Skip to main content
Erschienen in: Inflammation 1/2023

10.10.2022 | Review

Role of T Cells in the Pathogenesis of Rheumatoid Arthritis: Focus on Immunometabolism Dysfunctions

verfasst von: Maryam Masoumi, Samira Alesaeidi, Hossein Khorramdelazad, Mousa Behzadi, Rasoul Baharlou, Shahin Alizadeh-Fanalou, Jafar Karami

Erschienen in: Inflammation | Ausgabe 1/2023

Einloggen, um Zugang zu erhalten

Abstract

Evidence demonstrated that metabolic-associated T cell abnormalities could be detected in the early stage of RA development. In this context, molecular evaluations have revealed changes in metabolic pathways, leading to the aggressive phenotype of RA T cells. A growing list of genes is downregulated or upregulated in RA T cells, and most of these genes with abnormal expression fall into the category of metabolic pathways. It has been shown that RA T cells shunt glucose towards the pentose phosphate pathway (PPP), which is associated with a high level of nicotinamide adenine dinucleotide phosphate (NADPH) and intermediate molecules. An increased level of NADPH inhibits ATM activation and thereby increases the proliferation capabilities of the RA T cells. Defects in the DNA repair nuclease MRE11A cause failures in repairing mitochondrial DNA, resulting in inhibiting the fatty acid oxidation pathway and further elevated cytoplasmic lipid droplets. Accumulated lipid droplets employ to generate lipid membranes for the cell building program and are also used to form the front-end membrane ruffles that are accomplices with invasive phenotypes of RA T cells. Metabolic pathway involvement in RA pathogenesis expands the pathogenic concept of the disease beyond the common view of autoimmunity triggered by autoantigen recognition. Increased knowledge about metabolic pathways’ implications in RA pathogenesis paves the way to understand better the environment/gene interactions and host/microbiota interactions and introduce potential therapeutic approaches. This review summarized emerging data about the roles of T cells in RA pathogenesis with a focus on immunometabolism dysfunctions and how these metabolic alterations can affect the disease process.
Literatur
1.
Zurück zum Zitat Aletaha, D., and J.S. Smolen. 2018. Diagnosis and management of rheumatoid arthritis: A review. Journal of the American Medical Association 320 (13): 1360–1372.PubMedCrossRef Aletaha, D., and J.S. Smolen. 2018. Diagnosis and management of rheumatoid arthritis: A review. Journal of the American Medical Association 320 (13): 1360–1372.PubMedCrossRef
2.
Zurück zum Zitat Karami, J., et al. 2021. Evaluation of TAK-242 (Resatorvid) effects on inflammatory status of fibroblast-like synoviocytes in rheumatoid arthritis and trauma patients. Iranian Journal of Allergy, Asthma and Immunology 20 (4): 453–464.PubMed Karami, J., et al. 2021. Evaluation of TAK-242 (Resatorvid) effects on inflammatory status of fibroblast-like synoviocytes in rheumatoid arthritis and trauma patients. Iranian Journal of Allergy, Asthma and Immunology 20 (4): 453–464.PubMed
3.
Zurück zum Zitat Masoumi, M., et al. 2021. Destructive roles of fibroblast-like synoviocytes in chronic inflammation and joint damage in rheumatoid arthritis. Inflammation 44 (2): 466–479.PubMedCrossRef Masoumi, M., et al. 2021. Destructive roles of fibroblast-like synoviocytes in chronic inflammation and joint damage in rheumatoid arthritis. Inflammation 44 (2): 466–479.PubMedCrossRef
4.
Zurück zum Zitat Karami, J., et al. 2019. Genetic implications in the pathogenesis of rheumatoid arthritis; an updated review. Gene 702: 8–16.PubMedCrossRef Karami, J., et al. 2019. Genetic implications in the pathogenesis of rheumatoid arthritis; an updated review. Gene 702: 8–16.PubMedCrossRef
5.
Zurück zum Zitat Alizadeh, Z., et al. 2016. STAT4 rs7574865 polymorphism in Iranian patients with rheumatoid arthritis. Indian Journal of Rheumatology 11 (2): 78–81. Alizadeh, Z., et al. 2016. STAT4 rs7574865 polymorphism in Iranian patients with rheumatoid arthritis. Indian Journal of Rheumatology 11 (2): 78–81.
6.
Zurück zum Zitat Karami, J., et al. 2019. Epigenetics in rheumatoid arthritis; fibroblast-like synoviocytes as an emerging paradigm in the disease pathogenesis. Immunology and cell biology 98 (3): 171–186.CrossRef Karami, J., et al. 2019. Epigenetics in rheumatoid arthritis; fibroblast-like synoviocytes as an emerging paradigm in the disease pathogenesis. Immunology and cell biology 98 (3): 171–186.CrossRef
7.
Zurück zum Zitat Aslani, S., et al. 2016. Epigenetic alterations underlying autoimmune diseases. Autoimmunity 49 (2): 69–83.PubMedCrossRef Aslani, S., et al. 2016. Epigenetic alterations underlying autoimmune diseases. Autoimmunity 49 (2): 69–83.PubMedCrossRef
8.
Zurück zum Zitat Weyand, C.M., M. Zeisbrich, and J.J. Goronzy. 2017. Metabolic signatures of T-cells and macrophages in rheumatoid arthritis. Current opinion in immunology 46: 112–120.PubMedPubMedCentralCrossRef Weyand, C.M., M. Zeisbrich, and J.J. Goronzy. 2017. Metabolic signatures of T-cells and macrophages in rheumatoid arthritis. Current opinion in immunology 46: 112–120.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Hu, X.-X., et al. 2019. T-cells interact with B cells, dendritic cells, and fibroblast-like synoviocytes as hub-like key cells in rheumatoid arthritis. International immunopharmacology 70: 428–434.PubMedCrossRef Hu, X.-X., et al. 2019. T-cells interact with B cells, dendritic cells, and fibroblast-like synoviocytes as hub-like key cells in rheumatoid arthritis. International immunopharmacology 70: 428–434.PubMedCrossRef
11.
