Skip to main content
Erschienen in: Inflammation 4/2023

21.04.2023 | REVIEW

The Crucial Roles and Research Advances of cGAS-STING Pathway in Cutaneous Disorders

verfasst von: Cong Huang, Wenting Li, Xuanyao Ren, Mindan Tang, Kaoyuan Zhang, Fan Zhuo, Xia Dou, Bo Yu

Erschienen in: Inflammation | Ausgabe 4/2023

Einloggen, um Zugang zu erhalten

Abstract

The cGAS-STING signaling pathway senses the presence of cytosolic DNA, induces strong type I interferon responses, and enhances inflammatory cytokine production, placing it as an important axis in infection, autoimmunity, and tumor immunity. Recent studies have shown that the abnormalities and/or dysfunctions of cGAS-STING signaling are closely related to the pathogenesis of skin diseases and/or cancers. Additionally, a variety of new therapeutics targeting the cGAS-STING signaling are in development for the treatment of skin disorders. However, the precise molecular mechanisms of cGAS-STING-mediated cutaneous disorders have not been fully elucidated. In this review, we will summarize the regulatory roles and mechanisms of cGAS-STING signaling in skin disorders and recent progresses of cGAS-STING-related drugs as well as their potential clinical applications.
Literatur
1.
Zurück zum Zitat Hay, R.J., N.E. Johns, H.C. Williams, et al. 2014. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. The Journal of Investigative Dermatology 134 (6): 1527–1534.PubMedCrossRef Hay, R.J., N.E. Johns, H.C. Williams, et al. 2014. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. The Journal of Investigative Dermatology 134 (6): 1527–1534.PubMedCrossRef
2.
Zurück zum Zitat Karimkhani, C., R.P. Dellavalle, L.E. Coffeng, et al. 2017. Global skin disease morbidity and mortality: an update from the global burden of disease study 2013. JAMA Dermatology 153 (5): 406–412.PubMedPubMedCentralCrossRef Karimkhani, C., R.P. Dellavalle, L.E. Coffeng, et al. 2017. Global skin disease morbidity and mortality: an update from the global burden of disease study 2013. JAMA Dermatology 153 (5): 406–412.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Tan, T.Y., L. Zhang, and C.P. Lim. 2019. Intelligent skin cancer diagnosis using improved particle swarm optimization and deep learning models. Applied Soft Computing 84: 105725.CrossRef Tan, T.Y., L. Zhang, and C.P. Lim. 2019. Intelligent skin cancer diagnosis using improved particle swarm optimization and deep learning models. Applied Soft Computing 84: 105725.CrossRef
4.
Zurück zum Zitat Saguil, A., S. Kane, M. Mercado, et al. 2017. Herpes zoster and postherpetic neuralgia: prevention and management. American Family Physician 96 (10): 656–663.PubMed Saguil, A., S. Kane, M. Mercado, et al. 2017. Herpes zoster and postherpetic neuralgia: prevention and management. American Family Physician 96 (10): 656–663.PubMed
5.
6.
Zurück zum Zitat Fuxench, Z.C.C. 2020. Pain in atopic dermatitis: it’s time we addressed this symptom further. British Journal of Dermatology 182 (6): 1326–1327.PubMedCrossRef Fuxench, Z.C.C. 2020. Pain in atopic dermatitis: it’s time we addressed this symptom further. British Journal of Dermatology 182 (6): 1326–1327.PubMedCrossRef
7.
Zurück zum Zitat Maghfour, J., S. Ly, W. Haidari, et al. 2022. Treatment of keratosis pilaris and its variants: a systematic review. The Journal of Dermatological Treatment 33 (3): 1231–1242.PubMedCrossRef Maghfour, J., S. Ly, W. Haidari, et al. 2022. Treatment of keratosis pilaris and its variants: a systematic review. The Journal of Dermatological Treatment 33 (3): 1231–1242.PubMedCrossRef
8.
Zurück zum Zitat Arnold, M., D. Singh, M. Laversanne, et al. 2022. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatology 158 (5): 495–503.PubMedPubMedCentralCrossRef Arnold, M., D. Singh, M. Laversanne, et al. 2022. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatology 158 (5): 495–503.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Falahat, R., P. Perez-Villarroel, A.W. Mailloux, et al. 2019. STING signaling in melanoma cells shapes antigenicity and can promote antitumor T-cell activity. Cancer Immunology Research 7 (11): 1837–1848.PubMedPubMedCentralCrossRef Falahat, R., P. Perez-Villarroel, A.W. Mailloux, et al. 2019. STING signaling in melanoma cells shapes antigenicity and can promote antitumor T-cell activity. Cancer Immunology Research 7 (11): 1837–1848.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Feng, Z., C. Zang, L. Zhang, et al. 2022. STING activation promotes inflammatory response and delays skin wound healing in diabetic mice. Biochemical and Biophysical Research Communications 611: 126–131.PubMedCrossRef Feng, Z., C. Zang, L. Zhang, et al. 2022. STING activation promotes inflammatory response and delays skin wound healing in diabetic mice. Biochemical and Biophysical Research Communications 611: 126–131.PubMedCrossRef
11.
Zurück zum Zitat Pyclik, M., J. Durslewicz, J.A. Papinska, et al. 2023. STING agonist-induced skin inflammation is exacerbated with prior systemic innate immune activation. International Journal of Molecular Sciences 24 (4): 4128.PubMedPubMedCentralCrossRef Pyclik, M., J. Durslewicz, J.A. Papinska, et al. 2023. STING agonist-induced skin inflammation is exacerbated with prior systemic innate immune activation. International Journal of Molecular Sciences 24 (4): 4128.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Hong, Z., J. Mei, H. Guo, et al. 2022. Intervention of cGAS-STING signaling in sterile inflammatory diseases. Journal of Molecular Cell Biology 14 (2): mjac005.PubMedPubMedCentralCrossRef Hong, Z., J. Mei, H. Guo, et al. 2022. Intervention of cGAS-STING signaling in sterile inflammatory diseases. Journal of Molecular Cell Biology 14 (2): mjac005.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Chen, Q., L. Sun, and Z.J. Chen. 2016. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nature Immunology 17 (10): 1142–1149.PubMedCrossRef Chen, Q., L. Sun, and Z.J. Chen. 2016. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nature Immunology 17 (10): 1142–1149.PubMedCrossRef
14.
Zurück zum Zitat Skopelja-Gardner, S., J. An, and K.B. Elkon. 2022. Role of the cGAS-STING pathway in systemic and organ-specific diseases. Nature Reviews. Nephrology 18 (9): 558–572.PubMedPubMedCentralCrossRef Skopelja-Gardner, S., J. An, and K.B. Elkon. 2022. Role of the cGAS-STING pathway in systemic and organ-specific diseases. Nature Reviews. Nephrology 18 (9): 558–572.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Sun, L., J. Wu, F. Du, et al. 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339: 786–791.PubMedCrossRef Sun, L., J. Wu, F. Du, et al. 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339: 786–791.PubMedCrossRef
16.
