Skip to main content
Erschienen in: Inflammation 1/2023

01.10.2022 | Original Article

Knockout of ICAT in Adipose Tissue Alleviates Fibro-inflammation in Obese Mice

verfasst von: Zhuan Song, Ning Liu, Yu He, Jingqing Chen, Jun Li, Fengchao Wang, Zhenlong Wu

Erschienen in: Inflammation | Ausgabe 1/2023

Einloggen, um Zugang zu erhalten

Abstract

The E2 promoter binding factor 1 (E2F1) and the Wnt/β-catenin signaling are crucial in regulating metabolic homeostasis including obesity. The β-catenin interacting protein 1 (CTNNBIP1), also known as the inhibitor of β-catenin and TCF4 (ICAT), is required for E2F1 to inhibit the activity of β-catenin. However, the role of ICAT in E2F1 regulating obesity-related metabolic disorders remains unknown. In the present study, male adipose tissue-specific ICAT knockout (ICATadi−/−) C57BL/6 J mice and control littermates aged 6–8 weeks were fed with high-fat diet (HFD) for 12 weeks to explore the effect of ICAT on lipid metabolism and obesity-related disorders. Results showed that the adipose tissue-specific ICAT knockout had negligible effect on lipid metabolism, reflected by no difference in body weight, fat mass, and the expression of proteins involved in lipid metabolism in white adipose tissue (WAT) and the liver between the ICATadi−/− mice and the control littermate (ICATfl/fl) mice. However, the knockout of ICAT reduced inflammatory response in WAT and the liver. Additionally, Sirius red staining results showed that deletion of ICAT attenuated fibrosis and reduced mRNA levels of transforming growth factor β1(TGF-β1), matrix metallopeptidase 2 (Mmp2), Mmp3, and collagen, type V, alpha 1 (Col5a1) in WAT and the liver. These results suggested that knockout of ICAT improved the metabolic abnormalities of obese mice through attenuating adipose tissue and the liver inflammation as well as fibrosis. Our findings may provide a new insight to understand the role of ICAT in inflammation and fibrosis.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Cinti, S. 2018. Adipose organ development and remodeling. Comprehensive Physiology 8 (4): 1357–1431.PubMedCrossRef Cinti, S. 2018. Adipose organ development and remodeling. Comprehensive Physiology 8 (4): 1357–1431.PubMedCrossRef
2.
Zurück zum Zitat Backdahl, J., L. Franzen, L. Massier, Q. Li, J. Jalkanen, H. Gao, et al. 2021. Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin. Cell Metabolism 33 (9): 1869–1882.PubMedCrossRef Backdahl, J., L. Franzen, L. Massier, Q. Li, J. Jalkanen, H. Gao, et al. 2021. Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin. Cell Metabolism 33 (9): 1869–1882.PubMedCrossRef
4.
Zurück zum Zitat Worldwide trends in body-mass index, and underweight, overweight, and obesity from. 1975. to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 390 (10113): 2627–2642. Worldwide trends in body-mass index, and underweight, overweight, and obesity from. 1975. to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 390 (10113): 2627–2642.
5.
Zurück zum Zitat Hogan, P., T. Dall, and P. Nikolov. 2003. Economic costs of diabetes in the US in 2002. Diabetes Care 26 (3): 917–932.PubMedCrossRef Hogan, P., T. Dall, and P. Nikolov. 2003. Economic costs of diabetes in the US in 2002. Diabetes Care 26 (3): 917–932.PubMedCrossRef
6.
Zurück zum Zitat Flier, J.S. 2004. Obesity wars: Molecular progress confronts an expanding epidemic. Cell 116 (2): 337–350.PubMedCrossRef Flier, J.S. 2004. Obesity wars: Molecular progress confronts an expanding epidemic. Cell 116 (2): 337–350.PubMedCrossRef
7.