Zurück zum Zitat Chemin, K., C. Gerstner, and V. Malmström. 2019. Effector functions of CD4+ T cells at the site of local autoimmune inflammation–lessons from rheumatoid arthritis. Frontiers in immunology 10: 353.PubMedPubMedCentralCrossRef Chemin, K., C. Gerstner, and V. Malmström. 2019. Effector functions of CD4+ T cells at the site of local autoimmune inflammation–lessons from rheumatoid arthritis. Frontiers in immunology 10: 353.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Wehr, P., et al. 2019. Dendritic cells, T cells and their interaction in rheumatoid arthritis. Clinical & Experimental Immunology 196 (1): 12–27.CrossRef Wehr, P., et al. 2019. Dendritic cells, T cells and their interaction in rheumatoid arthritis. Clinical & Experimental Immunology 196 (1): 12–27.CrossRef
13.
Zurück zum Zitat Weyand, C.M., B. Wu, and J.J. Goronzy. 2020. The metabolic signature of T cells in rheumatoid arthritis. Current opinion in rheumatology 32 (2): 159–167.PubMedPubMedCentralCrossRef Weyand, C.M., B. Wu, and J.J. Goronzy. 2020. The metabolic signature of T cells in rheumatoid arthritis. Current opinion in rheumatology 32 (2): 159–167.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Dekkers, J., et al. 2016. The role of anticitrullinated protein antibodies in the early stages of rheumatoid arthritis. Current opinion in rheumatology 28 (3): 275–281.PubMedCrossRef Dekkers, J., et al. 2016. The role of anticitrullinated protein antibodies in the early stages of rheumatoid arthritis. Current opinion in rheumatology 28 (3): 275–281.PubMedCrossRef
15.
Zurück zum Zitat Koppejan, H., et al. 2016. Role of anti–carbamylated protein antibodies compared to anti–citrullinated protein antibodies in indigenous North Americans with rheumatoid arthritis, their first-degree relatives, and healthy controls. Arthritis & Rheumatology 68 (9): 2090–2098.CrossRef Koppejan, H., et al. 2016. Role of anti–carbamylated protein antibodies compared to anti–citrullinated protein antibodies in indigenous North Americans with rheumatoid arthritis, their first-degree relatives, and healthy controls. Arthritis & Rheumatology 68 (9): 2090–2098.CrossRef
16.
Zurück zum Zitat Conigliaro, P., et al. 2016. Autoantibodies in inflammatory arthritis. Autoimmunity reviews 15 (7): 673–683.PubMedCrossRef Conigliaro, P., et al. 2016. Autoantibodies in inflammatory arthritis. Autoimmunity reviews 15 (7): 673–683.PubMedCrossRef
17.
Zurück zum Zitat Yang, Z., et al. 2015. T-cell metabolism in autoimmune disease. Arthritis research & therapy 17 (1): 1–10.CrossRef Yang, Z., et al. 2015. T-cell metabolism in autoimmune disease. Arthritis research & therapy 17 (1): 1–10.CrossRef
18.
Zurück zum Zitat Weyand, C.M., Y. Shen, and J.J. Goronzy. 2018. Redox-sensitive signaling in inflammatory T cells and in autoimmune disease. Free Radical Biology and Medicine 125: 36–43.PubMedCrossRef Weyand, C.M., Y. Shen, and J.J. Goronzy. 2018. Redox-sensitive signaling in inflammatory T cells and in autoimmune disease. Free Radical Biology and Medicine 125: 36–43.PubMedCrossRef
20.
Zurück zum Zitat Weyand, C.M., and J.J. Goronzy. 2017. Immunometabolism in early and late stages of rheumatoid arthritis. Nature Reviews Rheumatology 13 (5): 291–301.PubMedPubMedCentralCrossRef Weyand, C.M., and J.J. Goronzy. 2017. Immunometabolism in early and late stages of rheumatoid arthritis. Nature Reviews Rheumatology 13 (5): 291–301.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Li, Y., et al. 2019. The DNA repair nuclease MRE11A functions as a mitochondrial protector and prevents T cell pyroptosis and tissue inflammation. Cell metabolism 30 (3): 477–492.PubMedPubMedCentralCrossRef Li, Y., et al. 2019. The DNA repair nuclease MRE11A functions as a mitochondrial protector and prevents T cell pyroptosis and tissue inflammation. Cell metabolism 30 (3): 477–492.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Masoumi, M., et al. 2020. Role of glucose metabolism in aggressive phenotype of fibroblast-like synoviocytes: Latest evidence and therapeutic approaches in rheumatoid arthritis. International immunopharmacology 89: 107064.PubMedCrossRef Masoumi, M., et al. 2020. Role of glucose metabolism in aggressive phenotype of fibroblast-like synoviocytes: Latest evidence and therapeutic approaches in rheumatoid arthritis. International immunopharmacology 89: 107064.PubMedCrossRef
24.
Zurück zum Zitat Shirai, T., et al. 2016. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. Journal of Experimental Medicine 213 (3): 337–354.PubMedPubMedCentralCrossRef Shirai, T., et al. 2016. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. Journal of Experimental Medicine 213 (3): 337–354.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Meednu, N., et al. 2016. Production of RANKL by memory B cells: A link between B cells and bone erosion in rheumatoid arthritis. Arthritis & rheumatology 68 (4): 805–816.CrossRef Meednu, N., et al. 2016. Production of RANKL by memory B cells: A link between B cells and bone erosion in rheumatoid arthritis. Arthritis & rheumatology 68 (4): 805–816.CrossRef
26.