Zurück zum Zitat Motwani, M., S. Pesiridis, and K.A. Fitzgerald. 2019. DNA Sensing by the cGAS-STING Pathway in Health and Disease. Nature Reviews Genetics 20 (11): 657–674.PubMedCrossRef Motwani, M., S. Pesiridis, and K.A. Fitzgerald. 2019. DNA Sensing by the cGAS-STING Pathway in Health and Disease. Nature Reviews Genetics 20 (11): 657–674.PubMedCrossRef
17.
Zurück zum Zitat Hopfner, K.P., and V. Hornung. 2020. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nature Reviews Molecular Cell Biology 21 (9): 501–521.PubMedCrossRef Hopfner, K.P., and V. Hornung. 2020. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nature Reviews Molecular Cell Biology 21 (9): 501–521.PubMedCrossRef
18.
Zurück zum Zitat Li, X.D., J. Wu, D. Gao, et al. 2013. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341 (6152): 1390–1394.PubMedCrossRef Li, X.D., J. Wu, D. Gao, et al. 2013. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341 (6152): 1390–1394.PubMedCrossRef
19.
Zurück zum Zitat Watson, R.O., S.L. Bell, D.A. MacDuff, et al. 2015. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type i interferons and activate autophagy. Cell Host & Microbe 17 (6): 811–819.CrossRef Watson, R.O., S.L. Bell, D.A. MacDuff, et al. 2015. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type i interferons and activate autophagy. Cell Host & Microbe 17 (6): 811–819.CrossRef
22.
Zurück zum Zitat Mackenzie, K.J., P. Carroll, C.A. Martin, et al. 2017. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548 (7668): 461–465.PubMedPubMedCentralCrossRef Mackenzie, K.J., P. Carroll, C.A. Martin, et al. 2017. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548 (7668): 461–465.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Zhang, X., J. Wu, F. Du, et al. 2014. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch like conformational changes in the activation loop. Cell Reports 6 (3): 421–430.PubMedCrossRef Zhang, X., J. Wu, F. Du, et al. 2014. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch like conformational changes in the activation loop. Cell Reports 6 (3): 421–430.PubMedCrossRef
24.
Zurück zum Zitat Li, X., C. Shu, G. Yi, et al. 2013. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 39 (6): 1019–1031.PubMedCrossRef Li, X., C. Shu, G. Yi, et al. 2013. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 39 (6): 1019–1031.PubMedCrossRef
25.
Zurück zum Zitat Zhang, X., H. Shi, J. Wu, et al. 2013. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Molecular Cell 51 (2): 226–235.PubMedCrossRef Zhang, X., H. Shi, J. Wu, et al. 2013. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Molecular Cell 51 (2): 226–235.PubMedCrossRef
26.
Zurück zum Zitat Wu, J., L. Sun, X. Chen, et al. 2013. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339 (6121): 826–830.PubMedCrossRef Wu, J., L. Sun, X. Chen, et al. 2013. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339 (6121): 826–830.PubMedCrossRef
27.
Zurück zum Zitat Ablasser, A., M. Goldeck, T. Cavlar, et al. 2013. cGAS produces a 2’-5’-linked cyclic dinucleotide second messenger that activates STING. Nature 498 (7454): 380–384.PubMedPubMedCentralCrossRef Ablasser, A., M. Goldeck, T. Cavlar, et al. 2013. cGAS produces a 2’-5’-linked cyclic dinucleotide second messenger that activates STING. Nature 498 (7454): 380–384.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Shang, G., C. Zhang, Z.J. Chen, et al. 2019. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature 567 (7748): 389–393.PubMedPubMedCentralCrossRef Shang, G., C. Zhang, Z.J. Chen, et al. 2019. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature 567 (7748): 389–393.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Tanaka, Y., and Z.J. Chen. 2012. STING specifies IRF3 phosphorylation by TBK1 in the Cytosolic DNA signaling pathway. Science Signaling 5 (214): ra20.PubMedPubMedCentralCrossRef Tanaka, Y., and Z.J. Chen. 2012. STING specifies IRF3 phosphorylation by TBK1 in the Cytosolic DNA signaling pathway. Science Signaling 5 (214): ra20.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Liu, S., X. Cai, J. Wu, et al. 2015. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347 (6227): aaa2630.PubMedCrossRef Liu, S., X. Cai, J. Wu, et al. 2015. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347 (6227): aaa2630.PubMedCrossRef
31.
Zurück zum Zitat Haag, S.M., M.F. Gulen, L. Reymond, et al. 2018. Targeting STING with covalent small-molecule inhibitors. Nature 559 (7713): 269–273.PubMedCrossRef Haag, S.M., M.F. Gulen, L. Reymond, et al. 2018. Targeting STING with covalent small-molecule inhibitors. Nature 559 (7713): 269–273.PubMedCrossRef
32.
33.
Zurück zum Zitat Abe, T., and G.N. Barber. 2014. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-kappaB activation through TBK1. Journal of Virology 88 (10): 5328–5341.PubMedPubMedCentralCrossRef Abe, T., and G.N. Barber. 2014. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-kappaB activation through TBK1. Journal of Virology 88 (10): 5328–5341.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Mizutani, Y., A. Kanbe, H. Ito, et al. 2020. Activation of STING signaling accelerates skin wound healing. Journal of Dermatological Science 97 (1): 21–29.PubMedCrossRef Mizutani, Y., A. Kanbe, H. Ito, et al. 2020. Activation of STING signaling accelerates skin wound healing. Journal of Dermatological Science 97 (1): 21–29.PubMedCrossRef
35.
Zurück zum Zitat Beck, M.A., H. Fischer, L.M. Grabner, et al. 2021. DNA hypomethylation leads to cGAS-induced autoinflammation in the epidermis. EMBO Journal 40 (22): e108234.PubMedPubMedCentralCrossRef Beck, M.A., H. Fischer, L.M. Grabner, et al. 2021. DNA hypomethylation leads to cGAS-induced autoinflammation in the epidermis. EMBO Journal 40 (22): e108234.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Wu, T., J. Gao, W. Liu, et al. 2021. NLRP3 protects mice from radiation-induced colon and skin damage via attenuating cGAS-STING signaling. Toxicology and Applied Pharmacology 418: 115495.PubMedCrossRef Wu, T., J. Gao, W. Liu, et al. 2021. NLRP3 protects mice from radiation-induced colon and skin damage via attenuating cGAS-STING signaling. Toxicology and Applied Pharmacology 418: 115495.PubMedCrossRef
37.
