Skip to main content
Erschienen in: Critical Care 1/2023

Open Access 01.12.2023 | Perspective

The intracranial compartmental syndrome: a proposed model for acute brain injury monitoring and management

verfasst von: Daniel Agustín Godoy, Sérgio Brasil, Corrado Iaccarino, Wellingson Paiva, Andres M. Rubiano

Erschienen in: Critical Care | Ausgabe 1/2023

Abstract

For decades, one of the main targets in the management of severe acute brain injury (ABI) has been intracranial hypertension (IH) control. However, the determination of IH has suffered variations in its thresholds over time without clear evidence for it. Meanwhile, progress in the understanding of intracranial content (brain, blood and cerebrospinal fluid) dynamics and recent development in monitoring techniques suggest that targeting intracranial compliance (ICC) could be a more reliable approach rather than guiding actions by predetermined intracranial pressure values. It is known that ICC impairment forecasts IH, as intracranial volume may rapidly increase inside the skull, a closed bony box with derisory expansibility. Therefore, an intracranial compartmental syndrome (ICCS) can occur with deleterious brain effects, precipitating a reduction in brain perfusion, thereby inducing brain ischemia. The present perspective review aims to discuss the ICCS concept and suggest an integrative model for the combination of modern invasive and noninvasive techniques for IH and ICC assessment. The theory and logic suggest that the combination of multiple ancillary methods may enhance ICC impairment prediction, pointing proactive actions and improving patient outcomes.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
TBI
Traumatic brain injury
ICP
Intracranial pressure
ICPW
Intracranial pressure waveform
CSF
Cerebrospinal fluid
MLS
Midline shift
CT
Computed tomography
IH
Intracranial hypertension
ICCS
Intracranial compartmental syndrome
CBV
Cerebral blood volume
ICC
Intracranial compliance
CPP
Cerebral perfusion pressure
MAP
Mean arterial pressure
TCD
Transcranial Doppler
NPV
Negative predictive value
B4C
Brain4care
TTP
Time to peak
ABI
Acute brain injury

Introduction

For years, the evaluation and management of intracranial hypertension (IH), based on specific thresholds, have been the main target ("tip of the iceberg") for the treatment of acute brain injury (ABI), especially for traumatic brain injury (TBI) [1]. The increase in intracranial pressure (ICP) generates deleterious effects because of the displacement of anatomical structures, leading to a cascade of brain swelling, ischemia and generating different degrees and types of brain tissue herniation [2, 3].
Recently, an expert panel developed management algorithms for TBI care based on 22 mmHg for ICP threshold [4, 5]. Notwithstanding, such recommendations are supported only by lower evidence levels [6, 7]. In fact, the only randomized controlled trial for the management of TBI comparing ICP monitoring vs a clinical protocol guided by examination and neuroimaging (Best-Trip trial) demonstrated that ICP monitoring was not a necessary intervention when serial bedside neurological examination and brain imaging were taken [8]. This study changed the paradigm regarding the consideration of ICP as an isolated central intervention in TBI [9]. Moreover, it led to the emergence of arguments advocating against maintaining an empirical, fixed and rigid ICP cutoff as a pillar for starting different medical and/or surgical interventions [7, 10].
The secondary events after ABI are heterogeneous between subjects [11]. Moreover, even for the same patient, adjusting ideal cerebral perfusion may require arterial blood pressure (ABP) changes during periods of physiological instability following injury [11, 12]. Hence, determining the most vulnerable periods for tissue hypoxia and cellular dysfunction [13, 14] can be challenging [1518]. In this context, intracranial compliance (ICC) impairment, the threshold with which intracranial volume has overpassed the inner compensatory reserve [19, 20], can be a more reliable target than ICP alone [21].
The recent advances in technology have brought intensive care units the opportunity to monitor closely and predict the undesired consequences of ICC impairment [22, 23], with a synergist diagnostic potential when these techniques are combined [24, 25]. Therefore, the modern management of IH should focus on a different and more integrated perspective, considering the instruments available to monitor these phenomena [2628].
The present perspective review aims to propose the integration of monitoring techniques currently available to assess ICC impairment, such as ICP monitoring, transcranial Doppler (TCD), pupillometry, brain oximetry, near-infrared spectroscopy (NIRS), optic nerve sheath diameter ultrasound (ONSD) and automated ICP waveform analysis (ICPW). With these tools at hand, we propose a model and treatment algorithm utilizing the intracranial compartmental syndrome (ICCS) that may serve as an improvement in IH management. Mapping how different techniques can be associated is particularly important among locations where resources are scarce, such as low-income countries.

The intracranial compartmental syndrome

Definition

The ICCS is an ICC impairment diagnostic model applying different monitoring techniques with educational purpose as a standard of care. As for IH, ICCS occurs because the skull is a non-extensible compartment with limited adaptation to changes in pressure, and when the inner volume reaches a critical level, ICC is exhausted (Fig. 1) [20, 2931]. The rigid cranial cavity is interconnected with other cavities as thorax and neck by venous and cerebrospinal fluid (CSF) systems, so IH may develop because of cranial and extracranial conditions (Table 1). As for any body cavity, when the inner pressure increases severely, it causes hypoperfusion, ischemia and tissue damage as a consequence of sensitive structures compression, such as nerves and blood vessels [3234].
Table 1
Causes of intracranial hypertension
1. Intracranial
 Extrinsic compression
 Depressed skull fractures
 Subdural, extradural hematomas
 Cerebral contusions
 Cerebral edema
 Thrombosis
2. Extracranial
• Cervical collars
  Neck lateralization
  Jugular thrombosis (central line, SVjO2 monitoring devices)
  Orotracheal tube tethering
• Thorax (intrathoracic pressure increase)
  Pneumothorax
  Hemothorax
  Mechanical ventilation
  Inadequate PEEP levels
  Airway obstruction
  Thrombosis (central line)
  Severe pulmonary embolism
  Asynchrony with mechanical ventilator
• Abdomen (intrabdominal pressure increase)
  Fluid Resuscitation
  Ileus
  Gastroparesis
  Pneumoperitoneum
  Hemoperitoneum
PEEP positive expiratory end pressure, SVjO2 jugular bulb oxygen saturation
In early stages of ICCS development, a space-occupying lesion (contusion) or an increase in brain parenchyma volume (edema) does not cause an increase in ICP, so long as the compensation systems and cerebral autoregulation work [3]. If the process is not aborted at this time, ICP will increase exponentially, compromising perfusion, oxygenation, energy usage and creating compartmental gradients that will anatomically distorting brain tissue. It is important to remark that these changes are not necessarily associated with specific ICP number thresholds, as we can find patients with loss of ICC within a predetermined “normal range” of ICP or in patients with preserved ICC that demonstrate ICP above these thresholds (Fig. 2).
Therefore, the hallmark of reduction in ICC must rely on the ICP pulse morphology or waveform (ICPW) [35]. ICPW has been extensively studied and constitutes the leading monitor in the ICCS diagnostic toolbox. The changes in ICP pulse morphology have been directly linked to ICC impairment, especially when the second peak (P2) assumes a higher amplitude than the first peak (P1, Fig. 3), forecasting IH [36, 37]. In combination with changes in ICPW, other invasive and noninvasive methods can be added as synergistic adjuncts to monitor brain oxygenation, compliance and blood dynamics.