Zurück zum Zitat Ellulu, M.S., I. Patimah, H. Khaza’ai, A. Rahmat, and Y. Abed. 2017. Obesity and inflammation: The linking mechanism and the complications. Archives of Medical Science 13 (4): 851–863.PubMedCrossRef Ellulu, M.S., I. Patimah, H. Khaza’ai, A. Rahmat, and Y. Abed. 2017. Obesity and inflammation: The linking mechanism and the complications. Archives of Medical Science 13 (4): 851–863.PubMedCrossRef
8.
Zurück zum Zitat Xu, L., N. Nagata, and T. Ota. 2018. Glucoraphanin: A broccoli sprout extract that ameliorates obesity-induced inflammation and insulin resistance. Adipocyte 7 (3): 218–225.PubMedPubMedCentralCrossRef Xu, L., N. Nagata, and T. Ota. 2018. Glucoraphanin: A broccoli sprout extract that ameliorates obesity-induced inflammation and insulin resistance. Adipocyte 7 (3): 218–225.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Tang, Q.Q., and M.D. Lane. 2012. Adipogenesis: From stem cell to adipocyte. Annual Review of Biochemistry 81: 715–736.PubMedCrossRef Tang, Q.Q., and M.D. Lane. 2012. Adipogenesis: From stem cell to adipocyte. Annual Review of Biochemistry 81: 715–736.PubMedCrossRef
10.
Zurück zum Zitat Cawthorn, W.P., F. Heyd, K. Hegyi, and J.K. Sethi. 2007. Tumour necrosis factor-alpha inhibits adipogenesis via a beta-catenin/TCF4(TCF7L2)-dependent pathway. Cell Death and Differentiation 14 (7): 1361–1373.PubMedCrossRef Cawthorn, W.P., F. Heyd, K. Hegyi, and J.K. Sethi. 2007. Tumour necrosis factor-alpha inhibits adipogenesis via a beta-catenin/TCF4(TCF7L2)-dependent pathway. Cell Death and Differentiation 14 (7): 1361–1373.PubMedCrossRef
11.
Zurück zum Zitat Chen, M., P. Lu, Q. Ma, Y. Cao, N. Chen, W. Li, et al. 2020. CTNNB1/β-catenin dysfunction contributes to adiposity by regulating the cross-talk of mature adipocytes and preadipocytes. Science Advance 6(2): eaax9605. Chen, M., P. Lu, Q. Ma, Y. Cao, N. Chen, W. Li, et al. 2020. CTNNB1/β-catenin dysfunction contributes to adiposity by regulating the cross-talk of mature adipocytes and preadipocytes. Science Advance 6(2): eaax9605.
12.
Zurück zum Zitat Christodoulides, C., A. Scarda, M. Granzotto, G. Milan, E. Dalla Nora, J. Keogh, et al. 2006. WNT10B mutations in human obesity. Diabetologia 49 (4): 678–684.PubMedPubMedCentralCrossRef Christodoulides, C., A. Scarda, M. Granzotto, G. Milan, E. Dalla Nora, J. Keogh, et al. 2006. WNT10B mutations in human obesity. Diabetologia 49 (4): 678–684.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Mattei, J., Q. Qi, F.B. Hu, F.M. Sacks, and L. Qi. 2012. TCF7L2 genetic variants modulate the effect of dietary fat intake on changes in body composition during a weight-loss intervention. American Journal of Clinical Nutrition 96 (5): 1129–1136.PubMedPubMedCentralCrossRef Mattei, J., Q. Qi, F.B. Hu, F.M. Sacks, and L. Qi. 2012. TCF7L2 genetic variants modulate the effect of dietary fat intake on changes in body composition during a weight-loss intervention. American Journal of Clinical Nutrition 96 (5): 1129–1136.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Bowers, R.R., and M.D. Lane. 2008. Wnt signaling and adipocyte lineage commitment. Cell Cycle 7 (9): 1191–1196.PubMedCrossRef Bowers, R.R., and M.D. Lane. 2008. Wnt signaling and adipocyte lineage commitment. Cell Cycle 7 (9): 1191–1196.PubMedCrossRef
15.