Zurück zum Zitat Podojil, J.R., and S.D. Miller. 2009. Molecular mechanisms of T-cell receptor and costimulatory molecule ligation/blockade in autoimmune disease therapy. Immunological reviews 229 (1): 337–355.PubMedPubMedCentralCrossRef Podojil, J.R., and S.D. Miller. 2009. Molecular mechanisms of T-cell receptor and costimulatory molecule ligation/blockade in autoimmune disease therapy. Immunological reviews 229 (1): 337–355.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Luo, P., et al. 2022. Immunomodulatory role of T helper cells in rheumatoid arthritis: A comprehensive research review. Bone & Joint Research 11 (7): 426–438.CrossRef Luo, P., et al. 2022. Immunomodulatory role of T helper cells in rheumatoid arthritis: A comprehensive research review. Bone & Joint Research 11 (7): 426–438.CrossRef
28.
Zurück zum Zitat Cope, A.P., H. Schulze-Koops, and M. Aringer. 2007. The central role of T cells in rheumatoid arthritis. Clinical and experimental rheumatology 25 (5): S4.PubMed Cope, A.P., H. Schulze-Koops, and M. Aringer. 2007. The central role of T cells in rheumatoid arthritis. Clinical and experimental rheumatology 25 (5): S4.PubMed
29.
Zurück zum Zitat Alunno, A., et al. 2015. Altered immunoregulation in rheumatoid arthritis: the role of regulatory T cells and proinflammatory Th17 cells and therapeutic implications. Mediators of inflammation 2015: 751793.PubMedPubMedCentralCrossRef Alunno, A., et al. 2015. Altered immunoregulation in rheumatoid arthritis: the role of regulatory T cells and proinflammatory Th17 cells and therapeutic implications. Mediators of inflammation 2015: 751793.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Al-Saadany, H.M., et al. 2016. Th-17 cells and serum IL-17 in rheumatoid arthritis patients: Correlation with disease activity and severity. The Egyptian Rheumatologist 38 (1): 1–7.CrossRef Al-Saadany, H.M., et al. 2016. Th-17 cells and serum IL-17 in rheumatoid arthritis patients: Correlation with disease activity and severity. The Egyptian Rheumatologist 38 (1): 1–7.CrossRef
31.
Zurück zum Zitat Schulze-Koops, H., and J.R. Kalden. 2001. The balance of Th1/Th2 cytokines in rheumatoid arthritis. Best Practice & Research Clinical Rheumatology 15 (5): 677–691.CrossRef Schulze-Koops, H., and J.R. Kalden. 2001. The balance of Th1/Th2 cytokines in rheumatoid arthritis. Best Practice & Research Clinical Rheumatology 15 (5): 677–691.CrossRef
32.
Zurück zum Zitat Ciccia, F., et al. 2015. Potential involvement of IL-9 and Th9 cells in the pathogenesis of rheumatoid arthritis. Rheumatology 54 (12): 2264–2272.PubMedCrossRef Ciccia, F., et al. 2015. Potential involvement of IL-9 and Th9 cells in the pathogenesis of rheumatoid arthritis. Rheumatology 54 (12): 2264–2272.PubMedCrossRef
33.
Zurück zum Zitat Chowdhury, K., et al. 2018. Synovial IL-9 facilitates neutrophil survival, function and differentiation of Th17 cells in rheumatoid arthritis. Arthritis research & therapy 20 (1): 1–12.CrossRef Chowdhury, K., et al. 2018. Synovial IL-9 facilitates neutrophil survival, function and differentiation of Th17 cells in rheumatoid arthritis. Arthritis research & therapy 20 (1): 1–12.CrossRef
34.
Zurück zum Zitat Cooles, F.A., J.D. Isaacs, and A.E. Anderson. 2013. Treg cells in rheumatoid arthritis: An update. Current rheumatology reports 15 (9): 352.PubMedCrossRef Cooles, F.A., J.D. Isaacs, and A.E. Anderson. 2013. Treg cells in rheumatoid arthritis: An update. Current rheumatology reports 15 (9): 352.PubMedCrossRef
35.
Zurück zum Zitat Boissier, M.-C., et al. 2009. Regulatory T cells (Treg) in rheumatoid arthritis. Joint, Bone, Spine 76 (1): 10–14.PubMedCrossRef Boissier, M.-C., et al. 2009. Regulatory T cells (Treg) in rheumatoid arthritis. Joint, Bone, Spine 76 (1): 10–14.PubMedCrossRef
36.
37.
Zurück zum Zitat Rapetti, L., et al. 2015. B cell resistance to Fas-mediated apoptosis contributes to their ineffective control by regulatory T cells in rheumatoid arthritis. Annals of the rheumatic diseases 74 (1): 294–302.PubMedCrossRef Rapetti, L., et al. 2015. B cell resistance to Fas-mediated apoptosis contributes to their ineffective control by regulatory T cells in rheumatoid arthritis. Annals of the rheumatic diseases 74 (1): 294–302.PubMedCrossRef
38.
Zurück zum Zitat Al-Zifzaf, D.S., et al. 2015. FoxP3+ T regulatory cells in Rheumatoid arthritis and the imbalance of the Treg/TH17 cytokine axis. The Egyptian Rheumatologist 37 (1): 7–15.CrossRef Al-Zifzaf, D.S., et al. 2015. FoxP3+ T regulatory cells in Rheumatoid arthritis and the imbalance of the Treg/TH17 cytokine axis. The Egyptian Rheumatologist 37 (1): 7–15.CrossRef
39.
