 1484–1502.PubMed Kong, W., T.N. Haschler, B. Nurnberg, S. Kramer, M. Gollasch, and L. Marko. 2019. Renal fibrosis, immune cell infiltration and changes of TRPC channel expression after unilateral ureteral obstruction in TRPC6−/− mice. Cellular Physiology and Biochemistry 52: 1484–1502.PubMed
Metadaten
Titel
Transient Receptor Potential Canonical 6 (TRPC6) Channel in the Pathogenesis of Diseases: A Jack of Many Trades
verfasst von
Uzma Saqib
Sreepadaarchana Munjuluri
Sutripta Sarkar
Subir Biswas
Oyshi Mukherjee
Hargopal Satsangi
Mirza S. Baig
Alexander G. Obukhov
Krishnan Hajela
Publikationsdatum
18.04.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01808-3

Weitere Artikel der Ausgabe 4/2023

Inflammation 4/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.