Zurück zum Zitat Rosen, E.D., and O.A. MacDougald. 2006. Adipocyte differentiation from the inside out. Nature Reviews: Molecular Cell Biology 7 (12): 885–896.PubMedCrossRef Rosen, E.D., and O.A. MacDougald. 2006. Adipocyte differentiation from the inside out. Nature Reviews: Molecular Cell Biology 7 (12): 885–896.PubMedCrossRef
16.
Zurück zum Zitat Haim, Y., M. Bluher, N. Slutsky, N. Goldstein, N. Kloting, I. Harman-Boehm, et al. 2015. Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1. Autophagy 11 (11): 2074–2088.PubMedPubMedCentralCrossRef Haim, Y., M. Bluher, N. Slutsky, N. Goldstein, N. Kloting, I. Harman-Boehm, et al. 2015. Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1. Autophagy 11 (11): 2074–2088.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Julien, C., B. Le-Bail, K. Ouazzani Touhami, N. Frulio, J.F. Blanc, J.P. Adam, et al. 2021. Hepatocellular adenoma rrisk factors of hemorrhage: Size is not the only concern!: Single-center retrospective experience of 261 patients. Annals of Surgery 274 (5): 843–850.PubMedCrossRef Julien, C., B. Le-Bail, K. Ouazzani Touhami, N. Frulio, J.F. Blanc, J.P. Adam, et al. 2021. Hepatocellular adenoma rrisk factors of hemorrhage: Size is not the only concern!: Single-center retrospective experience of 261 patients. Annals of Surgery 274 (5): 843–850.PubMedCrossRef
18.
Zurück zum Zitat Luke, J.J., R. Bao, R.F. Sweis, S. Spranger, and T.F. Gajewski. 2019. WNT/β-catenin pathway activation correlates with immune exclusion across human cancers. Clinical Cancer Research 25 (10): 3074–3083.PubMedPubMedCentralCrossRef Luke, J.J., R. Bao, R.F. Sweis, S. Spranger, and T.F. Gajewski. 2019. WNT/β-catenin pathway activation correlates with immune exclusion across human cancers. Clinical Cancer Research 25 (10): 3074–3083.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Mandigo, A.C., W. Yuan, K. Xu, P. Gallagher, A. Pang, Y.F. Guan, et al. 2021. RB/E2F1 as a master regulator of cancer cell metabolism in advanced disease. Cancer Discovery 11 (9): 2334–2353.PubMedPubMedCentralCrossRef Mandigo, A.C., W. Yuan, K. Xu, P. Gallagher, A. Pang, Y.F. Guan, et al. 2021. RB/E2F1 as a master regulator of cancer cell metabolism in advanced disease. Cancer Discovery 11 (9): 2334–2353.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Chun, J.N., M. Cho, S. Park, I. So, and J.H. Jeon. 2020. The conflicting role of E2F1 in prostate cancer: A matter of cell context or interpretational flexibility? Biochimical et Biophysica Acta-Review on Cancer 1873 (1): 188336.CrossRef Chun, J.N., M. Cho, S. Park, I. So, and J.H. Jeon. 2020. The conflicting role of E2F1 in prostate cancer: A matter of cell context or interpretational flexibility? Biochimical et Biophysica Acta-Review on Cancer 1873 (1): 188336.CrossRef
21.
Zurück zum Zitat Morris, E.J., J.Y. Ji, F. Yang, L. Di Stefano, A. Herr, N.S. Moon, et al. 2008. E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature 455 (7212): 552–556.PubMedPubMedCentralCrossRef Morris, E.J., J.Y. Ji, F. Yang, L. Di Stefano, A. Herr, N.S. Moon, et al. 2008. E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature 455 (7212): 552–556.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Zhao, J., R. Ramos, and M. Demma. 2013. CDK8 regulates E2F1 transcriptional activity through S375 phosphorylation. Oncogene 32 (30): 3520–3530.PubMedCrossRef Zhao, J., R. Ramos, and M. Demma. 2013. CDK8 regulates E2F1 transcriptional activity through S375 phosphorylation. Oncogene 32 (30): 3520–3530.PubMedCrossRef
23.