Zurück zum Zitat Rao, D.A., et al. 2017. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542 (7639): 110–114.PubMedPubMedCentralCrossRef Rao, D.A., et al. 2017. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542 (7639): 110–114.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Pollizzi, K.N., and J.D. Powell. 2014. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nature Reviews Immunology 14 (7): 435–446.PubMedPubMedCentralCrossRef Pollizzi, K.N., and J.D. Powell. 2014. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nature Reviews Immunology 14 (7): 435–446.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Chapman, N.M., M.R. Boothby, and H. Chi. 2020. Metabolic coordination of T cell quiescence and activation. Nature Reviews Immunology 20 (1): 55–70.PubMedCrossRef Chapman, N.M., M.R. Boothby, and H. Chi. 2020. Metabolic coordination of T cell quiescence and activation. Nature Reviews Immunology 20 (1): 55–70.PubMedCrossRef
43.
Zurück zum Zitat Chiaranunt, P., J.L. Ferrara, and C.A. Byersdorfer. 2015. Rethinking the paradigm: How comparative studies on fatty acid oxidation inform our understanding of T cell metabolism. Molecular immunology 68 (2): 564–574.PubMedCrossRef Chiaranunt, P., J.L. Ferrara, and C.A. Byersdorfer. 2015. Rethinking the paradigm: How comparative studies on fatty acid oxidation inform our understanding of T cell metabolism. Molecular immunology 68 (2): 564–574.PubMedCrossRef
45.
Zurück zum Zitat Angajala, A., et al. 2018. Diverse roles of mitochondria in immune responses: Novel insights into immuno-metabolism. Frontiers in immunology 9: 1605.PubMedPubMedCentralCrossRef Angajala, A., et al. 2018. Diverse roles of mitochondria in immune responses: Novel insights into immuno-metabolism. Frontiers in immunology 9: 1605.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Maciolek, J.A., J.A. Pasternak, and H.L. Wilson. 2014. Metabolism of activated T lymphocytes. Current opinion in immunology 27: 60–74.PubMedCrossRef Maciolek, J.A., J.A. Pasternak, and H.L. Wilson. 2014. Metabolism of activated T lymphocytes. Current opinion in immunology 27: 60–74.PubMedCrossRef
47.
Zurück zum Zitat Samanta, D., and G.L. Semenza. 2018. Metabolic adaptation of cancer and immune cells mediated by hypoxia-inducible factors. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1870 (1): 15–22.PubMedCrossRef Samanta, D., and G.L. Semenza. 2018. Metabolic adaptation of cancer and immune cells mediated by hypoxia-inducible factors. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1870 (1): 15–22.PubMedCrossRef
48.
Zurück zum Zitat Johnson, M.O., et al. 2016. Nutrients and the microenvironment to feed a T cell army. In Seminars in immunology. Elsevier. Johnson, M.O., et al. 2016. Nutrients and the microenvironment to feed a T cell army. In Seminars in immunology. Elsevier.
49.
Zurück zum Zitat Desdín-Micó, G., G. Soto-Heredero, and M. Mittelbrunn. 2018. Mitochondrial activity in T cells. Mitochondrion 41: 51–57.PubMedCrossRef Desdín-Micó, G., G. Soto-Heredero, and M. Mittelbrunn. 2018. Mitochondrial activity in T cells. Mitochondrion 41: 51–57.PubMedCrossRef
50.
Zurück zum Zitat Yang, Z., J.J. Goronzy, and C.M. Weyand. 2014. The glycolytic enzyme PFKFB3/phosphofructokinase regulates autophagy. Autophagy 10 (2): 382–383.PubMedCrossRef Yang, Z., J.J. Goronzy, and C.M. Weyand. 2014. The glycolytic enzyme PFKFB3/phosphofructokinase regulates autophagy. Autophagy 10 (2): 382–383.PubMedCrossRef
51.
Zurück zum Zitat Yang, Z., et al. 2016. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Science translational medicine 8 (331): 331ra38.PubMedPubMedCentralCrossRef Yang, Z., et al. 2016. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Science translational medicine 8 (331): 331ra38.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Yang, Z., et al. 2013. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. Journal of Experimental Medicine 210 (10): 2119–2134.PubMedPubMedCentralCrossRef Yang, Z., et al. 2013. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. Journal of Experimental Medicine 210 (10): 2119–2134.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Tripmacher, R., et al. 2008. Human CD4+ T cells maintain specific functions even under conditions of extremely restricted ATP production. European journal of immunology 38 (6): 1631–1642.PubMedCrossRef Tripmacher, R., et al. 2008. Human CD4+ T cells maintain specific functions even under conditions of extremely restricted ATP production. European journal of immunology 38 (6): 1631–1642.PubMedCrossRef
54.
Zurück zum Zitat Bono, M.R., et al. 2015. CD73 and CD39 ectonucleotidases in T cell differentiation: Beyond immunosuppression. FEBS letters 589 (22): 3454–3460.PubMedCrossRef Bono, M.R., et al. 2015. CD73 and CD39 ectonucleotidases in T cell differentiation: Beyond immunosuppression. FEBS letters 589 (22): 3454–3460.PubMedCrossRef
55.