Thresholds

ICP probes may display a spectrum of measured values, from exclusively ICP mean values up to ICP trends, systolic and diastolic values, brain temperature and waveforms [38]. Without an automated analysis of ICPW from invasive methods, the contour analysis relies on subjectivity and expertise to conclude when P2 surpasses P1 in amplitude [39]. Oximetry probes may also provide brain temperature and a local (around 2.5 cc) brain tissue oxygenation (PbtO2), with ideal around 20–35 mmHg [40], whereas NIRS and jugular venous oxygen saturation (SvjO2) provide percentages of hemoglobin oxygen saturation. For ICCS, we used ICP > 20 mmHg and PbtO2 < 20 mmHg [41] or SO2 < 50% if NIRS or SvjO2 are used [42].
An ICU validated, noninvasive and mobile technique to monitor ICP variations based on ICPW has been recently entered the market (Braincare Corp, São Carlos, Brazil) [38, 4346]. The system is based on cranial micrometric deformation; it currently does not provide ICP values, but extracts parametric values from the pulse slopes that are correlated with IH [38]. For ICCS, we applied the P2/P1 ratio > 1.2 provided by this technique as indicator of IH [44].
Ultrasound techniques, such as duplex and TCD, can be useful in several neurovascular diagnostic areas: cerebral autoregulation assessment [3], embolic activity [47], arterial [48] and venous stenosis, as well as supportive evidence in brain death [49]. TCD acquires waveforms derived from blood velocities and may indicate reduction in cerebral perfusion pressure through dedicated software [22], the pulsatility index (PI) and/or reduction in mean velocities [25]. Duplex also can observe intracranial hematomas and middle line shift [50], and evaluate the ONSD. It has also demonstrated excellent negative predictive value for the estimation of ICP [51]. For ICCS, we used the PI > 1.2 and ONSD > 5 mm as indicators of IH [52].
Pupillometry can provide sedation status, assessment of pain, prediction of clinical deterioration and outcome [53]. Although it has reduced capacity to detect IH by the pupillary reflex alone, the automated neurological pupil index (NPi) present in dedicated manufacturer (NeurOptics, Irvine, USA) is reliable to observe worsening in neurological condition as consequence of IH, when serial measures are performed [53]. For ICCS, we used the NPi < 3 as an indicator of neurological deterioration. Main techniques advantages and limitations included in the model are summarized in Table 2.
Table 2
Characteristics of most relevant noninvasive surrogate techniques for ICP monitoring
 
TCD
ONSD
Pupillometry
Brain4care
Use Mode
Serial/continuous
Serial
Serial
Serial/continuous
IH estimation
Numeric
Y/N
Y/N
Y/N
Operator training
High
Low
Low
Low
Operator dependence
High
High
Low
Low
Strengths
Multiple different vascular diagnostics
Readiness to obtain results, easily repeatable
Low operator dependence, assessment of pain in sedated patients
High negative predictive value, monitoring during interventions
Weaknesses
Depends on acoustic windows and operator availability
High interobserver variation
Low accuracy for ICP estimation
Not suitable for highly agitated patients, neurosurgery leads to thresholds shift
ICP intracranial pressure, IH intracranial hypertension, ONSD optic nerve sheath diameter ultrasound, TCD transcranial Doppler, Y/N yes or not
EEG has not been included, but should be considered as an additional information to this ICCS algorithm. Furthermore, metabolic crisis [54] and spreading depolarizations [55] are examples of real menaces for ABI patients that can occur unnoticed in this model [56], being a limitation of ICCS.

Proposed diagnostic model

The proposed model integrates the monitoring of ICC through the analysis of ICPW to the traditional invasive and/or noninvasive monitoring methods of ICP and cerebral tissue oxygenation (Fig. 4). The techniques included have a solid and compelling rationale for their use, despite the fact that large trials remain lacking [57, 58]. As many of these techniques are referred to physiological phenomena, it is not expected that all techniques show their results exactly as presented below, but inconclusive results may guide continuous/serial monitoring and revisiting the patient records. Considering the variety of resources from one location to another, as well as the advantages and limitations of each technique, this is not a condition to be assessed exclusively if all methods are available. Rather, it is a recommendation for practitioners to take hand of all resources present; the more the information available, the more likely an assertive decision will result. Of course, the comprehensive management of ICCS depends on a thorough review of the medical record and available brain imaging.
Four evolutionary patterns are proposed, utilizing the ICPW characterization:
Type A: normal pattern. Absence of intracranial hypertension and tissue hypoxia on invasive and noninvasive monitoring, i.e., preserved ICPW.
Type B: IH without impairment of cerebral oxygenation while maintaining ICC (borderline ICPW). Such a pattern may be seen in insidious chronic conditions such as obesity [59], in the early stages of hydrocephalus development [60] or during the early stages of space-occupying lesions or cerebral edema [61]. Furthermore, extracranial causes of increased ICP (pneumothorax, mechanical ventilator asynchrony [62, 63], airway obstruction, intrabdominal hypertension [64]).
Type C: Grade I ICCS. Alteration of ICC evidenced through the change in the ICP pulse morphology (P2 > or = P1), in the “absence of an increase in the numerical value of the ICP.” Causes of this pattern are temporal or frontal contusions < 25 cc (diffuse injury type II of the Marshall’s tomographic classification) or laminar extra-axial lesions that do not cause midline deviation. Depending on the evolutionary stage, it may or may not be accompanied (advanced) by brain tissue hypoxia (early).
Type D: Grade II ICCS. The syndrome in its fullness, as a life-threatening condition. It is characterized by total loss of compliance with the presence of marked morphological changes in the ICPW with effacement of the P1 component and adoption of a pyramidal shape, accompanied by IH and cerebral tissue hypoxia. Pattern that can be observed in non-evacuated space-occupying lesions > 25 cc or diffuse type III or IV injury of the Marshall’s classification.