Zurück zum Zitat Wu, Z., S. Zheng, Z. Li, J. Tan, and Q. Yu. 2011. E2F1 suppresses Wnt/beta-catenin activity through transactivation of beta-catenin interacting protein ICAT. Oncogene 30 (37): 3979–3984.PubMedCrossRef Wu, Z., S. Zheng, Z. Li, J. Tan, and Q. Yu. 2011. E2F1 suppresses Wnt/beta-catenin activity through transactivation of beta-catenin interacting protein ICAT. Oncogene 30 (37): 3979–3984.PubMedCrossRef
24.
Zurück zum Zitat Wells, J., C.R. Graveel, S.M. Bartley, S.J. Madore, and P.J. Farnham. 2002. The identification of E2F1-specific target genes. Proceedings of the National Academy of Sciences of the United States of America 99 (6): 3890–3895.PubMedPubMedCentralCrossRef Wells, J., C.R. Graveel, S.M. Bartley, S.J. Madore, and P.J. Farnham. 2002. The identification of E2F1-specific target genes. Proceedings of the National Academy of Sciences of the United States of America 99 (6): 3890–3895.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Annicotte, J.S., E. Blanchet, C. Chavey, I. Iankova, S. Costes, S. Assou, et al. 2009. The CDK4-pRB-E2F1 pathway controls insulin secretion. Nature Cell Biology 11 (8): 1017–1023.PubMedPubMedCentralCrossRef Annicotte, J.S., E. Blanchet, C. Chavey, I. Iankova, S. Costes, S. Assou, et al. 2009. The CDK4-pRB-E2F1 pathway controls insulin secretion. Nature Cell Biology 11 (8): 1017–1023.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Blanchet, E., J.S. Annicotte, S. Lagarrigue, V. Aguilar, C. Clape, C. Chavey, et al. 2011. E2F transcription factor-1 regulates oxidative metabolism. Nature Cell Biology 13 (9): 1146–1152.PubMedCrossRef Blanchet, E., J.S. Annicotte, S. Lagarrigue, V. Aguilar, C. Clape, C. Chavey, et al. 2011. E2F transcription factor-1 regulates oxidative metabolism. Nature Cell Biology 13 (9): 1146–1152.PubMedCrossRef
27.
Zurück zum Zitat Denechaud, P.D., I.C. Lopez-Mejia, A. Giralt, Q. Lai, E. Blanchet, B. Delacuisine, et al. 2016. E2F1 mediates sustained lipogenesis and contributes to hepatic steatosis. Journal of Clinical Investigation 126 (1): 137–150.PubMedCrossRef Denechaud, P.D., I.C. Lopez-Mejia, A. Giralt, Q. Lai, E. Blanchet, B. Delacuisine, et al. 2016. E2F1 mediates sustained lipogenesis and contributes to hepatic steatosis. Journal of Clinical Investigation 126 (1): 137–150.PubMedCrossRef
28.
Zurück zum Zitat Giralt, A., P.D. Denechaud, I.C. Lopez-Mejia, B. Delacuisine, E. Blanchet, C. Bonner, et al. 2018. E2F1 promotes hepatic gluconeogenesis and contributes to hyperglycemia during diabetes. Molecular Metabolism 11: 104–112.PubMedPubMedCentralCrossRef Giralt, A., P.D. Denechaud, I.C. Lopez-Mejia, B. Delacuisine, E. Blanchet, C. Bonner, et al. 2018. E2F1 promotes hepatic gluconeogenesis and contributes to hyperglycemia during diabetes. Molecular Metabolism 11: 104–112.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Lai, Q., A. Giralt, C. Le May, L. Zhang, B. Cariou, P. D. Denechaud, et al. 2017. E2F1 inhibits circulating cholesterol clearance by regulating Pcsk9 expression in the liver. Junior Chamber International Insight 2(10). Lai, Q., A. Giralt, C. Le May, L. Zhang, B. Cariou, P. D. Denechaud, et al. 2017. E2F1 inhibits circulating cholesterol clearance by regulating Pcsk9 expression in the liver. Junior Chamber International Insight 2(10).