Zurück zum Zitat Raker, V.K., C. Becker, and K. Steinbrink. 2016. The cAMP pathway as therapeutic target in autoimmune and inflammatory diseases. Frontiers in immunology 7: 123.PubMedPubMedCentralCrossRef Raker, V.K., C. Becker, and K. Steinbrink. 2016. The cAMP pathway as therapeutic target in autoimmune and inflammatory diseases. Frontiers in immunology 7: 123.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Howie, D., H. Waldmann, and S. Cobbold. 2014. Nutrient sensing via mTOR in T cells maintains a tolerogenic microenvironment. Frontiers in immunology 5: 409.PubMedPubMedCentralCrossRef Howie, D., H. Waldmann, and S. Cobbold. 2014. Nutrient sensing via mTOR in T cells maintains a tolerogenic microenvironment. Frontiers in immunology 5: 409.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Fang, F., et al. 2016. Expression of CD39 on activated T cells impairs their survival in older individuals. Cell reports 14 (5): 1218–1231.PubMedCrossRef Fang, F., et al. 2016. Expression of CD39 on activated T cells impairs their survival in older individuals. Cell reports 14 (5): 1218–1231.PubMedCrossRef
58.
Zurück zum Zitat Haas, R., et al. 2016. Intermediates of metabolism: From bystanders to signalling molecules. Trends in biochemical sciences 41 (5): 460–471.PubMedCrossRef Haas, R., et al. 2016. Intermediates of metabolism: From bystanders to signalling molecules. Trends in biochemical sciences 41 (5): 460–471.PubMedCrossRef
59.
Zurück zum Zitat Zhou, R.-P., et al. 2016. Novel insights into acid-sensing ion channels: Implications for degenerative diseases. Aging and disease 7 (4): 491.PubMedCrossRef Zhou, R.-P., et al. 2016. Novel insights into acid-sensing ion channels: Implications for degenerative diseases. Aging and disease 7 (4): 491.PubMedCrossRef
60.
Zurück zum Zitat Osmakov, D., Y.A. Andreev, and S. Kozlov. 2014. Acid-sensing ion channels and their modulators. Biochemistry (Moscow) 79 (13): 1528–1545.PubMedCrossRef Osmakov, D., Y.A. Andreev, and S. Kozlov. 2014. Acid-sensing ion channels and their modulators. Biochemistry (Moscow) 79 (13): 1528–1545.PubMedCrossRef
61.
Zurück zum Zitat Haas, R., et al. 2015. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS biology 13 (7): e1002202.PubMedPubMedCentralCrossRef Haas, R., et al. 2015. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS biology 13 (7): e1002202.PubMedPubMedCentralCrossRef
62.
63.
Zurück zum Zitat Shen, Y., et al. 2017. Metabolic control of the scaffold protein TKS5 in tissue-invasive, proinflammatory T cells. Nature immunology 18 (9): 1025–1034.PubMedPubMedCentralCrossRef Shen, Y., et al. 2017. Metabolic control of the scaffold protein TKS5 in tissue-invasive, proinflammatory T cells. Nature immunology 18 (9): 1025–1034.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Pietrocola, F., et al. 2015. Acetyl coenzyme A: A central metabolite and second messenger. Cell metabolism 21 (6): 805–821.PubMedCrossRef Pietrocola, F., et al. 2015. Acetyl coenzyme A: A central metabolite and second messenger. Cell metabolism 21 (6): 805–821.PubMedCrossRef
66.
Zurück zum Zitat Saka, H.A., and R. Valdivia. 2012. Emerging roles for lipid droplets in immunity and host-pathogen interactions. Annual review of cell and developmental biology 28: 411–437.PubMedCrossRef Saka, H.A., and R. Valdivia. 2012. Emerging roles for lipid droplets in immunity and host-pathogen interactions. Annual review of cell and developmental biology 28: 411–437.PubMedCrossRef
68.
Zurück zum Zitat Henne, M. 2019. And three’sa party: Lysosomes, lipid droplets, and the ER in lipid trafficking and cell homeostasis. Current opinion in cell biology 59: 40–49.PubMedCrossRef Henne, M. 2019. And three’sa party: Lysosomes, lipid droplets, and the ER in lipid trafficking and cell homeostasis. Current opinion in cell biology 59: 40–49.PubMedCrossRef
69.
Zurück zum Zitat Yang, Z., J.J. Goronzy, and C.M. Weyand. 2015. Autophagy in autoimmune disease. Journal of molecular medicine 93 (7): 707–717.PubMedCrossRef Yang, Z., J.J. Goronzy, and C.M. Weyand. 2015. Autophagy in autoimmune disease. Journal of molecular medicine 93 (7): 707–717.PubMedCrossRef
70.
Zurück zum Zitat Karami, J., et al. 2020. Role of autophagy in the pathogenesis of rheumatoid arthritis: Latest evidence and therapeutic approaches. Life sciences 254: 117734.PubMedCrossRef Karami, J., et al. 2020. Role of autophagy in the pathogenesis of rheumatoid arthritis: Latest evidence and therapeutic approaches. Life sciences 254: 117734.PubMedCrossRef
71.
Zurück zum Zitat Henne, M., J.M. Goodman, and H. Hariri. 2020. Spatial compartmentalization of lipid droplet biogenesis. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1865 (1): 158499.PubMed Henne, M., J.M. Goodman, and H. Hariri. 2020. Spatial compartmentalization of lipid droplet biogenesis. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1865 (1): 158499.PubMed
72.
Zurück zum Zitat Kidani, Y., et al. 2013. Sterol regulatory element–binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nature immunology 14 (5): 489–499.PubMedPubMedCentralCrossRef Kidani, Y., et al. 2013. Sterol regulatory element–binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nature immunology 14 (5): 489–499.PubMedPubMedCentralCrossRef
73.
74.
75.
Zurück zum Zitat Vignali, P.D., J. Barbi, and F. Pan. 2017. Metabolic regulation of T cell immunity. In Immune Metabolism in Health and Tumor, 87–130. Dordrecht: Springer.CrossRef Vignali, P.D., J. Barbi, and F. Pan. 2017. Metabolic regulation of T cell immunity. In Immune Metabolism in Health and Tumor, 87–130. Dordrecht: Springer.CrossRef
76.