Therapeutical approach

Following the pathophysiological reasoning of the proposed model, the therapeutic approach can be based on the following premises:
Type A: Treatment will be based on clinical, imaging, hemodynamic, metabolic and intracranial oxygenation monitoring. From their analysis, the intensivist will proceed to the implementation of general care measures, which may include physiological neuroprotection, mechanical ventilation and sedation/analgesia, avoiding secondary insults, and preventing deep vein thrombosis, gastrointestinal bleeding and infectious complication [65]. Anticonvulsants when indicated, early nutrition and rehabilitation are important additional measures. This global approach should be continuous even for the other subtypes [4, 6, 65, 66].
Type B: IH without ICC impairment. Before starting therapy, it is important to carry out an exhaustive analysis of the cause (whether intra- or extracranial, for example), since the therapy will depend on etiology [66]. In case of hydrocephalus, external ventricular drainage will be the choice; while if the origin is increased intrathoracic pressure, due to asynchrony with mechanical ventilation, deepening sedation/analgesia after analysis of the ventilatory mode will be priorities.
Type C: ICCS grade I. IH may or may not be present, but ICC impairment leads to brain tissue oxygenation alteration. This situation is probably the most difficult to defining therapeutics. Although initial medical management of IH and cerebral tissue hypoxia is based on individual institutional guidelines or international consensus [4, 66, 67], it is essential to keep in mind the following premises: (a) close, continued follow-up monitoring and further therapeutic response based on wave morphology [68, 69]; (b) refrain from escalation of any medical treatment beyond recommended levels, if the response to that intervention is not satisfactory; and (c) early consideration of CSF drainage and/or surgical evacuation of space-occupying injuries or decompression of the cranial cavity.
Type D: ICCS grade II. The syndrome is fully developed. Combined medical and surgical therapy is mandatory, but prompt consideration of the latter is considered essential, since decompression of the cranial cavity is urgently necessary independent of the nature (whether focal or diffuse) of the lesions [70, 71].

Conclusions and future perspectives

Modern management of ABI has broken the simplistic intracranial hypertension-based model of care. Other phenomena such as brain tissue hypoxia and energy dysfunction are important to recognize, prevent and treat to optimize results. Severe TBI is dynamic and heterogeneous. The advancement and analysis of multimodal monitoring brought with it the concept of “personalized therapy.” The proposed model integrates the monitoring of intracranial compliance with the traditional monitored variables (invasive or noninvasive) during severe TBI. The ICCS is defined not by a specific numeric threshold of ICP monitoring, but based on its subtype and multimodal monitoring, suggesting therapeutic approaches for emergency conditions. Large-scale studies are necessary to evaluate this proposed model in addition to validate the use of new noninvasive monitoring techniques for understanding these new concepts. We advocate for moving toward new concepts and paradigm shifts in the management of ABI in order to decrease mortality and disability associated with a delayed decision-making process.

Acknowledgements

We thank Renato Abe for the illustration artwork.

Declarations

Not applicable.
Not applicable.