30.
Zurück zum Zitat Lu, Z., G. Marcelin, F. Bauzon, H. Wang, H. Fu, S.L. Dun, et al. 2013. pRb is an obesity suppressor in hypothalamus and high-fat diet inhibits pRb in this location. The EMBO Journal 32 (6): 844–857.PubMedPubMedCentralCrossRef Lu, Z., G. Marcelin, F. Bauzon, H. Wang, H. Fu, S.L. Dun, et al. 2013. pRb is an obesity suppressor in hypothalamus and high-fat diet inhibits pRb in this location. The EMBO Journal 32 (6): 844–857.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Xiong, M., W. Hu, Y. Tan, H. Yu, Q. Zhang, C. Zhao, et al. 2021. Transcription factor E2F1 knockout promotes mice white adipose tissue browning through autophagy inhibition. Frontiers in Physiology 12: 748040.PubMedPubMedCentralCrossRef Xiong, M., W. Hu, Y. Tan, H. Yu, Q. Zhang, C. Zhao, et al. 2021. Transcription factor E2F1 knockout promotes mice white adipose tissue browning through autophagy inhibition. Frontiers in Physiology 12: 748040.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Chen, J., Y. Yang, S. Li, Y. Yang, Z. Dai, F. Wang, et al. 2020. E2F1 regulates adipocyte differentiation and adipogenesis by activating ICAT. Cells 9(4): 1024. Chen, J., Y. Yang, S. Li, Y. Yang, Z. Dai, F. Wang, et al. 2020. E2F1 regulates adipocyte differentiation and adipogenesis by activating ICAT. Cells 9(4): 1024.
33.
Zurück zum Zitat Satoh, K., M. Kasai, T. Ishidao, K. Tago, S. Ohwada, Y. Hasegawa, et al. 2004. Anteriorization of neural fate by inhibitor of beta-catenin and T cell factor (ICAT), a negative regulator of Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America 101 (21): 8017–8021.PubMedPubMedCentralCrossRef Satoh, K., M. Kasai, T. Ishidao, K. Tago, S. Ohwada, Y. Hasegawa, et al. 2004. Anteriorization of neural fate by inhibitor of beta-catenin and T cell factor (ICAT), a negative regulator of Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America 101 (21): 8017–8021.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Jia, H., N. Liu, Y. Zhang, C. Wang, Y. Yang, and Z. Wu. 2021. 3-Acetyldeoxynivalenol induces cell death through endoplasmic reticulum stress in mouse liver. Environmental Pollution 286: 117238.PubMedCrossRef Jia, H., N. Liu, Y. Zhang, C. Wang, Y. Yang, and Z. Wu. 2021. 3-Acetyldeoxynivalenol induces cell death through endoplasmic reticulum stress in mouse liver. Environmental Pollution 286: 117238.PubMedCrossRef
35.
Zurück zum Zitat Kent, L.N., and G. Leone. 2019. The broken cycle: E2F dysfunction in cancer. Nature Reviews: Cancer 19 (6): 326–338.PubMed Kent, L.N., and G. Leone. 2019. The broken cycle: E2F dysfunction in cancer. Nature Reviews: Cancer 19 (6): 326–338.PubMed
36.
Zurück zum Zitat Fajas, L., R.L. Landsberg, Y. Huss-Garcia, C. Sardet, J.A. Lees, and J. Auwerx. 2002. E2Fs regulate adipocyte differentiation. Developmental Cell 3 (1): 39–49.PubMedCrossRef Fajas, L., R.L. Landsberg, Y. Huss-Garcia, C. Sardet, J.A. Lees, and J. Auwerx. 2002. E2Fs regulate adipocyte differentiation. Developmental Cell 3 (1): 39–49.PubMedCrossRef
37.