Zurück zum Zitat Myers, D.R., B. Wheeler, and J.P. Roose. 2019. mTOR and other effector kinase signals that impact T cell function and activity. Immunological reviews 291 (1): 134–153.PubMedPubMedCentralCrossRef Myers, D.R., B. Wheeler, and J.P. Roose. 2019. mTOR and other effector kinase signals that impact T cell function and activity. Immunological reviews 291 (1): 134–153.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Wen, Z., et al. 2019. N-myristoyltransferase deficiency impairs activation of kinase AMPK and promotes synovial tissue inflammation. Nature immunology 20 (3): 313–325.PubMedPubMedCentralCrossRef Wen, Z., et al. 2019. N-myristoyltransferase deficiency impairs activation of kinase AMPK and promotes synovial tissue inflammation. Nature immunology 20 (3): 313–325.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Lin, S.-C., and D.G. Hardie. 2018. AMPK: Sensing glucose as well as cellular energy status. Cell metabolism 27 (2): 299–313.PubMedCrossRef Lin, S.-C., and D.G. Hardie. 2018. AMPK: Sensing glucose as well as cellular energy status. Cell metabolism 27 (2): 299–313.PubMedCrossRef
79.
Zurück zum Zitat Kim, J., and K.-L. Guan. 2019. mTOR as a central hub of nutrient signalling and cell growth. Nature cell biology 21 (1): 63–71.PubMedCrossRef Kim, J., and K.-L. Guan. 2019. mTOR as a central hub of nutrient signalling and cell growth. Nature cell biology 21 (1): 63–71.PubMedCrossRef
80.
81.
Zurück zum Zitat Lamming, D.W., and L. Bar-Peled. 2019. Lysosome: The metabolic signaling hub. Traffic 20 (1): 27–38.PubMedCrossRef Lamming, D.W., and L. Bar-Peled. 2019. Lysosome: The metabolic signaling hub. Traffic 20 (1): 27–38.PubMedCrossRef
82.
Zurück zum Zitat Liang, J., et al. 2015. Myristoylation confers noncanonical AMPK functions in autophagy selectivity and mitochondrial surveillance. Nature communications 6 (1): 1–14.CrossRef Liang, J., et al. 2015. Myristoylation confers noncanonical AMPK functions in autophagy selectivity and mitochondrial surveillance. Nature communications 6 (1): 1–14.CrossRef
83.
84.
Zurück zum Zitat O’Neill, J.S., and K.A. Feeney. 2014. Circadian redox and metabolic oscillations in mammalian systems. Antioxidants & redox signaling 20 (18): 2966–2981.CrossRef O’Neill, J.S., and K.A. Feeney. 2014. Circadian redox and metabolic oscillations in mammalian systems. Antioxidants & redox signaling 20 (18): 2966–2981.CrossRef
85.
Zurück zum Zitat Putker, M., H.R. Vos, and T.B. Dansen. 2014. Intermolecular disulfide-dependent redox signalling. Biochemical Society Transactions 42 (4): 971–978.PubMedCrossRef Putker, M., H.R. Vos, and T.B. Dansen. 2014. Intermolecular disulfide-dependent redox signalling. Biochemical Society Transactions 42 (4): 971–978.PubMedCrossRef
86.
Zurück zum Zitat Sauer, H., M. Wartenberg, and J. Hescheler. 2001. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cellular physiology and biochemistry 11 (4): 173–186.PubMedCrossRef Sauer, H., M. Wartenberg, and J. Hescheler. 2001. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cellular physiology and biochemistry 11 (4): 173–186.PubMedCrossRef
87.
Zurück zum Zitat Forman, H.J., J.M. Fukuto, and M. Torres. 2004. Redox signaling: Thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. American Journal of Physiology-Cell Physiology 287 (2): C246–C256.PubMedCrossRef Forman, H.J., J.M. Fukuto, and M. Torres. 2004. Redox signaling: Thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. American Journal of Physiology-Cell Physiology 287 (2): C246–C256.PubMedCrossRef
89.
90.
Zurück zum Zitat Yau, A.C., and R. Holmdahl. 2016. Rheumatoid arthritis: Identifying and characterising polymorphisms using rat models. Disease models & mechanisms 9 (10): 1111–1123.CrossRef Yau, A.C., and R. Holmdahl. 2016. Rheumatoid arthritis: Identifying and characterising polymorphisms using rat models. Disease models & mechanisms 9 (10): 1111–1123.CrossRef
91.
Zurück zum Zitat Holmdahl, R., et al. 2016. Ncf1 polymorphism reveals oxidative regulation of autoimmune chronic inflammation. Immunological reviews 269 (1): 228–247.PubMedCrossRef Holmdahl, R., et al. 2016. Ncf1 polymorphism reveals oxidative regulation of autoimmune chronic inflammation. Immunological reviews 269 (1): 228–247.PubMedCrossRef
92.
Zurück zum Zitat Olofsson, P., and R. Holmdahl. 2003. Positional cloning of Ncf1–a piece in the puzzle of arthritis genetics. Scandinavian journal of immunology 58 (2): 155–164.PubMedCrossRef Olofsson, P., and R. Holmdahl. 2003. Positional cloning of Ncf1–a piece in the puzzle of arthritis genetics. Scandinavian journal of immunology 58 (2): 155–164.PubMedCrossRef
93.