Competing interests

SB is consultant for Brain4care. The other authors declare no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Rabelo NN, da Silva BJ, da Silva JS, de Souza NB, Coelho G, Brasil S, Frigieri G. The historic evolution of intracranial pressure and cerebrospinal fluid pulse pressure concepts: Two centuries of challenges. Surg Neurol Int. 2021;12:274.PubMedPubMedCentralCrossRef Rabelo NN, da Silva BJ, da Silva JS, de Souza NB, Coelho G, Brasil S, Frigieri G. The historic evolution of intracranial pressure and cerebrospinal fluid pulse pressure concepts: Two centuries of challenges. Surg Neurol Int. 2021;12:274.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Brain Trauma F, American Association of Neurological S, Congress of Neurological S, Joint Section on N, Critical Care AC, Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA et al. Guidelines for the management of severe traumatic brain injury. VIII. Intracranial pressure thresholds. J Neurotrauma. 2007;24 Suppl 1:S55–58. Brain Trauma F, American Association of Neurological S, Congress of Neurological S, Joint Section on N, Critical Care AC, Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA et al. Guidelines for the management of severe traumatic brain injury. VIII. Intracranial pressure thresholds. J Neurotrauma. 2007;24 Suppl 1:S55–58.
3.
Zurück zum Zitat Brasil S, Nogueira RC, Salinet ASM, Yoshikawa MH, Teixeira MJ, Paiva W, Malbouisson LMS, Bor-Seng-Shu E, Panerai RB. The contribution of intracranial pressure to human dynamic cerebral autoregulation after acute brain injury. Am J Physiol Regul Integr Comp Physiol. 2022. Brasil S, Nogueira RC, Salinet ASM, Yoshikawa MH, Teixeira MJ, Paiva W, Malbouisson LMS, Bor-Seng-Shu E, Panerai RB. The contribution of intracranial pressure to human dynamic cerebral autoregulation after acute brain injury. Am J Physiol Regul Integr Comp Physiol. 2022.
4.
Zurück zum Zitat Chesnut R, Aguilera S, Buki A, Bulger E, Citerio G, Cooper DJ, Arrastia RD, Diringer M, Figaji A, Gao G, et al. A management algorithm for adult patients with both brain oxygen and intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Med. 2020;46(5):919–29.PubMedPubMedCentralCrossRef Chesnut R, Aguilera S, Buki A, Bulger E, Citerio G, Cooper DJ, Arrastia RD, Diringer M, Figaji A, Gao G, et al. A management algorithm for adult patients with both brain oxygen and intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Med. 2020;46(5):919–29.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Grande PO. The “Lund Concept” for the treatment of severe head trauma—physiological principles and clinical application. Intensive Care Med. 2007;33(1):205.PubMedCrossRef Grande PO. The “Lund Concept” for the treatment of severe head trauma—physiological principles and clinical application. Intensive Care Med. 2007;33(1):205.PubMedCrossRef
6.
Zurück zum Zitat Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GW, Bell MJ, Bratton SL, Chesnut R, Harris OA, Kissoon N, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80(1):6–15.PubMedCrossRef Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GW, Bell MJ, Bratton SL, Chesnut R, Harris OA, Kissoon N, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80(1):6–15.PubMedCrossRef
7.
Zurück zum Zitat Wijdicks EFM. 10 or 15 or 20 or 40 mmHg? What is Increased intracranial pressure and who said so? Neurocrit Care. 2022;36(3):1022–6.PubMedCrossRef Wijdicks EFM. 10 or 15 or 20 or 40 mmHg? What is Increased intracranial pressure and who said so? Neurocrit Care. 2022;36(3):1022–6.PubMedCrossRef
8.
Zurück zum Zitat Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, Petroni G, Lujan S, Pridgeon J, Barber J, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367(26):2471–81.PubMedPubMedCentralCrossRef Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, Petroni G, Lujan S, Pridgeon J, Barber J, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367(26):2471–81.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Lazaridis C, Desai M, Damoulakis G, Zeiler FA. Intracranial pressure threshold heuristics in traumatic brain injury: one, none, many! Neurocrit Care. 2020;32(3):672–6.PubMedCrossRef Lazaridis C, Desai M, Damoulakis G, Zeiler FA. Intracranial pressure threshold heuristics in traumatic brain injury: one, none, many! Neurocrit Care. 2020;32(3):672–6.PubMedCrossRef
10.
Zurück zum Zitat Chesnut RM, Videtta W. Situational intracranial pressure management: an argument against a fixed treatment threshold. Crit Care Med. 2020;48(8):1214–6.PubMedCrossRef Chesnut RM, Videtta W. Situational intracranial pressure management: an argument against a fixed treatment threshold. Crit Care Med. 2020;48(8):1214–6.PubMedCrossRef
11.
Zurück zum Zitat Stocchetti N, Carbonara M, Citerio G, Ercole A, Skrifvars MB, Smielewski P, Zoerle T, Menon DK. Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurol. 2017;16(6):452–64.PubMedCrossRef Stocchetti N, Carbonara M, Citerio G, Ercole A, Skrifvars MB, Smielewski P, Zoerle T, Menon DK. Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurol. 2017;16(6):452–64.PubMedCrossRef
12.
Zurück zum Zitat Nourallah B, Zeiler FA, Calviello L, Smielewski P, Czosnyka M, Menon DK. Critical thresholds for intracranial pressure vary over time in non-craniectomised traumatic brain injury patients. Acta Neurochir (Wien). 2018;160(7):1315–24.PubMedCrossRef Nourallah B, Zeiler FA, Calviello L, Smielewski P, Czosnyka M, Menon DK. Critical thresholds for intracranial pressure vary over time in non-craniectomised traumatic brain injury patients. Acta Neurochir (Wien). 2018;160(7):1315–24.PubMedCrossRef
13.
Zurück zum Zitat Brasil S, Paiva WS, de Carvalho Nogueira R, Macedo Salinet A, Teixeira MJ. Letter to the Editor. Decompressive craniectomy in TBI: What is beyond static evaluations in terms of prognosis? J Neurosurg. 2018;129(3):845–47. Brasil S, Paiva WS, de Carvalho Nogueira R, Macedo Salinet A, Teixeira MJ. Letter to the Editor. Decompressive craniectomy in TBI: What is beyond static evaluations in terms of prognosis? J Neurosurg. 2018;129(3):845–47.
14.
Zurück zum Zitat Bouzat P, Sala N, Payen JF, Oddo M. Beyond intracranial pressure: optimization of cerebral blood flow, oxygen, and substrate delivery after traumatic brain injury. Ann Intensive Care. 2013;3(1):23.PubMedPubMedCentralCrossRef Bouzat P, Sala N, Payen JF, Oddo M. Beyond intracranial pressure: optimization of cerebral blood flow, oxygen, and substrate delivery after traumatic brain injury. Ann Intensive Care. 2013;3(1):23.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Vik A, Nag T, Fredriksli OA, Skandsen T, Moen KG, Schirmer-Mikalsen K, Manley GT. Relationship of “dose” of intracranial hypertension to outcome in severe traumatic brain injury. J Neurosurg. 2008;109(4):678–84.PubMedCrossRef Vik A, Nag T, Fredriksli OA, Skandsen T, Moen KG, Schirmer-Mikalsen K, Manley GT. Relationship of “dose” of intracranial hypertension to outcome in severe traumatic brain injury. J Neurosurg. 2008;109(4):678–84.PubMedCrossRef
16.
Zurück zum Zitat Guiza F, Depreitere B, Piper I, Citerio G, Chambers I, Jones PA, Lo TY, Enblad P, Nillson P, Feyen B, et al. Visualizing the pressure and time burden of intracranial hypertension in adult and paediatric traumatic brain injury. Intensive Care Med. 2015;41(6):1067–76.PubMedCrossRef Guiza F, Depreitere B, Piper I, Citerio G, Chambers I, Jones PA, Lo TY, Enblad P, Nillson P, Feyen B, et al. Visualizing the pressure and time burden of intracranial hypertension in adult and paediatric traumatic brain injury. Intensive Care Med. 2015;41(6):1067–76.PubMedCrossRef
17.