Zurück zum Zitat Graham, T.A., W.K. Clements, D. Kimelman, and W. Xu. 2002. The crystal structure of the beta-catenin/ICAT complex reveals the inhibitory mechanism of ICAT. Molecular Cell 10 (3): 563–571.PubMedCrossRef Graham, T.A., W.K. Clements, D. Kimelman, and W. Xu. 2002. The crystal structure of the beta-catenin/ICAT complex reveals the inhibitory mechanism of ICAT. Molecular Cell 10 (3): 563–571.PubMedCrossRef
38.
Zurück zum Zitat Kim, S.E., H. Huang, M. Zhao, X. Zhang, A. Zhang, M.V. Semonov, et al. 2013. Wnt stabilization of β-catenin reveals principles for morphogen receptor-scaffold assemblies. Science 340 (6134): 867–870.PubMedPubMedCentralCrossRef Kim, S.E., H. Huang, M. Zhao, X. Zhang, A. Zhang, M.V. Semonov, et al. 2013. Wnt stabilization of β-catenin reveals principles for morphogen receptor-scaffold assemblies. Science 340 (6134): 867–870.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Ji, L., B. Lu, Z. Wang, Z. Yang, J. Reece-Hoyes, C. Russ, et al. 2018. Identification of ICAT as an APC inhibitor, revealing Wnt-dependent inhibition of APC-Axin interaction. Molecular Cell 72(1): 37–47 e34. Ji, L., B. Lu, Z. Wang, Z. Yang, J. Reece-Hoyes, C. Russ, et al. 2018. Identification of ICAT as an APC inhibitor, revealing Wnt-dependent inhibition of APC-Axin interaction. Molecular Cell 72(1): 37–47 e34.
40.
Zurück zum Zitat Xu, H., G.T. Barnes, Q. Yang, G. Tan, D. Yang, C.J. Chou, et al. 2003. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. Journal of Clinical Investigation 112 (12): 1821–1830.PubMedPubMedCentralCrossRef Xu, H., G.T. Barnes, Q. Yang, G. Tan, D. Yang, C.J. Chou, et al. 2003. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. Journal of Clinical Investigation 112 (12): 1821–1830.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Weisberg, S.P., D. McCann, M. Desai, M. Rosenbaum, R.L. Leibel, and A.W. Ferrante Jr. 2003. Obesity is associated with macrophage accumulation in adipose tissue. Journal of Clinical Investigation 112 (12): 1796–1808.PubMedPubMedCentralCrossRef Weisberg, S.P., D. McCann, M. Desai, M. Rosenbaum, R.L. Leibel, and A.W. Ferrante Jr. 2003. Obesity is associated with macrophage accumulation in adipose tissue. Journal of Clinical Investigation 112 (12): 1796–1808.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Skurk, T., C. Alberti-Huber, C. Herder, and H. Hauner. 2007. Relationship between adipocyte size and adipokine expression and secretion. Journal of Clinical Endocrinology and Metabolism 92 (3): 1023–1033.PubMedCrossRef Skurk, T., C. Alberti-Huber, C. Herder, and H. Hauner. 2007. Relationship between adipocyte size and adipokine expression and secretion. Journal of Clinical Endocrinology and Metabolism 92 (3): 1023–1033.PubMedCrossRef
44.
Zurück zum Zitat Ebke, L.A., A.L. Nestor-Kalinoski, B.D. Slotterbeck, A.G. Al-Dieri, S. Ghosh-Lester, L. Russo, et al. 2014. Tight association between macrophages and adipocytes in obesity: Implications for adipocyte preparation. Obesity (Silver Spring) 22 (5): 1246–1255.PubMedCrossRef Ebke, L.A., A.L. Nestor-Kalinoski, B.D. Slotterbeck, A.G. Al-Dieri, S. Ghosh-Lester, L. Russo, et al. 2014. Tight association between macrophages and adipocytes in obesity: Implications for adipocyte preparation. Obesity (Silver Spring) 22 (5): 1246–1255.PubMedCrossRef
45.
