Skip to main content
Erschienen in: Inflammation 2/2024

08.12.2023 | RESEARCH

Single-Cell RNA Sequencing Reveals RAC1 Involvement in Macrophages Efferocytosis in Diabetic Kidney Disease

verfasst von: Yi Song, Yifan Liu, Feng Guo, Lin Zhao, Guijun Qin

Erschienen in: Inflammation | Ausgabe 2/2024

Einloggen, um Zugang zu erhalten

Abstract

Macrophage-mediated inflammation plays a significant role in the development and progression of diabetic kidney disease (DKD). Studies have suggested that impaired macrophage efferocytosis aggravates the inflammatory response. However, its contribution to DKD progression remains unknown. Using single-cell RNA sequencing (scRNA-seq) data obtained from the GSE131882, GSE195460, GSE151302, GSE195460, and GSE131685 datasets, we successfully clustered 13 cell types. Through analysis of the ligand-receptor network, it was discovered that macrophages interact with other cells. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that macrophages exhibit a heightened presence of phagocytosis signaling. We discovered that RAC1 was closely related to macrophage efferocytosis through a Venn diagram and protein-protein interaction (PPI) analysis, which predicted the correlation with the clinical features of DKD using the NephroseqV5 tool. Furthermore, we verified that RAC1 exhibited decreased expression in macrophages cultured with lipopolysaccharide (LPS) and high glucose. Nevertheless, the overexpression of RAC1 promoted macrophage efferocytosis and inhibited the inflammatory response. In summary, our study focused on examining the presence and importance of efferocytosis-related molecules in DKD macrophages. Through a comprehensive analysis using scRNA-seq, we discovered that RAC1 plays a crucial role as an efferocytosis molecule in DKD. These findings enhance our current knowledge of the molecular mechanisms involved in the development of DKD and aid the exploration of new treatments.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Jung, C.-Y., and T.-H. Yoo. 2022. Pathophysiologic mechanisms and potential biomarkers in diabetic kidney disease. Diabetes and Metabolism Journal 46: 181–197.CrossRefPubMedPubMedCentral Jung, C.-Y., and T.-H. Yoo. 2022. Pathophysiologic mechanisms and potential biomarkers in diabetic kidney disease. Diabetes and Metabolism Journal 46: 181–197.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Hu, Q., Y. Chen, X. Deng, Y. Li, X. Ma, J. Zeng, and Y. Zhao. 2023. Diabetic nephropathy: Focusing on pathological signals, clinical treatment, and dietary regulation. Biomedicine & Pharmacotherapy 159: 114252.CrossRef Hu, Q., Y. Chen, X. Deng, Y. Li, X. Ma, J. Zeng, and Y. Zhao. 2023. Diabetic nephropathy: Focusing on pathological signals, clinical treatment, and dietary regulation. Biomedicine & Pharmacotherapy 159: 114252.CrossRef
3.
Zurück zum Zitat Liu, Y., A. Uruno, R. Saito, N. Matsukawa, E. Hishinuma, D. Saigusa, H. Liu, and M. Yamamoto. 2022. Nrf2 deficiency deteriorates diabetic kidney disease in Akita model mice. Redox Biology 58: 102525.CrossRefPubMedPubMedCentral Liu, Y., A. Uruno, R. Saito, N. Matsukawa, E. Hishinuma, D. Saigusa, H. Liu, and M. Yamamoto. 2022. Nrf2 deficiency deteriorates diabetic kidney disease in Akita model mice. Redox Biology 58: 102525.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Boada-Romero, E., J. Martinez, B.L. Heckmann, and D.R. Green. 2020. The clearance of dead cells by efferocytosis. Nature Reviews Molecular Cell Biology 21: 398–414.CrossRefPubMedPubMedCentral Boada-Romero, E., J. Martinez, B.L. Heckmann, and D.R. Green. 