Skip to main content
Erschienen in: BMC Pediatrics 1/2022

Open Access 01.12.2022 | Case report

Failure of crizotinib based systemic treatment in ALK positive histiocytosis involving the central nervous system: a case report and literature review

verfasst von: Qiang He, Wenjie Zhang, Qiang Li

Erschienen in: BMC Pediatrics | Ausgabe 1/2022

Abstract

Background

Among the histiocytic disorders, anaplastic lymphoma kinase (ALK)-positive histiocytosis emerged in 2008. As more and more cases of the novel entity are reported, our understanding of it is deepened. However, only a few cases with central nervous system (CNS) involvement have been reported. Furthermore, the lesion in the suprasellar region has not been documented. 

Case presentation

We presented a case of ALK-positive histiocytosis involving the suprasellar region of a one-year-and-four-month-old boy. Through clinical, neuropathological, and genomic analyses, the patient was diagnosed with ALK-positive histiocytosis. After lesions were resected he started treatment with a combination of the three compounds vincristine, prednisolone, and crizotinib, but they did not work. Cytarabine was then added as an additional chemotherapy drug for him, and the lesions in the brain and lungs were shrunk by combining treatment of crizotinib, dexamethasone, vincristine, and cytarabine according to the RECIST (esponse Evaluation Criteria In Solid Tumours).

Conclusions

Additional adjuvant chemotherapy drugs are needed when ALK-inhibitor treatment is ineffective.
Hinweise
Qiang He and Wenjie Zhang contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ALK
Anaplastic lymphoma kinase
CNS
Central nervous system
NGS
Next-generation sequencing
MRI
Magnetic resonance imaging
CT
Computed tomography
FISH
Fluorescence in situ hybridization
SDE
Subdural effusion
CSF
Cerebrospinal fluid
ECD
Erdheim-Chester disease
LCH
Langerhans cell histiocytosis
SDEH
Subdural effusion with hydrocephalus

Background

In 2008, JK Chan et al. [1] first described the anaplastic lymphoma kinase (ALK)-positive histiocytosis, which is a novel proliferation of morphologically distinctive histiocytes with a chromosomal translocation involving ALK. Since then, they have reported 10 cases of ALK-positive histiocytosis, including one affecting the cavernous sinus [2]. ALK-positive histiocytosis in the central nervous system (CNS) has been rarely reported. It is either part of multiple disseminated lesions or the only manifestation of localized disease [213]. In particular, the lesion in the suprasellar region has never been described.
In this study, we reported the case of a one-year-and-four-month-old boy who was diagnosed with ALK-positive histiocytosis involving the suprasellar region following clinicopathological, molecular, and next-generation sequencing (NGS) examinations. Further, the literature review was performed to identify the clinical characteristics of the entity involving CNS.