Zurück zum Zitat Zhou, M., X. Cheng, W. Zhu, et al. 2022. Activation of cGAS-STING pathway - A possible cause of myofiber atrophy/necrosis in dermatomyositis and immune-mediated necrotizing myopathy. Journal of Clinical Laboratory Analysis 36 (10): e24631.PubMedPubMedCentralCrossRef Zhou, M., X. Cheng, W. Zhu, et al. 2022. Activation of cGAS-STING pathway - A possible cause of myofiber atrophy/necrosis in dermatomyositis and immune-mediated necrotizing myopathy. Journal of Clinical Laboratory Analysis 36 (10): e24631.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Zhang, L.J. 2019. Type1 Interferons Potential initiating factors linking skin wounds with psoriasis pathogenesis. Frontiers in Immunology 10: 1440.PubMedPubMedCentralCrossRef Zhang, L.J. 2019. Type1 Interferons Potential initiating factors linking skin wounds with psoriasis pathogenesis. Frontiers in Immunology 10: 1440.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Pan, Y., Y. You, L. Sun, et al. 2021. The STING antagonist H-151 ameliorates psoriasis via suppression of STING/NF-kB-mediated inflammation. British Journal of Pharmacology 178 (24): 4907–4922.PubMedCrossRef Pan, Y., Y. You, L. Sun, et al. 2021. The STING antagonist H-151 ameliorates psoriasis via suppression of STING/NF-kB-mediated inflammation. British Journal of Pharmacology 178 (24): 4907–4922.PubMedCrossRef
40.
Zurück zum Zitat Yu, Y., X. Xue, W. Tang, et al. 2022. Cytosolic DNA-mediated STING-dependent inflammation contributes to the progression of psoriasis. The Journal of Investigative Dermatology 142 (3): 898–906.PubMedCrossRef Yu, Y., X. Xue, W. Tang, et al. 2022. Cytosolic DNA-mediated STING-dependent inflammation contributes to the progression of psoriasis. The Journal of Investigative Dermatology 142 (3): 898–906.PubMedCrossRef
41.
Zurück zum Zitat Li, X., Z. Zhang, Y. Yu, et al. 2022. Activation of the STING-IRF3 pathway involved in psoriasis with diabetes mellitus. Journal of Cellular and Molecular Medicine 26 (8): 2139–2151.CrossRef Li, X., Z. Zhang, Y. Yu, et al. 2022. Activation of the STING-IRF3 pathway involved in psoriasis with diabetes mellitus. Journal of Cellular and Molecular Medicine 26 (8): 2139–2151.CrossRef
42.
Zurück zum Zitat Nakamizo, S., G. Egawa, T. Honda, et al. 2015. Commensal bacteria and cutaneous immunity. Seminars in Immunopathology 37 (1): 73–80.PubMedCrossRef Nakamizo, S., G. Egawa, T. Honda, et al. 2015. Commensal bacteria and cutaneous immunity. Seminars in Immunopathology 37 (1): 73–80.PubMedCrossRef
43.
Zurück zum Zitat Bjerre, R.D., J. Bandier, L. Skov, et al. 2017. The role of the skin microbiome in atopic dermatitis: a systematic review. British Journal of Dermatology 177 (5): 1272–1278.PubMedCrossRef Bjerre, R.D., J. Bandier, L. Skov, et al. 2017. The role of the skin microbiome in atopic dermatitis: a systematic review. British Journal of Dermatology 177 (5): 1272–1278.PubMedCrossRef
44.
Zurück zum Zitat O’Neill, A.M., and R.L. Gallo. 2018. Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris. Microbiome 6 (1): 177.PubMedPubMedCentralCrossRef O’Neill, A.M., and R.L. Gallo. 2018. Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris. Microbiome 6 (1): 177.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Wang, S., R. Wang, Y. Song, et al. 2022. Dysbiosis of nail microbiome in patients with psoriasis. Experimental Dermatology 31 (5): 800–806.PubMedCrossRef Wang, S., R. Wang, Y. Song, et al. 2022. Dysbiosis of nail microbiome in patients with psoriasis. Experimental Dermatology 31 (5): 800–806.PubMedCrossRef
46.
Zurück zum Zitat Lima-Junior, D.S., S.R. Krishnamurthy, N. Bouladoux, et al. 2021. Endogenous retroviruses promote homeostatic and inflammatory responses to the microbiota. Cell 184 (14): 3794–3811.PubMedPubMedCentralCrossRef Lima-Junior, D.S., S.R. Krishnamurthy, N. Bouladoux, et al. 2021. Endogenous retroviruses promote homeostatic and inflammatory responses to the microbiota. Cell 184 (14): 3794–3811.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Skudalski, L., R. Waldman, P.E. Kerr, et al. 2022. Melanoma: an update on systemic therapies. JAMA Dermatology 86 (3): 515–524. Skudalski, L., R. Waldman, P.E. Kerr, et al. 2022. Melanoma: an update on systemic therapies. JAMA Dermatology 86 (3): 515–524.
48.
Zurück zum Zitat Xia, T., H. Konno, and G.N. Barber. 2016. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Research 76 (22): 6747–6759.PubMedCrossRef Xia, T., H. Konno, and G.N. Barber. 2016. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Research 76 (22): 6747–6759.PubMedCrossRef
49.
Zurück zum Zitat Falahat, R., A. Berglund, R.M. Putney, et al. 2021. Epigenetic reprogramming of tumor cell–intrinsic STING function sculpts antigenicity and T cell recognition of melanoma. Proceedings of the National Academy of Sciences 118 (15): e2013598118.CrossRef Falahat, R., A. Berglund, R.M. Putney, et al. 2021. Epigenetic reprogramming of tumor cell–intrinsic STING function sculpts antigenicity and T cell recognition of melanoma. Proceedings of the National Academy of Sciences 118 (15): e2013598118.CrossRef
50.
Zurück zum Zitat Xu, T., J. Dai, L. Tang, et al. 2022. EZH2 inhibitor enhances the STING agonist-induced antitumor immunity in melanoma. The Journal of Investigative Dermatology 142 (4): 1158–1170.PubMedCrossRef Xu, T., J. Dai, L. Tang, et al. 2022. EZH2 inhibitor enhances the STING agonist-induced antitumor immunity in melanoma. The Journal of Investigative Dermatology 142 (4): 1158–1170.PubMedCrossRef
51.
Zurück zum Zitat Woo, S.R., M.B. Fuertes, L. Corrales, et al. 2014. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41 (5): 830–842.PubMedPubMedCentralCrossRef Woo, S.R., M.B. Fuertes, L. Corrales, et al. 2014. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41 (5): 830–842.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Hu, M., M. Zhou, X. Bao, et al. 2021. ATM inhibition enhances cancer immunotherapy by promoting mtDNA leakage and cGAS/STING activation. The Journal of Clinical Investigation 131 (3): e139333.PubMedPubMedCentralCrossRef Hu, M., M. Zhou, X. Bao, et al. 2021. ATM inhibition enhances cancer immunotherapy by promoting mtDNA leakage and cGAS/STING activation. The Journal of Clinical Investigation 131 (3): e139333.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Shae, D., K.W. Becker, P. Christov, et al. 2019. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nature Nanotechnology 14 (3): 269–278.PubMedPubMedCentralCrossRef Shae, D., K.W. Becker, P. Christov, et al. 2019. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nature Nanotechnology 14 (3): 269–278.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Ma, Z., Q. Xiong, H. Xia, et al. 2021. Carboplatin activates the cGAS-STING pathway by upregulating the TREX-1 (three prime repair exonuclease 1) expression in human melanoma. Bioengineered 12 (1): 6448–6458.PubMedPubMedCentralCrossRef Ma, Z., Q. Xiong, H. Xia, et al. 2021. Carboplatin activates the cGAS-STING pathway by upregulating the TREX-1 (three prime repair exonuclease 1) expression in human melanoma. Bioengineered 12 (1): 6448–6458.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Wang, Z., and E. Celis. 2015. STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice. Cancer Immunology, Immunotherapy 64 (8): 1057–1066.PubMedCrossRef Wang, Z., and E. Celis. 2015. STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice. Cancer Immunology, Immunotherapy 64 (8): 1057–1066.PubMedCrossRef
56.