Zurück zum Zitat Lim, C.A., F. Yao, J.J. Wong, J. George, H. Xu, K.P. Chiu, et al. 2007. Genome-wide mapping of RELA(p65) binding identifies E2F1 as a transcriptional activator recruited by NF-kappaB upon TLR4 activation. Molecular Cell 27 (4): 622–635.PubMedCrossRef Lim, C.A., F. Yao, J.J. Wong, J. George, H. Xu, K.P. Chiu, et al. 2007. Genome-wide mapping of RELA(p65) binding identifies E2F1 as a transcriptional activator recruited by NF-kappaB upon TLR4 activation. Molecular Cell 27 (4): 622–635.PubMedCrossRef
46.
Zurück zum Zitat Warg, L.A., J.L. Oakes, R. Burton, A.J. Neidermyer, H.R. Rutledge, S. Groshong, et al. 2012. The role of the E2F1 transcription factor in the innate immune response to systemic LPS. American Journal of Physiology: Lung Cellular and Molecular Physiology 303 (5): L391-400.PubMedPubMedCentral Warg, L.A., J.L. Oakes, R. Burton, A.J. Neidermyer, H.R. Rutledge, S. Groshong, et al. 2012. The role of the E2F1 transcription factor in the innate immune response to systemic LPS. American Journal of Physiology: Lung Cellular and Molecular Physiology 303 (5): L391-400.PubMedPubMedCentral
47.
Zurück zum Zitat Yang, I.V., S. Alper, B. Lackford, H. Rutledge, L.A. Warg, L.H. Burch, et al. 2011. Novel regulators of the systemic response to lipopolysaccharide. American Journal of Respiratory Cell and Molecular Biology 45 (2): 393–402.PubMedCrossRef Yang, I.V., S. Alper, B. Lackford, H. Rutledge, L.A. Warg, L.H. Burch, et al. 2011. Novel regulators of the systemic response to lipopolysaccharide. American Journal of Respiratory Cell and Molecular Biology 45 (2): 393–402.PubMedCrossRef
48.
Zurück zum Zitat Marcelin, G., A.L.M. Silveira, L.B. Martins, A.V. Ferreira, and K. Clement. 2019. Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis. Journal of Clinical Investigation 129 (10): 4032–4040.PubMedPubMedCentralCrossRef Marcelin, G., A.L.M. Silveira, L.B. Martins, A.V. Ferreira, and K. Clement. 2019. Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis. Journal of Clinical Investigation 129 (10): 4032–4040.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Walton, K.L., K.E. Johnson, and C.A. Harrison. 2017. Targeting TGF-β mediated SMAD signaling for the prevention of fibrosis. Frontiers in Pharmacology 8: 461.PubMedPubMedCentralCrossRef Walton, K.L., K.E. Johnson, and C.A. Harrison. 2017. Targeting TGF-β mediated SMAD signaling for the prevention of fibrosis. Frontiers in Pharmacology 8: 461.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Bonnans, C., J. Chou, and Z. Werb. 2014. Remodelling the extracellular matrix in development and disease. Nature Reviews: Molecular Cell Biology 15 (12): 786–801.PubMedCrossRef Bonnans, C., J. Chou, and Z. Werb. 2014. Remodelling the extracellular matrix in development and disease. Nature Reviews: Molecular Cell Biology 15 (12): 786–801.PubMedCrossRef
51.