Case presentation

The timeline of the treatment is shown in Fig. 1.
The patient was a one-year-and-four-month-old boy who was admitted for rapid weight loss and difficulty in walking for three months. A magnetic resonance imaging (MRI) of the head revealed a lesion in the suprasellar region. The result of the neurological examination showed that the fontanelle was slightly prominent. The head circumference was within normal limits. The patient could walk slowly with the help of his parents but not walk independently.
During pregnancy, the imaging examination of the mother of the patient showed no abnormalities. The patient and his family members did not have a similar illness or any other abnormal medical history. No abnormal phenomena were observed at birth. Indicators in routine child health care were normal.
The laboratory examination results, including blood routine and blood biochemistry, were normal. The biological biomarker test revealed that the values of AFP and β-HCG were normal. The contrast-enhanced MRI of the head revealed inhomogeneous lesions with obvious enhancement in the suprasellar region and left middle cranial fossa, ventricular dilation, and peripheral brain edema (Fig. 2A-C). Multiple pulmonary nodules were visible in computed tomography (CT) before the start of systemic treatment (Fig. 2D-E).
Due to severe bleeding, we performed partial tumor resection. The pathological diagnosis of the lesions in the brain was confirmed through immunohistochemistry, high-throughput sequencing, and fluorescence in situ hybridization (FISH). The immunostaining result revealed that the positive terms were CD163, CD30, ALK-1, CD4, Cyclin D1, Ki67 (+ , 5%), and CD68/PGM1, while the negative terms were CXCL13, Langerin, EGFR, SSTR2, SALL4, and PLAP () (Fig. 2F-I). The result of the NGS genetic test revealed KIF5B-ALK gene rearrangement (fusion) (K24:A20) (Abundance: 21.59%). The capture-based high-throughput sequencing analysis did not identify any variation in gene copy numbers. Anaplastic lymphoma kinase gene translocation was confirmed by FISH (Fig. 2J).
Additionally, the head CT confirmed hydrocephalus and subdural effusion (SDE) on the right side of the patient. A burr hole drainage procedure was performed (Fig. 3A), but SDE did not relieve (Fig. 3B). After the drainage tube was removed, the consciousness of the patient deteriorated again. Moreover, both the glucose level and the number of white blood cells in cerebrospinal fluid (CSF) were higher than normal. For further treatment, the Ommaya reservoir was implanted in the left lateral ventricle (Fig. 3C), and CSF was aspirated daily through the Ommaya reservoir. The effusion on the right side decreased (Fig. 3D). Anti-infection medication ceftriaxone sodium was prescribed. Half a month later, the patient had a fever, and bacillus cereus was found in the CSF culture. In this case, meropenem was prescribed. Because the fever was not controlled and the bacillus cereus was positive in the CSF, we added vancomycin. Despite the relief of fever, CSF culture showed the presence of bacillus cereus. Bacillus cereus was suspected to be colonized in the Ommaya reservoir. Consequently, external ventricular drainage was performed first, followed by the removal of the Ommaya reservoir (Fig. 3E). The effusion on the right side also disappeared (Fig. 3F). Three consecutive CSF cultures were negative, and the body temperature was normal. We discontinued antibiotic therapy at this point.
Approximately two months after the resection of lesions, the patient was given prednisolone acetate, oral crizotinib (80 mg per day, twice a day), and intravenous vincristine (0.55 mg per week). However, the lung CT showed that the pulmonary nodules did not shrink significantly after two months of chemotherapy (Fig. 3G-I). Additionally, there was no significant change in the size of the lesions in the brain (Fig. 4A-F).
In addition, the PET-CT scan showed that the patient had a new lesion in the right humerus, in addition to for existing lesions in the suprasellar, lungs, and left middle cranial fossa (Fig. 5A-F). We suspected that the lesion might be a possibility of progression of disease. Multiple organs were affected by the ALK-positive histiocytosis. Then, the patient was given cytarabine (40 mg per day, five times in a row, two weeks apart) except for crizotinib and vincristine. The dosage of the crizotinib was increased from 80 mg per day to 100 mg per day, and prednisolone acetate was changed to dexamethasone. Imaging confirmed that the therapeutic regimen was effective (Figs. 3J-L and 4G-I) after application of the cytarabine for 40 days.Unfortunately, the patient passed away due to multiple ALK‑positive histiocytosis, hydrocephalus, subdural effusion, serious intracranial infection, deep vein thrombosis of the lower extremity, cachexia, and pneumonia after the application of crizotinib, dexamethasone, vincristine, and cytarabine for approximately two months.

Literature review

According to the literature review, only KIF5B-ALK fusions found in the CNS,the effectiveness of gross total resection alone, localized or disseminated lesions, more common in Asians, and ALK inhibitors are the characteristics of lesions which involved the CNS (Table 1). Only eight cases of CNS involvement have been reported in the literature: three localized cases and five disseminated cases. These characteristics are not consistent with those of infants with systemic but self-limited disease and older children and adults with localized disease [6].
Table 1
Clinical characteristics of ALK-positive histiocytosis in the literature 
No
Age
Sex
Position
Ethnicity
Localized or Disseminated
Surgery
Base mutation
Chemotherapy
Follow-up
1 [2]
15 years,
M
Cavernous sinus
Caucasian
Localized
No
KIF5B-ALK
ALK-inhibitor
No recurrence after 6 months
2 [3]
7 years,
F
Cerebellum
NA
Localized
Total resection
KIF5B-ALK
No
No recurrence after 12 months
3 [3]
10 years,
F
Cerebrum
NA
Localized
Total resection
KIF5B-ALK
No
No recurrence after 6 months
4 [14]
11 years
F
Right frontal lobe
NA
Disseminated
Total resection
KIF5B-ALK
No
No recurrence after 4 months
5 [14]
10 months
M
CNS, pulmonary, hepatic and peritoneal nodule
NA
Disseminated
Partial resection
KIF5B-ALK
ALK-inhibitor
Stable at 7 months
6 [12]
51 years
F
Lung, CNS
Asian
Disseminated
Tumor resection
KIF5B-ALK
ALK-inhibitor
Stable at 7 months
7 [2]
2 years, 9 months
M
Intestine, bone marrow, CNS
Middle Eastern
Disseminated
No
NA
etoposide, cyclosporine, immunoglobulins, cytarabin, methotrexate
Died after 2 months
8 [7]
49 years
M
CNS, bone, soft tissue, visceral organs, pleura
Caucasian
Disseminated
No
KIF5B-ALK
Gamma knife, lenalidomide, pembrolizumab, ALK inhibitor
Stable at 7 months
9a
1 year, 4 months
M
Suprasellar
Chinese
Disseminated
Partial resection
KIF5B-ALK
ALK-inhibitor + cytarabine + vincristine
Six months
M Mmale, F Female, CNS Central nervous system, NA Not available
aour case