Zurück zum Zitat Nakamura, T., H. Miyabe, M. Hyodo, et al. 2015. Liposomes loaded with a sting pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma. Journal of Controlled Release 216: 149–157.PubMedCrossRef Nakamura, T., H. Miyabe, M. Hyodo, et al. 2015. Liposomes loaded with a sting pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma. Journal of Controlled Release 216: 149–157.PubMedCrossRef
57.
Zurück zum Zitat Long, G.V., D. Stroyakovskiy, H. Gogas, et al. 2014. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. New England Journal of Medicine 371 (20): 1877–1888.PubMedCrossRef Long, G.V., D. Stroyakovskiy, H. Gogas, et al. 2014. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. New England Journal of Medicine 371 (20): 1877–1888.PubMedCrossRef
58.
Zurück zum Zitat Dulgar, O., T. Kutuk, and Z. Eroglu. 2021. Mechanisms of resistance to BRAF-targeted melanoma therapies. American Journal of Clinical Dermatology 22 (1): 1–10.PubMedCrossRef Dulgar, O., T. Kutuk, and Z. Eroglu. 2021. Mechanisms of resistance to BRAF-targeted melanoma therapies. American Journal of Clinical Dermatology 22 (1): 1–10.PubMedCrossRef
59.
Zurück zum Zitat Yue, J., R. Vendramin, F. Liu, et al. 2020. Targeted chemotherapy overcomes drug resistance in melanoma. Genes & Development 34 (9–10): 637–649.CrossRef Yue, J., R. Vendramin, F. Liu, et al. 2020. Targeted chemotherapy overcomes drug resistance in melanoma. Genes & Development 34 (9–10): 637–649.CrossRef
60.
Zurück zum Zitat Cesi, G., G. Walbrecq, A. Zimmer, et al. 2017. ROS production induced by BRAF inhibitor treatment rewires metabolic processes affecting cell growth of melanoma cells. Molecular Cancer 16 (1): 102.PubMedPubMedCentralCrossRef Cesi, G., G. Walbrecq, A. Zimmer, et al. 2017. ROS production induced by BRAF inhibitor treatment rewires metabolic processes affecting cell growth of melanoma cells. Molecular Cancer 16 (1): 102.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Khamari, R., A. Trinh, P.E. Gabert, et al. 2018. Glucose metabolism and NRF2 coordinate the antioxidant response in melanoma resistant to MAPK inhibitors. Cell Death & Disease 9 (3): 325.CrossRef Khamari, R., A. Trinh, P.E. Gabert, et al. 2018. Glucose metabolism and NRF2 coordinate the antioxidant response in melanoma resistant to MAPK inhibitors. Cell Death & Disease 9 (3): 325.CrossRef
62.
Zurück zum Zitat Hos, N.J., R. Ganesan, S. Gutiérrez, et al. 2017. Type I interferon enhances necroptosis of Salmonella Typhimurium–infected macrophages by impairing antioxidative stress responses. Journal of Cell Biology 216 (12): 4107–4121.PubMedPubMedCentralCrossRef Hos, N.J., R. Ganesan, S. Gutiérrez, et al. 2017. Type I interferon enhances necroptosis of Salmonella Typhimurium–infected macrophages by impairing antioxidative stress responses. Journal of Cell Biology 216 (12): 4107–4121.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Ramanjulu, J.M., G.S. Pesiridis, J. Yang, et al. 2018. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 564 (7736): 439–443.PubMedCrossRef Ramanjulu, J.M., G.S. Pesiridis, J. Yang, et al. 2018. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 564 (7736): 439–443.PubMedCrossRef
64.
Zurück zum Zitat Chipurupalli, S., R. Ganesan, S.P. Dhanabal, et al. 2020. Pharmacological STING activation is a potential alternative to overcome drug-resistance in melanoma. Frontiers in Oncology 10: 758.PubMedPubMedCentralCrossRef Chipurupalli, S., R. Ganesan, S.P. Dhanabal, et al. 2020. Pharmacological STING activation is a potential alternative to overcome drug-resistance in melanoma. Frontiers in Oncology 10: 758.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Larkin, J., V. Chiarion-Sileni, R. Gonzalez, et al. 2019. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. New England Journal of Medicine 381 (16): 1535–1546.PubMedCrossRef Larkin, J., V. Chiarion-Sileni, R. Gonzalez, et al. 2019. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. New England Journal of Medicine 381 (16): 1535–1546.PubMedCrossRef
67.
Zurück zum Zitat Nguyen, T.T., L. Ramsay, M. Ahanfeshar-Adams, et al. 2021. Mutations in the IFNγ-JAK-STAT pathway causing resistance to immune checkpoint inhibitors in melanoma increase sensitivity to oncolytic virus treatment. Clinical Cancer Research 27 (12): 3432–3442.PubMedCrossRef Nguyen, T.T., L. Ramsay, M. Ahanfeshar-Adams, et al. 2021. Mutations in the IFNγ-JAK-STAT pathway causing resistance to immune checkpoint inhibitors in melanoma increase sensitivity to oncolytic virus treatment. Clinical Cancer Research 27 (12): 3432–3442.PubMedCrossRef
68.
Zurück zum Zitat Srour, N., O.D. Villarreal, S. Hardikar, et al. 2022. PRMT7 ablation stimulates anti-tumor immunity and sensitizes melanoma to immune checkpoint blockade. Cell Reports 38 (13): 110582.PubMedCrossRef Srour, N., O.D. Villarreal, S. Hardikar, et al. 2022. PRMT7 ablation stimulates anti-tumor immunity and sensitizes melanoma to immune checkpoint blockade. Cell Reports 38 (13): 110582.PubMedCrossRef
69.
Zurück zum Zitat Yum, S., M. Li, A.E. Frankel, et al. 2019. Roles of the cGAS-STING pathway in cancer immunosurveillance and immunotherapy. Annual Review of Cancer Biology 3: 323–344.CrossRef Yum, S., M. Li, A.E. Frankel, et al. 2019. Roles of the cGAS-STING pathway in cancer immunosurveillance and immunotherapy. Annual Review of Cancer Biology 3: 323–344.CrossRef
70.