Zurück zum Zitat Reed, N.I., H. Jo, C. Chen, K. Tsujino, T.D. Arnold, W.F. DeGrado, et al. 2015. The αvβ1 integrin plays a critical in vivo role in tissue fibrosis. Science Translational Medicine 7(288): ra79. Reed, N.I., H. Jo, C. Chen, K. Tsujino, T.D. Arnold, W.F. DeGrado, et al. 2015. The αvβ1 integrin plays a critical in vivo role in tissue fibrosis. Science Translational Medicine 7(288): ra79.
52.
Zurück zum Zitat Jernås, M., J. Palming, K. Sjöholm, E. Jennische, P.A. Svensson, B.G. Gabrielsson, et al. 2006. Separation of human adipocytes by size: Hypertrophic fat cells display distinct gene expression. FASEB Journal 20 (9): 1540–1542.PubMedCrossRef Jernås, M., J. Palming, K. Sjöholm, E. Jennische, P.A. Svensson, B.G. Gabrielsson, et al. 2006. Separation of human adipocytes by size: Hypertrophic fat cells display distinct gene expression. FASEB Journal 20 (9): 1540–1542.PubMedCrossRef
53.
Zurück zum Zitat Chun, T.H., K.B. Hotary, F. Sabeh, A.R. Saltiel, E.D. Allen, and S.J. Weiss. 2006. A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125 (3): 577–591.PubMedCrossRef Chun, T.H., K.B. Hotary, F. Sabeh, A.R. Saltiel, E.D. Allen, and S.J. Weiss. 2006. A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125 (3): 577–591.PubMedCrossRef
54.
Zurück zum Zitat Kim, J.Y., E. van de Wall, M. Laplante, A. Azzara, M.E. Trujillo, S.M. Hofmann, et al. 2007. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. Journal of Clinical Investigation 117 (9): 2621–2637.PubMedPubMedCentralCrossRef Kim, J.Y., E. van de Wall, M. Laplante, A. Azzara, M.E. Trujillo, S.M. Hofmann, et al. 2007. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. Journal of Clinical Investigation 117 (9): 2621–2637.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Pellegrinelli, V., J. Heuvingh, O. du Roure, C. Rouault, A. Devulder, C. Klein, et al. 2014. Human adipocyte function is impacted by mechanical cues. Journal of Pathology 233 (2): 183–195.PubMedCrossRef Pellegrinelli, V., J. Heuvingh, O. du Roure, C. Rouault, A. Devulder, C. Klein, et al. 2014. Human adipocyte function is impacted by mechanical cues. Journal of Pathology 233 (2): 183–195.PubMedCrossRef
56.
Zurück zum Zitat Atzori, L., G. Poli, and A. Perra. 2009. Hepatic stellate cell: A star cell in the liver. International Journal of Biochemistry and Cell Biology 41 (8–9): 1639–1642.PubMedCrossRef Atzori, L., G. Poli, and A. Perra. 2009. Hepatic stellate cell: A star cell in the liver. International Journal of Biochemistry and Cell Biology 41 (8–9): 1639–1642.PubMedCrossRef
57.
Zurück zum Zitat Sano, A., E. Kakazu, S. Hamada, J. Inoue, M. Ninomiya, T. Iwata, et al. 2021. Steatotic hepatocytes release mature VLDL through methionine and tyrosine metabolism in a keap1-Nrf2-dependent manner. Hepatology 74 (3): 1271–1286.PubMedCrossRef Sano, A., E. Kakazu, S. Hamada, J. Inoue, M. Ninomiya, T. Iwata, et al. 2021. Steatotic hepatocytes release mature VLDL through methionine and tyrosine metabolism in a keap1-Nrf2-dependent manner. Hepatology 74 (3): 1271–1286.PubMedCrossRef
Metadaten
Titel
Knockout of ICAT in Adipose Tissue Alleviates Fibro-inflammation in Obese Mice
verfasst von
Zhuan Song
Ning Liu
Yu He
Jingqing Chen
Jun Li
Fengchao Wang
Zhenlong Wu
Publikationsdatum
01.10.2022
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01742-w

Weitere Artikel der Ausgabe 1/2023

Inflammation 1/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.