2020. The clearance of dead cells by efferocytosis. Nature Reviews Molecular Cell Biology 21: 398–414.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Doddapattar, P., R. Dev, M. Ghatge, R.B. Patel, M. Jain, N. Dhanesha, S.R. Lentz, and A.K. Chauhan. 2022. Myeloid cell PKM2 deletion enhances efferocytosis and reduces atherosclerosis. Circulation Research 130: 1289–1305.CrossRefPubMedPubMedCentral Doddapattar, P., R. Dev, M. Ghatge, R.B. Patel, M. Jain, N. Dhanesha, S.R. Lentz, and A.K. Chauhan. 2022. Myeloid cell PKM2 deletion enhances efferocytosis and reduces atherosclerosis. Circulation Research 130: 1289–1305.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Cai, W., X. Dai, J. Chen, J. Zhao, M. Xu, L. Zhang, B. Yang, W. Zhang, M. Rocha, T. Nakao, J. Kofler, Y. Shi, R.A. Stetler, X. Hu, and J. Chen. 2019. STAT6/Arg1 promotes microglia/macrophage efferocytosis and inflammation resolution in stroke mice. JCI Insight 4: e131355.CrossRefPubMedPubMedCentral Cai, W., X. Dai, J. Chen, J. Zhao, M. Xu, L. Zhang, B. Yang, W. Zhang, M. Rocha, T. Nakao, J. Kofler, Y. Shi, R.A. Stetler, X. Hu, and J. Chen. 2019. STAT6/Arg1 promotes microglia/macrophage efferocytosis and inflammation resolution in stroke mice. JCI Insight 4: e131355.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Birge, R.B., S. Boeltz, S. Kumar, J. Carlson, J. Wanderley, D. Calianese, M. Barcinski, R.A. Brekken, X. Huang, J.T. Hutchins, B. Freimark, C. Empig, J. Mercer, A.J. Schroit, G. Schett, and M. Herrmann. 2016. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death and Differentiation 23: 962–978.CrossRefPubMedPubMedCentral Birge, R.B., S. Boeltz, S. Kumar, J. Carlson, J. Wanderley, D. Calianese, M. Barcinski, R.A. Brekken, X. Huang, J.T. Hutchins, B. Freimark, C. Empig, J. Mercer, A.J. Schroit, G. Schett, and M. Herrmann. 2016. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death and Differentiation 23: 962–978.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Stuart, T., A. Butler, P. Hoffman, C. Hafemeister, E. Papalexi, W.M. Mauck, Y. Hao, M. Stoeckius, P. Smibert, and R. Satija. 2019. Comprehensive integration of single-cell data. Cell 177: 1888–1902.CrossRefPubMedPubMedCentral Stuart, T., A. Butler, P. Hoffman, C. Hafemeister, E. Papalexi, W.M. Mauck, Y. Hao, M. Stoeckius, P. Smibert, and R. Satija. 2019. Comprehensive integration of single-cell data. Cell 177: 1888–1902.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Fu, J., K.M. Akat, Z. Sun, W. Zhang, D. Schlondorff, Z. Liu, T. Tuschl, K. Lee, and J.C. He. 2019. Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease. Journal of the American Society of Nephrology 30: 533–545.CrossRefPubMedPubMedCentral Fu, J., K.M. Akat, Z. Sun, W. Zhang, D. Schlondorff, Z. Liu, T. Tuschl, K. Lee, and J.C. He. 2019. Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease. Journal of the American Society of Nephrology 30: 533–545.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Wilson, P.C., H. Wu, Y. Kirita, K. Uchimura, N. Ledru, H.G. Rennke, P.A. Welling, S.S. Waikar, and B.D. Humphreys. 2019. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proceedings of the National Academy of Sciences 116: 19619–19625.CrossRef Wilson, P.C., H. Wu, Y. Kirita, K. Uchimura, N. Ledru, H.G. Rennke, P.A. Welling, S.S. Waikar, and B.D. Humphreys. 2019. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proceedings of the National Academy of Sciences 116: 19619–19625.CrossRef
11.