Zurück zum Zitat Sato, S., Y. Sawada, and M. Nakamura. 2021. STING signaling and skin cancers. Cancers (Basel) 13 (22): 5603.PubMedCrossRef Sato, S., Y. Sawada, and M. Nakamura. 2021. STING signaling and skin cancers. Cancers (Basel) 13 (22): 5603.PubMedCrossRef
71.
Zurück zum Zitat Miyabe, H., M. Hyodo, T. Nakamura, et al. 2014. A new adjuvant delivery system ‘cyclic di-GMP/YSK05 liposome’ for cancer immunotherapy. Journal of Controlled Release 184: 20–27.PubMedCrossRef Miyabe, H., M. Hyodo, T. Nakamura, et al. 2014. A new adjuvant delivery system ‘cyclic di-GMP/YSK05 liposome’ for cancer immunotherapy. Journal of Controlled Release 184: 20–27.PubMedCrossRef
72.
Zurück zum Zitat Nakamura, T., T. Sato, R. Endo, et al. 2021. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation. Journal for Immunotherapy of Cancer 9 (7): e002852.PubMedPubMedCentralCrossRef Nakamura, T., T. Sato, R. Endo, et al. 2021. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation. Journal for Immunotherapy of Cancer 9 (7): e002852.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Lama, L., C. Adura, W. Xie, et al. 2019. Development of human cGAS-specific small molecule inhibitors for repression of dsDNA triggered interferon expression. Nature Communications 10 (1): 2261.PubMedPubMedCentralCrossRef Lama, L., C. Adura, W. Xie, et al. 2019. Development of human cGAS-specific small molecule inhibitors for repression of dsDNA triggered interferon expression. Nature Communications 10 (1): 2261.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Vincent, J., C. Adura, P. Gao, et al. 2017. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice. Nature Communications 8 (1): 750.PubMedPubMedCentralCrossRef Vincent, J., C. Adura, P. Gao, et al. 2017. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice. Nature Communications 8 (1): 750.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Wiser, C., B. Kim, J. Vincent, et al. 2020. Small molecule inhibition of human cGAS reduces total cGAMP output and cytokine expression in cells. Science and Reports 10 (1): 7604.CrossRef Wiser, C., B. Kim, J. Vincent, et al. 2020. Small molecule inhibition of human cGAS reduces total cGAMP output and cytokine expression in cells. Science and Reports 10 (1): 7604.CrossRef
76.
Zurück zum Zitat Tan, J., B. Wu, T. Chen, et al. 2021. Synthesis and pharmacological evaluation of tetrahydro-γ-carboline derivatives as potent anti-inflammatory agents targeting cyclic GMP-AMP synthase. Journal of Medicinal Chemistry 64 (11): 7667–7690.PubMedCrossRef Tan, J., B. Wu, T. Chen, et al. 2021. Synthesis and pharmacological evaluation of tetrahydro-γ-carboline derivatives as potent anti-inflammatory agents targeting cyclic GMP-AMP synthase. Journal of Medicinal Chemistry 64 (11): 7667–7690.PubMedCrossRef
77.
Zurück zum Zitat Platt, B., E. Belarski, J. Manaloor, et al. 2020. Comparison of risk of recrudescent fever in children with Kawasaki disease treated with intravenous immunoglobulin and low-dose vs high-dose aspirin. JAMA Network Open 3 (1): e1918565.PubMedPubMedCentralCrossRef Platt, B., E. Belarski, J. Manaloor, et al. 2020. Comparison of risk of recrudescent fever in children with Kawasaki disease treated with intravenous immunoglobulin and low-dose vs high-dose aspirin. JAMA Network Open 3 (1): e1918565.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat D’Orazio, J.A. 2021. Aspirin’s protective effects highlight the role of inflammation in UV-induced skin damage and carcinogenesis. The Journal of Investigative Dermatology 141 (1): 10–11.PubMedCrossRef D’Orazio, J.A. 2021. Aspirin’s protective effects highlight the role of inflammation in UV-induced skin damage and carcinogenesis. The Journal of Investigative Dermatology 141 (1): 10–11.PubMedCrossRef
79.
80.
Zurück zum Zitat Opoku-Temeng, C., and H.O. Sintim. 2016. Potent inhibition of cyclic diadenylate monophosphate cyclase by the antiparasitic drug, suramin. Chemical Communications (Cambridge, England) 52 (19): 3754–3757.PubMedCrossRef Opoku-Temeng, C., and H.O. Sintim. 2016. Potent inhibition of cyclic diadenylate monophosphate cyclase by the antiparasitic drug, suramin. Chemical Communications (Cambridge, England) 52 (19): 3754–3757.PubMedCrossRef
81.
Zurück zum Zitat Wang, M., M.A. Sooreshjani, C. Mikek, et al. 2018. Suramin potently inhibits cGAMP synthase, cGAS, in THP1 cells to modulate IFN-β levels. Future Medicinal Chemistry 10 (11): 1301–1317.PubMedCrossRef Wang, M., M.A. Sooreshjani, C. Mikek, et al. 2018. Suramin potently inhibits cGAMP synthase, cGAS, in THP1 cells to modulate IFN-β levels. Future Medicinal Chemistry 10 (11): 1301–1317.PubMedCrossRef
82.
Zurück zum Zitat Steinhagen, F., T. Zillinger, K. Peukert, et al. 2018. Suppressive oligodeoxynucleotides containing TTAGGG motifs Inhibit cGAS activation in human monocytes. European Journal of Immunology 48 (4): 605–611.PubMedCrossRef Steinhagen, F., T. Zillinger, K. Peukert, et al. 2018. Suppressive oligodeoxynucleotides containing TTAGGG motifs Inhibit cGAS activation in human monocytes. European Journal of Immunology 48 (4): 605–611.PubMedCrossRef
83.
Zurück zum Zitat Li, Q., Y. Cao, C. Dang, et al. 2020. Inhibition of double-strand DNA-sensing cGAS ameliorates brain injury after ischemic stroke. EMBO Molecular Medicine 12 (4): e11002.PubMedPubMedCentralCrossRef Li, Q., Y. Cao, C. Dang, et al. 2020. Inhibition of double-strand DNA-sensing cGAS ameliorates brain injury after ischemic stroke. EMBO Molecular Medicine 12 (4): e11002.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Chu, L., C. Li, Y. Li, et al. 2021. Perillaldehyde inhibition of cGAS reduces dsDNA-induced interferon response. Frontiers in Immunology 12: 655637.PubMedPubMedCentralCrossRef Chu, L., C. Li, Y. Li, et al. 2021. Perillaldehyde inhibition of cGAS reduces dsDNA-induced interferon response. Frontiers in Immunology 12: 655637.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Liu, Z.S., H. Cai, W. Xue, et al. 2019. G3BP1 promotes DNA binding and activation of cGAS. Nature Immunology 20 (1): 18–28.PubMedCrossRef Liu, Z.S., H. Cai, W. Xue, et al. 2019. G3BP1 promotes DNA binding and activation of cGAS. Nature Immunology 20 (1): 18–28.PubMedCrossRef
86.