Zurück zum Zitat Jha RM, Elmer J, Zusman BE, Desai S, Puccio AM, Okonkwo DO, Park SY, Shutter LA, Wallisch JS, Conley YP, et al. Intracranial pressure trajectories: a novel approach to informing severe traumatic brain injury phenotypes. Crit Care Med. 2018;46(11):1792–802.PubMedPubMedCentralCrossRef Jha RM, Elmer J, Zusman BE, Desai S, Puccio AM, Okonkwo DO, Park SY, Shutter LA, Wallisch JS, Conley YP, et al. Intracranial pressure trajectories: a novel approach to informing severe traumatic brain injury phenotypes. Crit Care Med. 2018;46(11):1792–802.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Yang F, Peng C, Peng L, Wang P, Cheng C, Zuo W, Zhao L, Jin Z, Li W. Group-based trajectory modeling of intracranial pressure in patients with acute brain injury: results from multi-center ICUs, 2008–2019. CNS Neurosci Ther. 2022;28(8):1218–28.PubMedPubMedCentralCrossRef Yang F, Peng C, Peng L, Wang P, Cheng C, Zuo W, Zhao L, Jin Z, Li W. Group-based trajectory modeling of intracranial pressure in patients with acute brain injury: results from multi-center ICUs, 2008–2019. CNS Neurosci Ther. 2022;28(8):1218–28.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Zeiler FA, Kim DJ, Cabeleira M, Calviello L, Smielewski P, Czosnyka M. Impaired cerebral compensatory reserve is associated with admission imaging characteristics of diffuse insult in traumatic brain injury. Acta Neurochir (Wien). 2018;160(12):2277–87.PubMedCrossRef Zeiler FA, Kim DJ, Cabeleira M, Calviello L, Smielewski P, Czosnyka M. Impaired cerebral compensatory reserve is associated with admission imaging characteristics of diffuse insult in traumatic brain injury. Acta Neurochir (Wien). 2018;160(12):2277–87.PubMedCrossRef
20.
Zurück zum Zitat Rubiano AM, Figaji A, Hawryluk GW. Intracranial pressure management: moving beyond guidelines. Curr Opin Crit Care. 2022;28(2):101–10.PubMedCrossRef Rubiano AM, Figaji A, Hawryluk GW. Intracranial pressure management: moving beyond guidelines. Curr Opin Crit Care. 2022;28(2):101–10.PubMedCrossRef
21.
Zurück zum Zitat Ocamoto GN, Russo TL, Mendes Zambetta R, Frigieri G, Hayashi CY, Brasil S, Rabelo NN, Spavieri Junior DL. Intracranial compliance concepts and assessment: a scoping review. Front Neurol. 2021;12: 756112.PubMedPubMedCentralCrossRef Ocamoto GN, Russo TL, Mendes Zambetta R, Frigieri G, Hayashi CY, Brasil S, Rabelo NN, Spavieri Junior DL. Intracranial compliance concepts and assessment: a scoping review. Front Neurol. 2021;12: 756112.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Brasil S, de Carvalho Nogueira R, Salinet  SM, Yoshikawa MH, Teixeira MJ, Paiva W, Malbouisson LMS, Bor-Seng-Shu E, Panerai RB. Critical closing pressure and cerebrovascular resistance responses to intracranial pressure variations in neurocritical patients. Neurocrit Care. 2023. Brasil S, de Carvalho Nogueira R, Salinet  SM, Yoshikawa MH, Teixeira MJ, Paiva W, Malbouisson LMS, Bor-Seng-Shu E, Panerai RB. Critical closing pressure and cerebrovascular resistance responses to intracranial pressure variations in neurocritical patients. Neurocrit Care. 2023.
23.
Zurück zum Zitat Hawryluk GWJ, Citerio G, Hutchinson P, Kolias A, Meyfroidt G, Robba C, Stocchetti N, Chesnut R. Intracranial pressure: current perspectives on physiology and monitoring. Intensive Care Med. 2022. Hawryluk GWJ, Citerio G, Hutchinson P, Kolias A, Meyfroidt G, Robba C, Stocchetti N, Chesnut R. Intracranial pressure: current perspectives on physiology and monitoring. Intensive Care Med. 2022.
24.
Zurück zum Zitat Robba C, Frigieri G, Brasil S, Taccone FS. Early prognostic value of non-invasive intracranial pressure methods in brain-injured patients. Intensive Care Med. 2022. Robba C, Frigieri G, Brasil S, Taccone FS. Early prognostic value of non-invasive intracranial pressure methods in brain-injured patients. Intensive Care Med. 2022.
25.
Zurück zum Zitat Robba C, Pozzebon S, Moro B, Vincent JL, Creteur J, Taccone FS. Multimodal non-invasive assessment of intracranial hypertension: an observational study. Crit Care. 2020;24(1):379.PubMedPubMedCentralCrossRef Robba C, Pozzebon S, Moro B, Vincent JL, Creteur J, Taccone FS. Multimodal non-invasive assessment of intracranial hypertension: an observational study. Crit Care. 2020;24(1):379.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Lauerman MH, Stein DM. Multicompartment management of patients with severe traumatic brain injury. Curr Opin Anaesthesiol. 2014;27(2):219–24.PubMedCrossRef Lauerman MH, Stein DM. Multicompartment management of patients with severe traumatic brain injury. Curr Opin Anaesthesiol. 2014;27(2):219–24.PubMedCrossRef
27.
Zurück zum Zitat Scalea TM, Bochicchio GV, Habashi N, McCunn M, Shih D, McQuillan K, Aarabi B. Increased intra-abdominal, intrathoracic, and intracranial pressure after severe brain injury: multiple compartment syndrome. J Trauma. 2007;62(3):647–656; discussion 656. Scalea TM, Bochicchio GV, Habashi N, McCunn M, Shih D, McQuillan K, Aarabi B. Increased intra-abdominal, intrathoracic, and intracranial pressure after severe brain injury: multiple compartment syndrome. J Trauma. 2007;62(3):647–656; discussion 656.
28.
Zurück zum Zitat Wilson MH. Monro-Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab. 2016;36(8):1338–1350. Wilson MH. Monro-Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab. 2016;36(8):1338–1350.
29.
Zurück zum Zitat Brogi E, Coccolini F, Russo E, Forfori F. Diagnosis and treatment of the intracranial compartment syndrome. In: Coccolini F, Malbrain MLNG, Kirkpatrick AW, Gamberini E, editors. Compartment syndrome. Cham: Springer; 2021. p. 17–33.CrossRef Brogi E, Coccolini F, Russo E, Forfori F. Diagnosis and treatment of the intracranial compartment syndrome. In: Coccolini F, Malbrain MLNG, Kirkpatrick AW, Gamberini E, editors. Compartment syndrome. Cham: Springer; 2021. p. 17–33.CrossRef
30.
Zurück zum Zitat Figaji AA, Fieggen AG, Argent A, Peter JC. Surgical treatment for “brain compartment syndrome” in children with severe head injury. S Afr Med J. 2006;96(9 Pt 2):969–75.PubMed Figaji AA, Fieggen AG, Argent A, Peter JC. Surgical treatment for “brain compartment syndrome” in children with severe head injury. S Afr Med J. 2006;96(9 Pt 2):969–75.PubMed
31.
Zurück zum Zitat Wykes V, Vindlacheruvu R. Intracranial pressure, cerebral blood flow and brain oedema. Surg Infect (Larchmt). 2015;33(8):355–62. Wykes V, Vindlacheruvu R. Intracranial pressure, cerebral blood flow and brain oedema. Surg Infect (Larchmt). 2015;33(8):355–62.
32.
Zurück zum Zitat Gourgiotis S, Villias C, Germanos S, Foukas A, Ridolfini MP. Acute limb compartment syndrome: a review. J Surg Educ. 2007;64(3):178–86.PubMedCrossRef Gourgiotis S, Villias C, Germanos S, Foukas A, Ridolfini MP. Acute limb compartment syndrome: a review. J Surg Educ. 2007;64(3):178–86.PubMedCrossRef
33.
Zurück zum Zitat Pereira BM. Abdominal compartment syndrome and intra-abdominal hypertension. Curr Opin Crit Care. 2019;25(6):688–96.PubMedCrossRef Pereira BM. Abdominal compartment syndrome and intra-abdominal hypertension. Curr Opin Crit Care. 2019;25(6):688–96.PubMedCrossRef
34.
Zurück zum Zitat Pereira R, Buglevski M, Perdigoto R, Marcelino P, Saliba F, Blot S, Starkopf J. Intra-abdominal hypertension and abdominal compartment syndrome in the critically ill liver cirrhotic patient-prevalence and clinical outcomes. A multicentric retrospective cohort study in intensive care. PLoS ONE. 2021;16(5):e0251498. Pereira R, Buglevski M, Perdigoto R, Marcelino P, Saliba F, Blot S, Starkopf J. Intra-abdominal hypertension and abdominal compartment syndrome in the critically ill liver cirrhotic patient-prevalence and clinical outcomes. A multicentric retrospective cohort study in intensive care. PLoS ONE. 2021;16(5):e0251498.
35.
Zurück zum Zitat Brasil S. Intracranial pressure pulse morphology: the missing link? Intensive Care Med. 2022. Brasil S. Intracranial pressure pulse morphology: the missing link? Intensive Care Med. 2022.
36.
Zurück zum Zitat Hamilton R, Xu P, Asgari S, Kasprowicz M, Vespa P, Bergsneider M, Hu X. Forecasting intracranial pressure elevation using pulse waveform morphology. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4331–4.PubMed Hamilton R, Xu P, Asgari S, Kasprowicz M, Vespa P, Bergsneider M, Hu X. Forecasting intracranial pressure elevation using pulse waveform morphology. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4331–4.PubMed
37.