Zurück zum Zitat Wei, Y., X. Gao, A. Li, M. Liang, and Z. Jiang. 2021. Single-nucleus transcriptomic analysis reveals important cell cross-talk in diabetic kidney disease. Frontiers in Medicine 8: 657956.CrossRefPubMedPubMedCentral Wei, Y., X. Gao, A. Li, M. Liang, and Z. Jiang. 2021. Single-nucleus transcriptomic analysis reveals important cell cross-talk in diabetic kidney disease. Frontiers in Medicine 8: 657956.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Lu, X., L. Li, L. Suo, P. Huang, H. Wang, S. Han, and M. Cao. 2022. Single-cell RNA sequencing profiles identify important pathophysiologic factors in the progression of diabetic nephropathy. Frontiers in Cell and Developmental Biology 10: 798316.CrossRefPubMedPubMedCentral Lu, X., L. Li, L. Suo, P. Huang, H. Wang, S. Han, and M. Cao. 2022. Single-cell RNA sequencing profiles identify important pathophysiologic factors in the progression of diabetic nephropathy. Frontiers in Cell and Developmental Biology 10: 798316.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Cai, X.-Y., Z.-F. Wang, S.-W. Ge, and G. Xu. 2022. Identification of hub genes and immune-related pathways for membranous nephropathy by bioinformatics analysis. Frontiers in Physiology 13: 914382.CrossRefPubMedPubMedCentral Cai, X.-Y., Z.-F. Wang, S.-W. Ge, and G. Xu. 2022. Identification of hub genes and immune-related pathways for membranous nephropathy by bioinformatics analysis. Frontiers in Physiology 13: 914382.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Aran, D., A.P. Looney, L. Liu, E. Wu, V. Fong, A. Hsu, S. Chak, R.P. Naikawadi, P.J. Wolters, A.R. Abate, A.J. Butte, and M. Bhattacharya. 2019. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nature Immunology 20: 163–172.CrossRefPubMedPubMedCentral Aran, D., A.P. Looney, L. Liu, E. Wu, V. Fong, A. Hsu, S. Chak, R.P. Naikawadi, P.J. Wolters, A.R. Abate, A.J. Butte, and M. Bhattacharya. 2019. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nature Immunology 20: 163–172.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Efremova, M., M. Vento-Tormo, S.A. Teichmann, and R. Vento-Tormo. 2020. Cell PhoneDB: Inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nature Protocols 15: 1484–1506.CrossRefPubMed Efremova, M., M. Vento-Tormo, S.A. Teichmann, and R. Vento-Tormo. 2020. Cell PhoneDB: Inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nature Protocols 15: 1484–1506.CrossRefPubMed
16.
Zurück zum Zitat Shannon, P., A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, and T. Ideker. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13: 2498–2504.CrossRefPubMedPubMedCentral Shannon, P., A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, and T. Ideker. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13: 2498–2504.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Szklarczyk, D., A.L. Gable, K.C. Nastou, D. Lyon, R. Kirsch, S. Pyysalo, N.T. Doncheva, M. Legeay, T. Fang, P. Bork, L.J. Jensen, and C. von Mering. 2021. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research 49: D605–D612.CrossRefPubMed Szklarczyk, D., A.L. Gable, K.C. Nastou, D. Lyon, R. Kirsch, S. Pyysalo, N.T. Doncheva, M. Legeay, T. Fang, P. Bork, L.J. Jensen, and C. von Mering. 2021. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research 49: D605–D612.CrossRefPubMed
18.
Zurück zum Zitat Muto, Y., E.E. Dixon, Y. Yoshimura, H. Wu, K. Omachi, N. Ledru, P.C. Wilson, A.J. King, N. Eric Olson, M.G. Gunawan, J.J. Kuo, J.H. Cox, J.H. Miner, S.L. Seliger, O.M. Woodward, P.A. Welling, T.J. Watnick, and B.D. Humphreys. 2022. Defining cellular complexity in human autosomal dominant polycystic kidney disease by multimodal single cell analysis. Nature Communications 13: 6497.CrossRefPubMedPubMedCentral Muto, Y., E.E. Dixon, Y. Yoshimura, H. Wu, K. Omachi, N. Ledru, P.C. Wilson, A.J. King, N. Eric Olson, M.G. Gunawan, J.J. Kuo, J.H. Cox, J.H. Miner, S.L. Seliger, O.M. Woodward, P.A. Welling, T.J. Watnick, and B.D. Humphreys. 2022. Defining cellular complexity in human autosomal dominant polycystic kidney disease by multimodal single cell analysis. Nature Communications 13: 6497.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Muto, Y., P.C. Wilson, N. Ledru, H. Wu, H. Dimke, S.S. Waikar, and B.D. Humphreys. 2021. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nature Communications 12: 2190.CrossRefPubMedPubMedCentral Muto, Y., P.C. Wilson, N. Ledru, H. Wu, H. Dimke, S.S. Waikar, and B.D. Humphreys. 2021. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nature Communications 12: 2190.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Doran, A.C., A. Yurdagul, and I. Tabas. 2020. Efferocytosis in health and disease. Nature Reviews Immunology 20: 254–267.CrossRefPubMed Doran, A.C., A. Yurdagul, and I. Tabas. 2020. Efferocytosis in health and disease. Nature Reviews Immunology 20: 254–267.CrossRefPubMed
21.