Zurück zum Zitat Cai, H., X. Liu, F. Zhang, et al. 2021. G3BP1 inhibition alleviates intracellular nucleic acid-induced autoimmune responses. The Journal of Immunology 206 (10): 2453–2467.PubMedCrossRef Cai, H., X. Liu, F. Zhang, et al. 2021. G3BP1 inhibition alleviates intracellular nucleic acid-induced autoimmune responses. The Journal of Immunology 206 (10): 2453–2467.PubMedCrossRef
87.
Zurück zum Zitat Valentin, R., C. Wong, A.S. Alharbi, et al. 2021. Sequence-dependent inhibition of cGAS and TLR9 DNA sensing by 2’-O-methyl gapmer oligonucleotides. Nucleic Acids Research 49 (11): 6082–6099.PubMedPubMedCentralCrossRef Valentin, R., C. Wong, A.S. Alharbi, et al. 2021. Sequence-dependent inhibition of cGAS and TLR9 DNA sensing by 2’-O-methyl gapmer oligonucleotides. Nucleic Acids Research 49 (11): 6082–6099.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Cuddy, S.R., A.R. Schinlever, S. Dochnal, et al. 2020. Neuronal hyperexcitability is a DLK-dependent trigger of herpes simplex virus reactivation that can be induced by IL-1. eLife 9: e58037.PubMedPubMedCentralCrossRef Cuddy, S.R., A.R. Schinlever, S. Dochnal, et al. 2020. Neuronal hyperexcitability is a DLK-dependent trigger of herpes simplex virus reactivation that can be induced by IL-1. eLife 9: e58037.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Guellil, M., L. van Dorp, S.A. Inskip, et al. 2022. Ancient herpes simplex 1 genomes reveal recent viral structure in Eurasia. Science Advances 8 (30): eabo4435.PubMedPubMedCentralCrossRef Guellil, M., L. van Dorp, S.A. Inskip, et al. 2022. Ancient herpes simplex 1 genomes reveal recent viral structure in Eurasia. Science Advances 8 (30): eabo4435.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Cerón, S., B.J. North, S.A. Taylor, et al. 2019. The STING agonist 5,6-dimethylxanthenone-4-acetic acid (DMXAA) stimulates an antiviral state and protects mice against herpes simplex virus. Virology 529: 23–28.PubMedCrossRef Cerón, S., B.J. North, S.A. Taylor, et al. 2019. The STING agonist 5,6-dimethylxanthenone-4-acetic acid (DMXAA) stimulates an antiviral state and protects mice against herpes simplex virus. Virology 529: 23–28.PubMedCrossRef
91.
Zurück zum Zitat Zhu, Q., H. Hu, H. Liu, et al. 2020. A synthetic STING agonist inhibits the replication of human parainfluenza virus 3 and rhinovirus 16 through distinct mechanisms. Antiviral Research 183: 104933.PubMedPubMedCentralCrossRef Zhu, Q., H. Hu, H. Liu, et al. 2020. A synthetic STING agonist inhibits the replication of human parainfluenza virus 3 and rhinovirus 16 through distinct mechanisms. Antiviral Research 183: 104933.PubMedPubMedCentralCrossRef
92.
93.
Zurück zum Zitat Demaria, O., A. De Gassart, S. Coso, et al. 2015. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proceedings of the National Academy of Sciences 112 (50): 15408–15413.CrossRef Demaria, O., A. De Gassart, S. Coso, et al. 2015. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proceedings of the National Academy of Sciences 112 (50): 15408–15413.CrossRef
94.
Zurück zum Zitat Yang, H., W.S. Lee, S.J. Kong, et al. 2019. STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade. The Journal of Clinical Investigation 129 (10): 4350–4364.PubMedPubMedCentralCrossRef Yang, H., W.S. Lee, S.J. Kong, et al. 2019. STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade. The Journal of Clinical Investigation 129 (10): 4350–4364.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Wang, H., S. Hu, X. Chen, et al. 2017. cGAS is essential for the antitumor effect of immune checkpoint blockade. Proceedings of the National Academy of Sciences 114 (7): 1637–1642.CrossRef Wang, H., S. Hu, X. Chen, et al. 2017. cGAS is essential for the antitumor effect of immune checkpoint blockade. Proceedings of the National Academy of Sciences 114 (7): 1637–1642.CrossRef
97.
Zurück zum Zitat Vonderhaar, E.P., N.S. Barnekow, D. McAllister, et al. 2021. STING activated tumor-intrinsic type I interferon signaling promotes CXCR3 dependent antitumor immunity in pancreatic cancer. Cellular and Molecular Gastroenterology and Hepatology 12 (1): 41–58.PubMedPubMedCentralCrossRef Vonderhaar, E.P., N.S. Barnekow, D. McAllister, et al. 2021. STING activated tumor-intrinsic type I interferon signaling promotes CXCR3 dependent antitumor immunity in pancreatic cancer. Cellular and Molecular Gastroenterology and Hepatology 12 (1): 41–58.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Berger, G., E.H. Knelson, J.L. Jimenez-Macias, et al. 2022. STING activation promotes robust immune response and NK cell–mediated tumor regression in glioblastoma models. Proceedings of the National Academy of Sciences 119 (28): e2111003119.CrossRef Berger, G., E.H. Knelson, J.L. Jimenez-Macias, et al. 2022. STING activation promotes robust immune response and NK cell–mediated tumor regression in glioblastoma models. Proceedings of the National Academy of Sciences 119 (28): e2111003119.CrossRef
99.
Zurück zum Zitat Meric-Bernstam, F., R.F. Sweis, F.S. Hodi, et al. 2022. Phase I dose-escalation trial of MIW815 (ADU-S100), an intratumoral STING agonist, in patients with advanced/metastatic solid tumors or lymphomas. Clinical Cancer Research 28 (4): 677–688.PubMedCrossRef Meric-Bernstam, F., R.F. Sweis, F.S. Hodi, et al. 2022. Phase I dose-escalation trial of MIW815 (ADU-S100), an intratumoral STING agonist, in patients with advanced/metastatic solid tumors or lymphomas. Clinical Cancer Research 28 (4): 677–688.PubMedCrossRef
100.