Zurück zum Zitat Hu X, Xu P, Asgari S, Vespa P, Bergsneider M. Forecasting ICP elevation based on prescient changes of intracranial pressure waveform morphology. IEEE Trans Biomed Eng. 2010;57(5):1070–8.PubMedPubMedCentralCrossRef Hu X, Xu P, Asgari S, Vespa P, Bergsneider M. Forecasting ICP elevation based on prescient changes of intracranial pressure waveform morphology. IEEE Trans Biomed Eng. 2010;57(5):1070–8.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Frigieri G, Robba C, Machado FS, Gomes JA, Brasil S. Application of non-invasive ICP waveform analysis in acute brain injury: Intracranial Compliance Scale. Intensive Care Med Exp. 2023;11(1):5.PubMedPubMedCentralCrossRef Frigieri G, Robba C, Machado FS, Gomes JA, Brasil S. Application of non-invasive ICP waveform analysis in acute brain injury: Intracranial Compliance Scale. Intensive Care Med Exp. 2023;11(1):5.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Czosnyka M, Czosnyka Z. Origin of intracranial pressure pulse waveform. Acta Neurochir (Wien). 2020;162(8):1815–7.PubMedCrossRef Czosnyka M, Czosnyka Z. Origin of intracranial pressure pulse waveform. Acta Neurochir (Wien). 2020;162(8):1815–7.PubMedCrossRef
40.
Zurück zum Zitat Maloney-Wilensky E, Le Roux P. The physiology behind direct brain oxygen monitors and practical aspects of their use. Childs Nerv Syst. 2010;26(4):419–30.PubMedCrossRef Maloney-Wilensky E, Le Roux P. The physiology behind direct brain oxygen monitors and practical aspects of their use. Childs Nerv Syst. 2010;26(4):419–30.PubMedCrossRef
41.
Zurück zum Zitat Battaglini D, Anania P, Rocco PRM, Brunetti I, Prior A, Zona G, Pelosi P, Fiaschi P. Escalate and De-escalate therapies for intracranial pressure control in traumatic brain injury. Front Neurol. 2020;11: 564751.PubMedPubMedCentralCrossRef Battaglini D, Anania P, Rocco PRM, Brunetti I, Prior A, Zona G, Pelosi P, Fiaschi P. Escalate and De-escalate therapies for intracranial pressure control in traumatic brain injury. Front Neurol. 2020;11: 564751.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Godoy DA, Murillo-Cabezas F, Suarez JI, Badenes R, Pelosi P, Robba C. “THE MANTLE” bundle for minimizing cerebral hypoxia in severe traumatic brain injury. Crit Care. 2023;27(1):13.PubMedPubMedCentralCrossRef Godoy DA, Murillo-Cabezas F, Suarez JI, Badenes R, Pelosi P, Robba C. “THE MANTLE” bundle for minimizing cerebral hypoxia in severe traumatic brain injury. Crit Care. 2023;27(1):13.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Brasil S, Frigieri G, Taccone FS, Robba C, Solla DJF, de Carvalho Nogueira R, Yoshikawa MH, Teixeira MJ, Malbouisson LMS, Paiva WS. Noninvasive intracranial pressure waveforms for estimation of intracranial hypertension and outcome prediction in acute brain-injured patients. J Clin Monit Comput. 2022. Brasil S, Frigieri G, Taccone FS, Robba C, Solla DJF, de Carvalho Nogueira R, Yoshikawa MH, Teixeira MJ, Malbouisson LMS, Paiva WS. Noninvasive intracranial pressure waveforms for estimation of intracranial hypertension and outcome prediction in acute brain-injured patients. J Clin Monit Comput. 2022.
44.
Zurück zum Zitat Brasil S, Solla DJF, Nogueira RC, Teixeira MJ, Malbouisson LMS, Paiva WS. A novel noninvasive technique for intracranial pressure waveform monitoring in critical care. J Pers Med. 2021;11(12):1302.PubMedPubMedCentralCrossRef Brasil S, Solla DJF, Nogueira RC, Teixeira MJ, Malbouisson LMS, Paiva WS. A novel noninvasive technique for intracranial pressure waveform monitoring in critical care. J Pers Med. 2021;11(12):1302.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat de Moraes FM, Rocha E, Barros FCD, Freitas FGR, Miranda M, Valiente RA, de Andrade JBC, Neto F, Silva GS. Waveform morphology as a surrogate for ICP monitoring: a comparison between an invasive and a noninvasive method. Neurocrit Care. 2022. de Moraes FM, Rocha E, Barros FCD, Freitas FGR, Miranda M, Valiente RA, de Andrade JBC, Neto F, Silva GS. Waveform morphology as a surrogate for ICP monitoring: a comparison between an invasive and a noninvasive method. Neurocrit Care. 2022.
46.
Zurück zum Zitat Hassett CE, Uysal SP, Butler R, Moore NZ, Cardim D, Gomes JA. Assessment of cerebral autoregulation using invasive and noninvasive methods of intracranial pressure monitoring. Neurocrit Care. 2022. Hassett CE, Uysal SP, Butler R, Moore NZ, Cardim D, Gomes JA. Assessment of cerebral autoregulation using invasive and noninvasive methods of intracranial pressure monitoring. Neurocrit Care. 2022.
47.
Zurück zum Zitat Paschoal FM Jr, de Almeida Lins Ronconi K, de Lima Oliveira M, Nogueira RC, Paschoal EH, Teixeira MJ, Figueiredo EG, Bor-Seng-Shu E. Embolic signals during routine transcranial Doppler ultrasonography in aneurysmal subarachnoid hemorrhage. Biomed Res Int. 2015;2015:153714.PubMedPubMedCentralCrossRef Paschoal FM Jr, de Almeida Lins Ronconi K, de Lima Oliveira M, Nogueira RC, Paschoal EH, Teixeira MJ, Figueiredo EG, Bor-Seng-Shu E. Embolic signals during routine transcranial Doppler ultrasonography in aneurysmal subarachnoid hemorrhage. Biomed Res Int. 2015;2015:153714.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Bor-Seng-Shu E, de Lima-Oliveira M, Teixeira MJ, Panerai RB. Predicting symptomatic cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2011;69(2):E501-502.PubMedCrossRef Bor-Seng-Shu E, de Lima-Oliveira M, Teixeira MJ, Panerai RB. Predicting symptomatic cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2011;69(2):E501-502.PubMedCrossRef
49.
Zurück zum Zitat Brasil S, Bor-Seng-Shu E, de-Lima-Oliveira M, Taccone FS, Gattas G, Nunes DM, Gomes de Oliveira RA, Martins Tomazini B, Tierno PF, Becker RA et al. Computed tomography angiography accuracy in brain death diagnosis. J Neurosurg. 2019:1–9. Brasil S, Bor-Seng-Shu E, de-Lima-Oliveira M, Taccone FS, Gattas G, Nunes DM, Gomes de Oliveira RA, Martins Tomazini B, Tierno PF, Becker RA et al. Computed tomography angiography accuracy in brain death diagnosis. J Neurosurg. 2019:1–9.
50.
Zurück zum Zitat Vitiello L, Salerno G, De Bernardo M, D’Aniello O, Capasso L, Marotta G, Rosa N. Ultrasound detection of intracranial hypertension in brain injuries. Front Med (Lausanne). 2022;9: 870808.PubMedCrossRef Vitiello L, Salerno G, De Bernardo M, D’Aniello O, Capasso L, Marotta G, Rosa N. Ultrasound detection of intracranial hypertension in brain injuries. Front Med (Lausanne). 2022;9: 870808.PubMedCrossRef
51.
Zurück zum Zitat Rasulo FA, Calza S, Robba C, Taccone FS, Biasucci DG, Badenes R, Piva S, Savo D, Citerio G, Dibu JR, et al. Transcranial Doppler as a screening test to exclude intracranial hypertension in brain-injured patients: the IMPRESSIT-2 prospective multicenter international study. Crit Care. 2022;26(1):110.PubMedPubMedCentralCrossRef Rasulo FA, Calza S, Robba C, Taccone FS, Biasucci DG, Badenes R, Piva S, Savo D, Citerio G, Dibu JR, et al. Transcranial Doppler as a screening test to exclude intracranial hypertension in brain-injured patients: the IMPRESSIT-2 prospective multicenter international study. Crit Care. 2022;26(1):110.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Rasulo FA, Bertuetti R. Transcranial doppler and optic nerve sonography. J Cardiothorac Vasc Anesth. 2019;33(Suppl 1):S38–52.PubMedCrossRef Rasulo FA, Bertuetti R. Transcranial doppler and optic nerve sonography. J Cardiothorac Vasc Anesth. 2019;33(Suppl 1):S38–52.PubMedCrossRef
53.
Zurück zum Zitat Sandroni C, Citerio G, Taccone FS. Automated pupillometry in intensive care. Intensive Care Med. 2022;48(10):1467–70.PubMedCrossRef Sandroni C, Citerio G, Taccone FS. Automated pupillometry in intensive care. Intensive Care Med. 2022;48(10):1467–70.PubMedCrossRef
54.
Zurück zum Zitat de Lima OM, Kairalla AC, Fonoff ET, Martinez RC, Teixeira MJ, Bor-Seng-Shu E. Cerebral microdialysis in traumatic brain injury and subarachnoid hemorrhage: state of the art. Neurocrit Care. 2014;21(1):152–62. de Lima OM, Kairalla AC, Fonoff ET, Martinez RC, Teixeira MJ, Bor-Seng-Shu E. Cerebral microdialysis in traumatic brain injury and subarachnoid hemorrhage: state of the art. Neurocrit Care. 2014;21(1):152–62.
55.