Zurück zum Zitat Gelderman, K.A., et al. 2007. Macrophages suppress T cell responses and arthritis development in mice by producing reactive oxygen species. The Journal of clinical investigation 117 (10): 3020–3028.PubMedPubMedCentralCrossRef Gelderman, K.A., et al. 2007. Macrophages suppress T cell responses and arthritis development in mice by producing reactive oxygen species. The Journal of clinical investigation 117 (10): 3020–3028.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Gelderman, K.A., et al. 2006. T cell surface redox levels determine T cell reactivity and arthritis susceptibility. Proceedings of the National Academy of Sciences 103 (34): 12831–12836.CrossRef Gelderman, K.A., et al. 2006. T cell surface redox levels determine T cell reactivity and arthritis susceptibility. Proceedings of the National Academy of Sciences 103 (34): 12831–12836.CrossRef
95.
Zurück zum Zitat Kelkka, T., et al. 2014. Reactive oxygen species deficiency induces autoimmunity with type 1 interferon signature. Antioxidants & redox signaling 21 (16): 2231–2245.CrossRef Kelkka, T., et al. 2014. Reactive oxygen species deficiency induces autoimmunity with type 1 interferon signature. Antioxidants & redox signaling 21 (16): 2231–2245.CrossRef
96.
Zurück zum Zitat Kienhöfer, D., S. Boeltz, and M. Hoffmann. 2016. Reactive oxygen homeostasis–the balance for preventing autoimmunity. Lupus 25 (8): 943–954.PubMedCrossRef Kienhöfer, D., S. Boeltz, and M. Hoffmann. 2016. Reactive oxygen homeostasis–the balance for preventing autoimmunity. Lupus 25 (8): 943–954.PubMedCrossRef
97.
Zurück zum Zitat Gelderman, K.A., et al. 2007. Rheumatoid arthritis: The role of reactive oxygen species in disease development and therapeutic strategies. Antioxidants & Redox Signaling 9 (10): 1541–1568.CrossRef Gelderman, K.A., et al. 2007. Rheumatoid arthritis: The role of reactive oxygen species in disease development and therapeutic strategies. Antioxidants & Redox Signaling 9 (10): 1541–1568.CrossRef
98.
Zurück zum Zitat Li, Y., J.J. Goronzy, and C.M. Weyand. 2018. DNA damage, metabolism and aging in pro-inflammatory T cells: Rheumatoid arthritis as a model system. Experimental gerontology 105: 118–127.PubMedCrossRef Li, Y., J.J. Goronzy, and C.M. Weyand. 2018. DNA damage, metabolism and aging in pro-inflammatory T cells: Rheumatoid arthritis as a model system. Experimental gerontology 105: 118–127.PubMedCrossRef
99.
Zurück zum Zitat Schönland, S.O., et al. 2003. Premature telomeric loss in rheumatoid arthritis is genetically determined and involves both myeloid and lymphoid cell lineages. Proceedings of the National Academy of Sciences 100 (23): 13471–13476.CrossRef Schönland, S.O., et al. 2003. Premature telomeric loss in rheumatoid arthritis is genetically determined and involves both myeloid and lymphoid cell lineages. Proceedings of the National Academy of Sciences 100 (23): 13471–13476.CrossRef
100.
Zurück zum Zitat Koetz, K., et al. 2000. T cell homeostasis in patients with rheumatoid arthritis. Proceedings of the National Academy of Sciences 97 (16): 9203–9208.CrossRef Koetz, K., et al. 2000. T cell homeostasis in patients with rheumatoid arthritis. Proceedings of the National Academy of Sciences 97 (16): 9203–9208.CrossRef
101.
Zurück zum Zitat Goronzy, J.J., et al. 2018. Epigenetics of T cell aging. Journal of leukocyte biology 104 (4): 691–699.PubMedCrossRef Goronzy, J.J., et al. 2018. Epigenetics of T cell aging. Journal of leukocyte biology 104 (4): 691–699.PubMedCrossRef
103.
Zurück zum Zitat Li, Y., et al. 2016. Deficient activity of the nuclease MRE11A induces T cell aging and promotes arthritogenic effector functions in patients with rheumatoid arthritis. Immunity 45 (4): 903–916.PubMedPubMedCentralCrossRef Li, Y., et al. 2016. Deficient activity of the nuclease MRE11A induces T cell aging and promotes arthritogenic effector functions in patients with rheumatoid arthritis. Immunity 45 (4): 903–916.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Williams, G.J., S.P. Lees-Miller, and J.A. Tainer. 2010. Mre11–Rad50–Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks. DNA Repair 9 (12): 1299–1306.PubMedPubMedCentralCrossRef Williams, G.J., S.P. Lees-Miller, and J.A. Tainer. 2010. Mre11–Rad50–Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks. DNA Repair 9 (12): 1299–1306.PubMedPubMedCentralCrossRef
105.
106.
Zurück zum Zitat Winchester, R., et al. 2016. Association of elevations of specific T cell and monocyte subpopulations in rheumatoid arthritis with subclinical coronary artery atherosclerosis. Arthritis & Rheumatology 68 (1): 92–102.CrossRef Winchester, R., et al. 2016. Association of elevations of specific T cell and monocyte subpopulations in rheumatoid arthritis with subclinical coronary artery atherosclerosis. Arthritis & Rheumatology 68 (1): 92–102.CrossRef
108.
Zurück zum Zitat Biton, S., A. Barzilai, and Y. Shiloh. 2008. The neurological phenotype of ataxia-telangiectasia: Solving a persistent puzzle. DNA Repair 7 (7): 1028–1038.PubMedCrossRef Biton, S., A. Barzilai, and Y. Shiloh. 2008. The neurological phenotype of ataxia-telangiectasia: Solving a persistent puzzle. DNA Repair 7 (7): 1028–1038.PubMedCrossRef
109.