Zurück zum Zitat Fabregat, A., S. Jupe, L. Matthews, K. Sidiropoulos, M. Gillespie, P. Garapati, R. Haw, B. Jassal, F. Korninger, B. May, M. Milacic, C.D. Roca, K. Rothfels, C. Sevilla, V. Shamovsky, S. Shorser, T. Varusai, G. Viteri, J. Weiser, G. Wu, L. Stein, H. Hermjakob, and P. D’Eustachio. 2018. The reactome pathway knowledgebase. Nucleic Acids Research 46: D649–D655.CrossRefPubMed Fabregat, A., S. Jupe, L. Matthews, K. Sidiropoulos, M. Gillespie, P. Garapati, R. Haw, B. Jassal, F. Korninger, B. May, M. Milacic, C.D. Roca, K. Rothfels, C. Sevilla, V. Shamovsky, S. Shorser, T. Varusai, G. Viteri, J. Weiser, G. Wu, L. Stein, H. Hermjakob, and P. D’Eustachio. 2018. The reactome pathway knowledgebase. Nucleic Acids Research 46: D649–D655.CrossRefPubMed
22.
Zurück zum Zitat Chin, C.-H., S.-H. Chen, H.-H. Wu, C.-W. Ho, M.-T. Ko, and C.-Y. Lin. 2014. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology 8 (Suppl 4): S11.CrossRefPubMedPubMedCentral Chin, C.-H., S.-H. Chen, H.-H. Wu, C.-W. Ho, M.-T. Ko, and C.-Y. Lin. 2014. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology 8 (Suppl 4): S11.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Tang, S.C.W., and W.H. Yiu. 2020. Innate immunity in diabetic kidney disease. Nature Reviews. Nephrology 16: 206–222.CrossRefPubMed Tang, S.C.W., and W.H. Yiu. 2020. Innate immunity in diabetic kidney disease. Nature Reviews. Nephrology 16: 206–222.CrossRefPubMed
24.
Zurück zum Zitat Ma, T., X. Li, Y. Zhu, S. Yu, T. Liu, X. Zhang, D. Chen, S. Du, T. Chen, S. Chen, Y. Xu, and Q. Fan. 2022. Excessive activation of notch signaling in macrophages promote kidney inflammation, fibrosis, and necroptosis. Frontiers in Immunology 13: 835879.CrossRefPubMedPubMedCentral Ma, T., X. Li, Y. Zhu, S. Yu, T. Liu, X. Zhang, D. Chen, S. Du, T. Chen, S. Chen, Y. Xu, and Q. Fan. 2022. Excessive activation of notch signaling in macrophages promote kidney inflammation, fibrosis, and necroptosis. Frontiers in Immunology 13: 835879.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Li, Q., J. Liao, W. Chen, K. Zhang, H. Li, F. Ma, H. Zhang, Q. Han, J. Guo, Y. Li, L. Hu, J. Pan, and Z. Tang. 2022. NAC alleviative ferroptosis in diabetic nephropathy via maintaining mitochondrial redox homeostasis through activating SIRT3-SOD2/Gpx4 pathway. Free Radical Biology & Medicine 187: 158–170.CrossRef Li, Q., J. Liao, W. Chen, K. Zhang, H. Li, F. Ma, H. Zhang, Q. Han, J. Guo, Y. Li, L. Hu, J. Pan, and Z. Tang. 2022. NAC alleviative ferroptosis in diabetic nephropathy via maintaining mitochondrial redox homeostasis through activating SIRT3-SOD2/Gpx4 pathway. Free Radical Biology & Medicine 187: 158–170.CrossRef
26.
Zurück zum Zitat Dias, C.G., L. Venkataswamy, and S. Balakrishna. 2022. Diabetic nephropathy patients show hyper-responsiveness to N6-carboxymethyllysine. Brazilian Journal of Medical and Biological Research 55: e11984.CrossRefPubMedPubMedCentral Dias, C.G., L. Venkataswamy, and S. Balakrishna. 2022. Diabetic nephropathy patients show hyper-responsiveness to N6-carboxymethyllysine. Brazilian Journal of Medical and Biological Research 55: e11984.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Song, Y., F. Guo, Y.-Y. Zhao, X.-J. Ma, L.-N. Wu, J.-F. Yu, H.-F. Ji, M.-W. Shao, F.-J. Huang, L. Zhao, X.-J. Fan, Y.-N. Xu, Q.-Z. Wang, and G.-J. Qin. 2023. Novel lncRNA-prader willi/angelman region RNA, SNRPN neighbour (PWARSN) aggravates tubular epithelial cell pyroptosis by regulating TXNIP via dual way in diabetic kidney disease. Cell Proliferation 56: e13349.CrossRefPubMed Song, Y., F. Guo, Y.-Y. Zhao, X.-J. Ma, L.-N. Wu, J.-F. Yu, H.-F. Ji, M.-W. Shao, F.-J. Huang, L. Zhao, X.-J. Fan, Y.-N. Xu, Q.-Z. Wang, and G.-J. Qin. 2023. Novel lncRNA-prader willi/angelman region RNA, SNRPN neighbour (PWARSN) aggravates tubular epithelial cell pyroptosis by regulating TXNIP via dual way in diabetic kidney disease. Cell Proliferation 56: e13349.CrossRefPubMed
28.