Zurück zum Zitat Hinzman JM, Wilson JA, Mazzeo AT, Bullock MR, Hartings JA. Excitotoxicity and metabolic crisis are associated with spreading depolarizations in severe traumatic brain injury patients. J Neurotrauma. 2016;33(19):1775–83.PubMedPubMedCentralCrossRef Hinzman JM, Wilson JA, Mazzeo AT, Bullock MR, Hartings JA. Excitotoxicity and metabolic crisis are associated with spreading depolarizations in severe traumatic brain injury patients. J Neurotrauma. 2016;33(19):1775–83.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, Glenn TC, McArthur DL, Hovda DA. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25(6):763–74.PubMedCrossRef Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, Glenn TC, McArthur DL, Hovda DA. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25(6):763–74.PubMedCrossRef
57.
Zurück zum Zitat Bernard F, Barsan W, Diaz-Arrastia R, Merck LH, Yeatts S, Shutter LA. Brain Oxygen Optimization in Severe Traumatic Brain Injury (BOOST-3): a multicentre, randomised, blinded-endpoint, comparative effectiveness study of brain tissue oxygen and intracranial pressure monitoring versus intracranial pressure alone. BMJ Open. 2022;12(3): e060188.PubMedPubMedCentralCrossRef Bernard F, Barsan W, Diaz-Arrastia R, Merck LH, Yeatts S, Shutter LA. Brain Oxygen Optimization in Severe Traumatic Brain Injury (BOOST-3): a multicentre, randomised, blinded-endpoint, comparative effectiveness study of brain tissue oxygen and intracranial pressure monitoring versus intracranial pressure alone. BMJ Open. 2022;12(3): e060188.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Citerio G, Oddo M, Taccone FS. Recommendations for the use of multimodal monitoring in the neurointensive care unit. Curr Opin Crit Care. 2015;21(2):113–9.PubMedCrossRef Citerio G, Oddo M, Taccone FS. Recommendations for the use of multimodal monitoring in the neurointensive care unit. Curr Opin Crit Care. 2015;21(2):113–9.PubMedCrossRef
59.
Zurück zum Zitat Subramaniam S, Fletcher WA. Obesity and weight loss in idiopathic intracranial hypertension: a narrative review. J Neuroophthalmol. 2017;37(2):197–205.PubMedCrossRef Subramaniam S, Fletcher WA. Obesity and weight loss in idiopathic intracranial hypertension: a narrative review. J Neuroophthalmol. 2017;37(2):197–205.PubMedCrossRef
60.
Zurück zum Zitat Schmidt EA, Despas F, Pavy-Le Traon A, Czosnyka Z, Pickard JD, Rahmouni K, Pathak A, Senard JM. Intracranial pressure is a determinant of sympathetic activity. Front Physiol. 2018;9:11.PubMedPubMedCentralCrossRef Schmidt EA, Despas F, Pavy-Le Traon A, Czosnyka Z, Pickard JD, Rahmouni K, Pathak A, Senard JM. Intracranial pressure is a determinant of sympathetic activity. Front Physiol. 2018;9:11.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Koenig MA. Cerebral edema and elevated intracranial pressure. Continuum (Minneap Minn). 2018;24(6):1588–602.PubMed Koenig MA. Cerebral edema and elevated intracranial pressure. Continuum (Minneap Minn). 2018;24(6):1588–602.PubMed
62.
Zurück zum Zitat Videtta W, Villarejo F, Cohen M, Domeniconi G, Santa Cruz R, Pinillos O, Rios F, Maskin B. Effects of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure. Acta Neurochir Suppl. 2002;81:93–7.PubMed Videtta W, Villarejo F, Cohen M, Domeniconi G, Santa Cruz R, Pinillos O, Rios F, Maskin B. Effects of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure. Acta Neurochir Suppl. 2002;81:93–7.PubMed
63.
Zurück zum Zitat Robba C, Ball L, Nogas S, Battaglini D, Messina A, Brunetti I, Minetti G, Castellan L, Rocco PRM, Pelosi P. Effects of positive end-expiratory pressure on lung recruitment, respiratory mechanics, and intracranial pressure in mechanically ventilated brain-injured patients. Front Physiol. 2021;12: 711273.PubMedPubMedCentralCrossRef Robba C, Ball L, Nogas S, Battaglini D, Messina A, Brunetti I, Minetti G, Castellan L, Rocco PRM, Pelosi P. Effects of positive end-expiratory pressure on lung recruitment, respiratory mechanics, and intracranial pressure in mechanically ventilated brain-injured patients. Front Physiol. 2021;12: 711273.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Bloomfield GL, Ridings PC, Blocher CR, Marmarou A, Sugerman HJ. A proposed relationship between increased intra-abdominal, intrathoracic, and intracranial pressure. Crit Care Med. 1997;25(3):496–503.PubMedCrossRef Bloomfield GL, Ridings PC, Blocher CR, Marmarou A, Sugerman HJ. A proposed relationship between increased intra-abdominal, intrathoracic, and intracranial pressure. Crit Care Med. 1997;25(3):496–503.PubMedCrossRef
65.
Zurück zum Zitat Godoy DA, Videtta W, Santa Cruz R, Silva X, Aguilera-Rodriguez S, Carreno-Rodriguez JN, Ciccioli F, Pinero G, Ciro JD, da Re-Gutierrez S, et al. General care in the management of severe traumatic brain injury: Latin American consensus. Med Intensiva (Engl Ed). 2020;44(8):500–8.PubMedCrossRef Godoy DA, Videtta W, Santa Cruz R, Silva X, Aguilera-Rodriguez S, Carreno-Rodriguez JN, Ciccioli F, Pinero G, Ciro JD, da Re-Gutierrez S, et al. General care in the management of severe traumatic brain injury: Latin American consensus. Med Intensiva (Engl Ed). 2020;44(8):500–8.PubMedCrossRef
66.
Zurück zum Zitat Godoy DA, Videtta W, Di Napoli M. Practical approach to posttraumatic intracranial hypertension according to pathophysiologic reasoning. Neurol Clin. 2017;35(4):613–40.PubMedCrossRef Godoy DA, Videtta W, Di Napoli M. Practical approach to posttraumatic intracranial hypertension according to pathophysiologic reasoning. Neurol Clin. 2017;35(4):613–40.PubMedCrossRef
67.
Zurück zum Zitat Godoy DA, Lubillo S, Rabinstein AA. Pathophysiology and management of intracranial hypertension and tissular brain hypoxia after severe traumatic brain injury: an integrative approach. Neurosurg Clin N Am. 2018;29(2):195–212.PubMedCrossRef Godoy DA, Lubillo S, Rabinstein AA. Pathophysiology and management of intracranial hypertension and tissular brain hypoxia after severe traumatic brain injury: an integrative approach. Neurosurg Clin N Am. 2018;29(2):195–212.PubMedCrossRef
68.
Zurück zum Zitat Liu X, Vitt JR, Hetts SW, Gudelunas K, Ho N, Ko N, Hu X. Morphological changes of intracranial pressure quantifies vasodilatory effect of verapamil to treat cerebral vasospasm. J Neurointerv Surg. 2020;12(8):802–8.PubMedPubMedCentralCrossRef Liu X, Vitt JR, Hetts SW, Gudelunas K, Ho N, Ko N, Hu X. Morphological changes of intracranial pressure quantifies vasodilatory effect of verapamil to treat cerebral vasospasm. J Neurointerv Surg. 2020;12(8):802–8.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Huser M, Kundig A, Karlen W, De Luca V, Jaggi M. Forecasting intracranial hypertension using multi-scale waveform metrics. Physiol Meas. 2020;41(1): 014001.PubMedCrossRef Huser M, Kundig A, Karlen W, De Luca V, Jaggi M. Forecasting intracranial hypertension using multi-scale waveform metrics. Physiol Meas. 2020;41(1): 014001.PubMedCrossRef
70.
Zurück zum Zitat Charry JD, Rubiano AM, Puyana JC, Carney N, David Adelson P. Damage control of civilian penetrating brain injuries in environments of low neuro-monitoring resources. Br J Neurosurg. 2016;30(2):235–9.PubMedCrossRef Charry JD, Rubiano AM, Puyana JC, Carney N, David Adelson P. Damage control of civilian penetrating brain injuries in environments of low neuro-monitoring resources. Br J Neurosurg. 2016;30(2):235–9.PubMedCrossRef
71.
Zurück zum Zitat Rubiano AM, Maldonado M, Montenegro J, Restrepo CM, Khan AA, Monteiro R, Faleiro RM, Carreno JN, Amorim R, Paiva W, et al. The evolving concept of damage control in neurotrauma: application of military protocols in civilian settings with limited resources. World Neurosurg. 2019;125:e82–93.PubMedCrossRef Rubiano AM, Maldonado M, Montenegro J, Restrepo CM, Khan AA, Monteiro R, Faleiro RM, Carreno JN, Amorim R, Paiva W, et al. The evolving concept of damage control in neurotrauma: application of military protocols in civilian settings with limited resources. World Neurosurg. 2019;125:e82–93.PubMedCrossRef
Metadaten
Titel
The intracranial compartmental syndrome: a proposed model for acute brain injury monitoring and management
verfasst von
Daniel Agustín Godoy
Sérgio Brasil
Corrado Iaccarino
Wellingson Paiva
Andres M. Rubiano
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 1/2023
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-023-04427-4