Zurück zum Zitat Chelvanambi, M., R.J. Fecek, J.L. Taylor, et al. 2021. STING agonist-based treatment promotes vascular normalization and tertiary lymphoid structure formation in the therapeutic melanoma microenvironment. Journal for Immunotherapy of Cancer 9 (2): e001906.PubMedPubMedCentralCrossRef Chelvanambi, M., R.J. Fecek, J.L. Taylor, et al. 2021. STING agonist-based treatment promotes vascular normalization and tertiary lymphoid structure formation in the therapeutic melanoma microenvironment. Journal for Immunotherapy of Cancer 9 (2): e001906.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Ager, C.R., A. Boda, K. Rajapakshe, et al. 2021. High potency STING agonists engage unique myeloid pathways to reverse pancreatic cancer immune privilege. Journal for Immunotherapy of Cancer 9 (8): e003246.PubMedPubMedCentralCrossRef Ager, C.R., A. Boda, K. Rajapakshe, et al. 2021. High potency STING agonists engage unique myeloid pathways to reverse pancreatic cancer immune privilege. Journal for Immunotherapy of Cancer 9 (8): e003246.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Ager, C.R., H. Zhang, Z. Wei, et al. 2019. Discovery of IACS-8803 and IACS-8779, potent agonists of stimulator of interferon genes (STING) with robust systemic antitumor efficacy. Bioorganic & Medicinal Chemistry Letters 29 (20): 126640.CrossRef Ager, C.R., H. Zhang, Z. Wei, et al. 2019. Discovery of IACS-8803 and IACS-8779, potent agonists of stimulator of interferon genes (STING) with robust systemic antitumor efficacy. Bioorganic & Medicinal Chemistry Letters 29 (20): 126640.CrossRef
103.
104.
Zurück zum Zitat Jing, W., D. McAllister, E.P. Vonderhaar, et al. 2019. STING agonist inflames the pancreatic cancer immune microenvironment and reduces tumor burden in mouse models. Journal for Immunotherapy of Cancer 7 (1): 115.PubMedPubMedCentralCrossRef Jing, W., D. McAllister, E.P. Vonderhaar, et al. 2019. STING agonist inflames the pancreatic cancer immune microenvironment and reduces tumor burden in mouse models. Journal for Immunotherapy of Cancer 7 (1): 115.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Corrales, L., L.H. Glickman, S.M. McWhirter, et al. 2015. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Reports 11 (7): 1018–1030.PubMedCrossRef Corrales, L., L.H. Glickman, S.M. McWhirter, et al. 2015. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Reports 11 (7): 1018–1030.PubMedCrossRef
106.
Zurück zum Zitat Pan, B.S., S.A. Perera, J.A. Piesvaux, et al. 2020. An orally available non-nucleotide STING agonist with antitumor activity. Science 369 (6506): eaba6098.PubMedCrossRef Pan, B.S., S.A. Perera, J.A. Piesvaux, et al. 2020. An orally available non-nucleotide STING agonist with antitumor activity. Science 369 (6506): eaba6098.PubMedCrossRef
107.
Zurück zum Zitat Tian, J., D. Zhang, V. Kurbatov, et al. 2021. 5-Fluorouracil efficacy requires anti-tumor immunity triggered by cancer-cell-intrinsic STING. EMBO Journal 40 (7): e106065.PubMedPubMedCentralCrossRef Tian, J., D. Zhang, V. Kurbatov, et al. 2021. 5-Fluorouracil efficacy requires anti-tumor immunity triggered by cancer-cell-intrinsic STING. EMBO Journal 40 (7): e106065.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat McAndrews, K.M., S.P.Y. Che, V.S. LeBleu, et al. 2021. Effective delivery of STING agonist using exosomes suppresses tumor growth and enhances antitumor immunity. Journal of Biological Chemistry 296: 100523.PubMedPubMedCentralCrossRef McAndrews, K.M., S.P.Y. Che, V.S. LeBleu, et al. 2021. Effective delivery of STING agonist using exosomes suppresses tumor growth and enhances antitumor immunity. Journal of Biological Chemistry 296: 100523.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Li, S., M. Luo, Z. Wang, et al. 2021. Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nature Biomedical Engineering 5 (5): 455–466.PubMedPubMedCentralCrossRef Li, S., M. Luo, Z. Wang, et al. 2021. Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nature Biomedical Engineering 5 (5): 455–466.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Zhou, Q., Y. Zhou, T. Li, et al. 2021. Nanoparticle-mediated STING agonist delivery for enhanced cancer immunotherapy. Macromolecular Bioscience 21 (8): e2100133.PubMedCrossRef Zhou, Q., Y. Zhou, T. Li, et al. 2021. Nanoparticle-mediated STING agonist delivery for enhanced cancer immunotherapy. Macromolecular Bioscience 21 (8): e2100133.PubMedCrossRef
111.
Zurück zum Zitat Cheng, N., R. Watkins-Schulz, R.D. Junkins, et al. 2018. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1–insensitive models of triple-negative breast cancer. JCI Insight 3 (22): e120638.PubMedPubMedCentralCrossRef Cheng, N., R. Watkins-Schulz, R.D. Junkins, et al. 2018. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1–insensitive models of triple-negative breast cancer. JCI Insight 3 (22): e120638.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Li, K., Y. Ye, L. Liu, et al. 2021. The lipid platform increases the activity of STING agonists to synergize checkpoint blockade therapy against melanoma. Biomaterials Science 9 (3): 765–773.PubMedCrossRef Li, K., Y. Ye, L. Liu, et al. 2021. The lipid platform increases the activity of STING agonists to synergize checkpoint blockade therapy against melanoma. Biomaterials Science 9 (3): 765–773.PubMedCrossRef
113.
Zurück zum Zitat Zheng, H., B. Guo, X. Qiu, et al. 2022. Polymersome-mediated cytosolic delivery of cyclic dinucleotide STING agonist enhances tumor immunotherapy. Bioactive Materials 16: 1–11.PubMedPubMedCentralCrossRef Zheng, H., B. Guo, X. Qiu, et al. 2022. Polymersome-mediated cytosolic delivery of cyclic dinucleotide STING agonist enhances tumor immunotherapy. Bioactive Materials 16: 1–11.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Dane, E.L., A. Belessiotis-Richards, C. Backlund, et al. 2022. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer Immunity. Nature Materials 21 (6): 710–720.PubMedPubMedCentralCrossRef Dane, E.L., A. Belessiotis-Richards, C. Backlund, et al. 2022. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer Immunity. Nature Materials 21 (6): 710–720.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Zhang, K., C. Qi, and K. Cai. 2022. Manganese-based tumor immunotherapy. Advanced Materials, e2205409. Zhang, K., C. Qi, and K. Cai. 2022. Manganese-based tumor immunotherapy. Advanced Materials, e2205409.
116.
Zurück zum Zitat Wang, C., Y. Guan, M. Lv, et al. 2018. Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity 48 (4): 675–687.PubMedCrossRef Wang, C., Y. Guan, M. Lv, et al. 2018. Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity 48 (4): 675–687.PubMedCrossRef
117.
Zurück zum Zitat Hou, L., C. Tian, Y. Yan, et al. 2020. Manganese-based nanoactivator optimizes cancer immunotherapy via enhancing innate immunity. ACS Nano 14 (4): 3927–3940.PubMedCrossRef Hou, L., C. Tian, Y. Yan, et al. 2020. Manganese-based nanoactivator optimizes cancer immunotherapy via enhancing innate immunity. ACS Nano 14 (4): 3927–3940.PubMedCrossRef
118.