Zurück zum Zitat Krüger, A., and M. Ralser. 2011. ATM is a redox sensor linking genome stability and carbon metabolism. Science signaling 4 (167): pe17.PubMedCrossRef Krüger, A., and M. Ralser. 2011. ATM is a redox sensor linking genome stability and carbon metabolism. Science signaling 4 (167): pe17.PubMedCrossRef
111.
Zurück zum Zitat Westbrook, A.M., and R.H. Schiestl. 2010. Atm-deficient mice exhibit increased sensitivity to dextran sulfate sodium–induced colitis characterized by elevated DNA damage and persistent immune activation. Cancer research 70 (5): 1875–1884.PubMedPubMedCentralCrossRef Westbrook, A.M., and R.H. Schiestl. 2010. Atm-deficient mice exhibit increased sensitivity to dextran sulfate sodium–induced colitis characterized by elevated DNA damage and persistent immune activation. Cancer research 70 (5): 1875–1884.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Mousavi, M.J., et al. 2021. Transformation of fibroblast-like synoviocytes in rheumatoid arthritis; from a friend to foe. Autoimmunity Highlights 12 (1): 3.PubMedPubMedCentralCrossRef Mousavi, M.J., et al. 2021. Transformation of fibroblast-like synoviocytes in rheumatoid arthritis; from a friend to foe. Autoimmunity Highlights 12 (1): 3.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Sanz-Moreno, V., et al. 2008. Rac activation and inactivation control plasticity of tumor cell movement. Cell 135 (3): 510–523.PubMedCrossRef Sanz-Moreno, V., et al. 2008. Rac activation and inactivation control plasticity of tumor cell movement. Cell 135 (3): 510–523.PubMedCrossRef
114.
Zurück zum Zitat Gaylo, A., et al. 2016. T cell interstitial migration: Motility cues from the inflamed tissue for micro-and macro-positioning. Frontiers in immunology 7: 428.PubMedPubMedCentralCrossRef Gaylo, A., et al. 2016. T cell interstitial migration: Motility cues from the inflamed tissue for micro-and macro-positioning. Frontiers in immunology 7: 428.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Korpos, E., et al. 2010. Role of the extracellular matrix in lymphocyte migration. Cell and tissue research 339 (1): 47–57.PubMedCrossRef Korpos, E., et al. 2010. Role of the extracellular matrix in lymphocyte migration. Cell and tissue research 339 (1): 47–57.PubMedCrossRef
116.
Zurück zum Zitat Hind, L.E., W.J. Vincent, and A. Huttenlocher. 2016. Leading from the back: The role of the uropod in neutrophil polarization and migration. Developmental cell 38 (2): 161–169.PubMedPubMedCentralCrossRef Hind, L.E., W.J. Vincent, and A. Huttenlocher. 2016. Leading from the back: The role of the uropod in neutrophil polarization and migration. Developmental cell 38 (2): 161–169.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Alonso, F., et al. 2019. Variations on the theme of podosomes: A matter of context. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1866 (4): 545–553.PubMedCrossRef Alonso, F., et al. 2019. Variations on the theme of podosomes: A matter of context. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1866 (4): 545–553.PubMedCrossRef
118.
Zurück zum Zitat Courtneidge, S.A. 2012. Cell migration and invasion in human disease: The Tks adaptor proteins. Biochemical Society Transactions 40 (1): 129–132.PubMedPubMedCentralCrossRef Courtneidge, S.A. 2012. Cell migration and invasion in human disease: The Tks adaptor proteins. Biochemical Society Transactions 40 (1): 129–132.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Moreno-Aurioles, V., and F. Sobrino. 1991. Glucocorticoids inhibit fructose 2, 6-bisphosphate synthesis in rat thymocytes. Opposite effect of cycloheximide. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1091 (1): 96–100.PubMedCrossRef Moreno-Aurioles, V., and F. Sobrino. 1991. Glucocorticoids inhibit fructose 2, 6-bisphosphate synthesis in rat thymocytes. Opposite effect of cycloheximide. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1091 (1): 96–100.PubMedCrossRef
120.
Zurück zum Zitat He, X., et al. 2011. Mycophenolic acid-mediated suppression of human CD4+ T cells: More than mere guanine nucleotide deprivation. American Journal of Transplantation 11 (3): 439–449.PubMedCrossRef He, X., et al. 2011. Mycophenolic acid-mediated suppression of human CD4+ T cells: More than mere guanine nucleotide deprivation. American Journal of Transplantation 11 (3): 439–449.PubMedCrossRef
121.
Zurück zum Zitat Ma, E.H., et al. 2017. Serine is an essential metabolite for effector T cell expansion. Cell metabolism 25 (2): 345–357.PubMedCrossRef Ma, E.H., et al. 2017. Serine is an essential metabolite for effector T cell expansion. Cell metabolism 25 (2): 345–357.PubMedCrossRef
122.
Zurück zum Zitat Shuvalov, O., et al. 2017. One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy. Oncotarget 8 (14): 23955.PubMedPubMedCentralCrossRef Shuvalov, O., et al. 2017. One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy. Oncotarget 8 (14): 23955.PubMedPubMedCentralCrossRef
Metadaten
Titel
Role of T Cells in the Pathogenesis of Rheumatoid Arthritis: Focus on Immunometabolism Dysfunctions
verfasst von
Maryam Masoumi
Samira Alesaeidi
Hossein Khorramdelazad
Mousa Behzadi
Rasoul Baharlou
Shahin Alizadeh-Fanalou
Jafar Karami
Publikationsdatum
10.10.2022
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01751-9

Weitere Artikel der Ausgabe 1/2023

Inflammation 1/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.