Weitere Artikel der Ausgabe 1/2023

Critical Care 1/2023 Zur Ausgabe

Blutdrucksenkung schon im Rettungswagen bei akutem Schlaganfall?

31.05.2024 Apoplex Nachrichten

Der optimale Ansatz für die Blutdruckkontrolle bei Patientinnen und Patienten mit akutem Schlaganfall ist noch nicht gefunden. Ob sich eine frühzeitige Therapie der Hypertonie noch während des Transports in die Klinik lohnt, hat jetzt eine Studie aus China untersucht.

Ähnliche Überlebensraten nach Reanimation während des Transports bzw. vor Ort

29.05.2024 Reanimation im Kindesalter Nachrichten

Laut einer Studie aus den USA und Kanada scheint es bei der Reanimation von Kindern außerhalb einer Klinik keinen Unterschied für das Überleben zu machen, ob die Wiederbelebungsmaßnahmen während des Transports in die Klinik stattfinden oder vor Ort ausgeführt werden. Jedoch gibt es dabei einige Einschränkungen und eine wichtige Ausnahme.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Häusliche Gewalt in der orthopädischen Notaufnahme oft nicht erkannt

28.05.2024 Häusliche Gewalt Nachrichten

In der Notaufnahme wird die Chance, Opfer von häuslicher Gewalt zu identifizieren, von Orthopäden und Orthopädinnen offenbar zu wenig genutzt. Darauf deuten die Ergebnisse einer Fragebogenstudie an der Sahlgrenska-Universität in Schweden hin.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.