Zurück zum Zitat Chen, C., Y. Tong, Y. Zheng, et al. 2021. Cytosolic delivery of thiolated Mn-cGAMP nanovaccine to enhance the antitumor immune responses. Small (Weinheim an der Bergstrasse, Germany) 17 (17): e2006970.PubMedCrossRef Chen, C., Y. Tong, Y. Zheng, et al. 2021. Cytosolic delivery of thiolated Mn-cGAMP nanovaccine to enhance the antitumor immune responses. Small (Weinheim an der Bergstrasse, Germany) 17 (17): e2006970.PubMedCrossRef
119.
Zurück zum Zitat Gao, M., Y. Xie, K. Lei, et al. 2021. A manganese phosphate nanocluster activates the cGAS-STING pathway for enhanced cancer immunotherapy. Advanced Therapeutics 4 (8): 2100065.CrossRef Gao, M., Y. Xie, K. Lei, et al. 2021. A manganese phosphate nanocluster activates the cGAS-STING pathway for enhanced cancer immunotherapy. Advanced Therapeutics 4 (8): 2100065.CrossRef
120.
Zurück zum Zitat Lv, M., M. Chen, R. Zhang, et al. 2020. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Research 30 (11): 966–979.PubMedPubMedCentralCrossRef Lv, M., M. Chen, R. Zhang, et al. 2020. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Research 30 (11): 966–979.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Decout, A., J.D. Katz, S. Venkatraman, et al. 2021. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nature Reviews Immunology 21 (9): 548–569.PubMedPubMedCentralCrossRef Decout, A., J.D. Katz, S. Venkatraman, et al. 2021. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nature Reviews Immunology 21 (9): 548–569.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Gong, W., L. Lu, Y. Zhou, et al. 2021. The novel STING antagonist H151 ameliorates cisplatin-induced acute kidney injury and mitochondrial dysfunction. American Journal of Physiology-Renal Physiology 320 (4): 608–616.CrossRef Gong, W., L. Lu, Y. Zhou, et al. 2021. The novel STING antagonist H151 ameliorates cisplatin-induced acute kidney injury and mitochondrial dysfunction. American Journal of Physiology-Renal Physiology 320 (4): 608–616.CrossRef
123.
Zurück zum Zitat Domizio, J.D., M.F. Gulen, F. Saidoune, et al. 2022. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature 603 (7899): 145–151.PubMedPubMedCentralCrossRef Domizio, J.D., M.F. Gulen, F. Saidoune, et al. 2022. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature 603 (7899): 145–151.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Li, S., Z. Hong, Z. Wang, et al. 2018. The cyclopeptide astin C specifically inhibits the innate immune CDN sensor STING. Cell Reports 25 (12): 3405–3421.PubMedCrossRef Li, S., Z. Hong, Z. Wang, et al. 2018. The cyclopeptide astin C specifically inhibits the innate immune CDN sensor STING. Cell Reports 25 (12): 3405–3421.PubMedCrossRef
125.
Zurück zum Zitat Prabakaran, T., A. Troldborg, S. Kumpunya, et al. 2021. A STING antagonist modulating the interaction with STIM1 blocks ER-to-Golgi trafficking and inhibits lupus pathology. eBioMedicine 66: 103314.PubMedPubMedCentralCrossRef Prabakaran, T., A. Troldborg, S. Kumpunya, et al. 2021. A STING antagonist modulating the interaction with STIM1 blocks ER-to-Golgi trafficking and inhibits lupus pathology. eBioMedicine 66: 103314.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Hong, Z., J. Mei, C. Li, et al. 2021. STING inhibitors target the cyclic dinucleotide binding pocket. Proceedings of the National Academy of Sciences 118 (24): e2105465118.CrossRef Hong, Z., J. Mei, C. Li, et al. 2021. STING inhibitors target the cyclic dinucleotide binding pocket. Proceedings of the National Academy of Sciences 118 (24): e2105465118.CrossRef
127.
Zurück zum Zitat Siu, T., M.D. Altman, G.A. Baltus, et al. 2018. Discovery of a novel cGAMP competitive ligand of the inactive form of STING. ACS Medicinal Chemistry Letters 10 (1): 92–97.PubMedPubMedCentralCrossRef Siu, T., M.D. Altman, G.A. Baltus, et al. 2018. Discovery of a novel cGAMP competitive ligand of the inactive form of STING. ACS Medicinal Chemistry Letters 10 (1): 92–97.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Harabuchi, S., A. Kosaka, Y. Yajima, et al. 2020. Intratumoral STING activations overcome negative impact of cisplatin on antitumor immunity by inflaming tumor microenvironment in squamous cell carcinoma. Biochemical and Biophysical Research Communications 522 (2): 408–414.PubMedCrossRef Harabuchi, S., A. Kosaka, Y. Yajima, et al. 2020. Intratumoral STING activations overcome negative impact of cisplatin on antitumor immunity by inflaming tumor microenvironment in squamous cell carcinoma. Biochemical and Biophysical Research Communications 522 (2): 408–414.PubMedCrossRef
129.
Zurück zum Zitat Hayman, T.J., M. Baro, T. MacNeil, et al. 2021. STING enhances cell death through regulation of reactive oxygen species and DNA damage. Nature Communications 12 (1): 2327.PubMedPubMedCentralCrossRef Hayman, T.J., M. Baro, T. MacNeil, et al. 2021. STING enhances cell death through regulation of reactive oxygen species and DNA damage. Nature Communications 12 (1): 2327.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Krump, N.A., R. Wang, W. Liu, et al. 2021. Merkel cell polyomavirus infection induces an antiviral innate immune response in human dermal fibroblasts. Journal of Virology 95 (13): e0221120.PubMedCrossRef Krump, N.A., R. Wang, W. Liu, et al. 2021. Merkel cell polyomavirus infection induces an antiviral innate immune response in human dermal fibroblasts. Journal of Virology 95 (13): e0221120.PubMedCrossRef
131.
Zurück zum Zitat Liu, W., G.B. Kim, N.A. Krump, et al. 2020. Selective reactivation of STING signaling to target Merkel cell carcinoma. Proceedings of the National Academy of Sciences 117 (24): 13730–13739.CrossRef Liu, W., G.B. Kim, N.A. Krump, et al. 2020. Selective reactivation of STING signaling to target Merkel cell carcinoma. Proceedings of the National Academy of Sciences 117 (24): 13730–13739.CrossRef
Metadaten
Titel
The Crucial Roles and Research Advances of cGAS-STING Pathway in Cutaneous Disorders
verfasst von
Cong Huang
Wenting Li
Xuanyao Ren
Mindan Tang
Kaoyuan Zhang
Fan Zhuo
Xia Dou
Bo Yu
Publikationsdatum
21.04.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01812-7

Weitere Artikel der Ausgabe 4/2023

Inflammation 4/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.