Zurück zum Zitat Barutta, F., S. Bellini, S. Kimura, K. Hase, B. Corbetta, A. Corbelli, F. Fiordaliso, S. Bruno, L. Biancone, A. Barreca, M.G. Papotti, E. Hirsh, M. Martini, R. Gambino, M. Durazzo, H. Ohno, and G. Gruden. 2023. Protective effect of the tunneling nanotube-TNFAIP2/M-sec system on podocyte autophagy in diabetic nephropathy. Autophagy 19: 505–524.CrossRefPubMed Barutta, F., S. Bellini, S. Kimura, K. Hase, B. Corbetta, A. Corbelli, F. Fiordaliso, S. Bruno, L. Biancone, A. Barreca, M.G. Papotti, E. Hirsh, M. Martini, R. Gambino, M. Durazzo, H. Ohno, and G. Gruden. 2023. Protective effect of the tunneling nanotube-TNFAIP2/M-sec system on podocyte autophagy in diabetic nephropathy. Autophagy 19: 505–524.CrossRefPubMed
29.
Zurück zum Zitat Maschalidi, S., P. Mehrotra, B.N. Keçeli, H.K.L. De Cleene, K. Lecomte, R. Van der Cruyssen, P. Janssen, J. Pinney, G. van Loo, D. Elewaut, A. Massie, E. Hoste, and K.S. Ravichandran. 2022. Targeting SLC7A11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature 606: 776–784.CrossRefPubMed Maschalidi, S., P. Mehrotra, B.N. Keçeli, H.K.L. De Cleene, K. Lecomte, R. Van der Cruyssen, P. Janssen, J. Pinney, G. van Loo, D. Elewaut, A. Massie, E. Hoste, and K.S. Ravichandran. 2022. Targeting SLC7A11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature 606: 776–784.CrossRefPubMed
30.
Zurück zum Zitat Geng, L., J. Zhao, Y. Deng, I. Molano, X. Xu, L. Xu, P. Ruiz, Q. Li, X. Feng, M. Zhang, W. Tan, D.L. Kamen, S.-C. Bae, G.S. Gilkeson, L. Sun, and B.P. Tsao. 2022. Human SLE variant NCF1-R90H promotes kidney damage and murine lupus through enhanced Tfh2 responses induced by defective efferocytosis of macrophages. Annals of the Rheumatic Diseases 81: 255–267.CrossRefPubMed Geng, L., J. Zhao, Y. Deng, I. Molano, X. Xu, L. Xu, P. Ruiz, Q. Li, X. Feng, M. Zhang, W. Tan, D.L. Kamen, S.-C. Bae, G.S. Gilkeson, L. Sun, and B.P. Tsao. 2022. Human SLE variant NCF1-R90H promotes kidney damage and murine lupus through enhanced Tfh2 responses induced by defective efferocytosis of macrophages. Annals of the Rheumatic Diseases 81: 255–267.CrossRefPubMed
31.
Zurück zum Zitat Chen, Z.Z., L. Johnson, U. Trahtemberg, A. Baker, S. Huq, J. Dufresne, P. Bowden, M. Miao, J.-A. Ho, C.-C. Hsu, C.C. Dos Santos, and J.G. Marshall. 2023. Mitochondria and cytochrome components released into the plasma of severe COVID-19 and ICU acute respiratory distress syndrome patients. Clinical Proteomics 20: 17.CrossRefPubMedPubMedCentral Chen, Z.Z., L. Johnson, U. Trahtemberg, A. Baker, S. Huq, J. Dufresne, P. Bowden, M. Miao, J.-A. Ho, C.-C. Hsu, C.C. Dos Santos, and J.G. Marshall. 2023. Mitochondria and cytochrome components released into the plasma of severe COVID-19 and ICU acute respiratory distress syndrome patients. Clinical Proteomics 20: 17.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Brustovetsky, N.N., Z.G. Amerkhanov, E. Popova, and A.A. Konstantinov. 1990. Reversible inhibition of electron transfer in the ubiquinol: cytochrome c reductase segment of the mitochondrial respiratory chain in hibernating ground squirrels. FEBS Letters 263: 73–76.CrossRefPubMed Brustovetsky, N.N., Z.G. Amerkhanov, E. Popova, and A.A. Konstantinov. 1990. Reversible inhibition of electron transfer in the ubiquinol: cytochrome c reductase segment of the mitochondrial respiratory chain in hibernating ground squirrels. FEBS Letters 263: 73–76.CrossRefPubMed
33.
Zurück zum Zitat Lv, Z., M. Hu, M. Fan, X. Li, J. Lin, J. Zhen, Z. Wang, H. Jin, and R. Wang. 2018. Podocyte-specific Rac1 deficiency ameliorates podocyte damage and proteinuria in STZ-induced diabetic nephropathy in mice. Cell Death & Disease 9: 342.CrossRef Lv, Z., M. Hu, M. Fan, X. Li, J. Lin, J. Zhen, Z. Wang, H. Jin, and R. Wang. 2018. Podocyte-specific Rac1 deficiency ameliorates podocyte damage and proteinuria in STZ-induced diabetic nephropathy in mice. Cell Death & Disease 9: 342.CrossRef
34.
Zurück zum Zitat Ying, C., Z. Zhou, J. Dai, M. Wang, J. Xiang, D. Sun, and X. Zhou. 2022. Activation of the NLRP3 inflammasome by RAC1 mediates a new mechanism in diabetic nephropathy. Inflammation Research 71: 191–204.CrossRefPubMed Ying, C., Z. Zhou, J. Dai, M. Wang, J. Xiang, D. Sun, and X. Zhou. 2022. Activation of the NLRP3 inflammasome by RAC1 mediates a new mechanism in diabetic nephropathy. Inflammation Research 71: 191–204.CrossRefPubMed
35.
Zurück zum Zitat Tang, J., Y. Jin, F. Jia, T. Lv, A. Manaenko, L.-F. Zhang, Z. Zhang, X. Qi, Y. Xue, B. Zhao, X. Zhang, J.H. Zhang, J. Lu, and Q. Hu. 2022. Gas6 promotes microglia efferocytosis and suppresses inflammation through activating Axl/Rac1 signaling in subarachnoid hemorrhage mice. Translational Stroke Research 14: 955–969.CrossRefPubMed Tang, J., Y. Jin, F. Jia, T. Lv, A. Manaenko, L.-F. Zhang, Z. Zhang, X. Qi, Y. Xue, B. Zhao, X. Zhang, J.H. Zhang, J. Lu, and Q. Hu. 2022. Gas6 promotes microglia efferocytosis and suppresses inflammation through activating Axl/Rac1 signaling in subarachnoid hemorrhage mice. Translational Stroke Research 14: 955–969.CrossRefPubMed
36.
Zurück zum Zitat Proto, J.D., A.C. Doran, G. Gusarova, A. Yurdagul, E. Sozen, M. Subramanian, M.N. Islam, C.C. Rymond, J. Du, J. Hook, G. Kuriakose, J. Bhattacharya, and I. Tabas. 2018. Regulatory T cells promote macrophage efferocytosis during inflammation resolution. Immunity 49 (4): 666–677.CrossRefPubMed Proto, J.D., A.C. Doran, G. Gusarova, A. Yurdagul, E. Sozen, M. Subramanian, M.N. Islam, C.C. Rymond, J. Du, J. Hook, G. Kuriakose, J. Bhattacharya, and I. Tabas. 2018. Regulatory T cells promote macrophage efferocytosis during inflammation resolution. Immunity 49 (4): 666–677.CrossRefPubMed
Metadaten
Titel
Single-Cell RNA Sequencing Reveals RAC1 Involvement in Macrophages Efferocytosis in Diabetic Kidney Disease
verfasst von
Yi Song
Yifan Liu
Feng Guo
Lin Zhao
Guijun Qin
Publikationsdatum
08.12.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2024
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01942-y

Weitere Artikel der Ausgabe 2/2024

Inflammation 2/2024 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.