Discussion and conclusions

To our knowledge, lesions involving mesentery, breast, appendix, extremity, peripheral blood, kidney, bone marrow, lung, brain, and lymph nodes have been reported since the advent of ALK-positive histiocytosis in 2008. Some are local lesions, and some are part of systemic lesions [213]. However, no lesions in the suprasellar region have been reported. In this study, we first reported the case of a one-year-and-four-month-old boy with ALK-positive histiocytosis in the suprasellar region. After combining the high-quality results of large international collaboration on ALK-positive histiocytosis with our case [14], we believe that this case may provide a reference for patients involving CNS.
Confirmative diagnosis is primarily based on neuropathological screening, which includes the determination of tissue features, immunohistochemical assay, and genetic mutation testing for ALK translocation. Moreover, an accurate pathological diagnosis of ALK-positive histiocytosis can guide treatment. Due to its rarity and the overlapping morphological features with Erdheim-Chester disease (ECD), juvenile xanthogranuloma, Rosai-Dorfman disease (RDD), and Langerhans cell histiocytosis (LCH), the pathological differential diagnosis of this disease is extremely challenging [15]. The features of these entities are shown in Table 2. The presentation, morphology, and immune profile of each disease are helpful in the differential diagnosis. Microscopically, ALK-positive histiocytosis is characterized by large epithelioid cells, Touton-like giant cells, absence of substantial atypia [6], and focal emperipolesis. The immunohistochemical assay shows ALK, CD68, and CD163, but not CD1a, BRAFV 600E, and GFAP. In our case, CD68, CD163, and ALK were positive, so we suspected that the patient had ALK-positive histiocytosis. ALK-positive histiocytosis accompanied by diffuse cytoplasmic positivity of S-100 protein may be mistaken for RDD [9]. However, mutations in the RAS pathway are only found in RDD [13]. Moreover, plasma cells are rare in ALK-positive histiocytosis. In the absence of a BRAF mutation, it is difficult to distinguish ECD from ALK-positive histiocytosis. KIF5B-ALK fusion has also been reported in three adult cases of ECD with disseminated disease [16, 17]. A lack of skeletal involvement and xanthomatous foamy histiocytes may rule out ECD in this case. When KIF5B-ALK fusion is present in juvenile xanthogranuloma (JXG) [18], foamy histiocytes with S-100 protein can be different from ALK-positive histiocytes. A CD1a immunostain can rule out LCH. Thus, high-throughput sequencing and FISH were performed to confirm that the disease was ALK-positive histiocytosis.
Table 2
The differential diagnosis of ALK-positive histiocytosis with different entity
Entity
Mutation style
Positive marker in IHC
Morphologic features
Negative marker in IHC
ECD
KIF5B-ALK fusion, the uncommon BRAF V600E mutation
CD68, CD163
Foamy histiocytes with small nuclei and Touton giant cells
CD1a, positive S100 in some histiocytes, langerin,
JXG
KIF5B-ALK fusion
S100, CD11c, CD4
Touton giant cells, oval nuclei in foamy histiocytes
CD1a,
RDD
Mutations in the RAS pathway
S100, CD68
Round nuclei, vesicular chromatin, distinct Nucleoli
CD 1a
LCH
BRAF V600E mutation in t 50– 65% of patients
S-100, CD1a, CD207
Nuclear convolutions, vesicular nuclei, large cytoplasm
CD68, CD163
ALK-positive histiocytosis
KIF5B-ALK fusion
ALK, CD68, CD163, XIIIa,
Large epithelioid cells, Touton-like giant cells, absence of substantial atypia
CD1a, BRAFV600E, GFAP
ECD Erdheim-Chester disease, JXG Juvenile xanthogranuloma, RDD Rosai-Dorfman disease, LCH Langerhans cell histiocytosis
Mutations of ALK-positive histiocytosis genes include KIF5B-ALK, TPM3-ALK, COL1A2-ALK, TRIM33-ALK, and EML4-ALK [213]. However, the only documented fusion of ALK-positive histiocytosis in CNS is KIF5B-ALK [2, 3, 7, 12, 15]. There appears to be no relationship between localization or dissemination of ALK-positive histiocytosis in the CNS and KIF5B-ALK fusion. Therefore, identifying the ALK mutation is vital. KIF5B and ALK encode the ubiquitous isoform of the heavy chain of kinesin-1 and a receptor tyrosine kinase, respectively [19]. In ALK-positive histiocytosis, the KIF5B-ALK fusion may lead to targetable kinase alterations as oncogenic drivers [16].
The treatment strategies for ALK-positive histiocytosis involving the CNS should be specific. Lesion resection can relieve the symptom. The biopsy has low risk and yields substantial information for the confirmative diagnosis. To treat a local primary CNS lesion, only gross total resection may be needed without an ALK inhibitor [2, 3, 15]. An ALK inhibitor may be necessary to control the disease involving the CNS of the disseminated lesion [2, 7, 12, 15]. Even though lesion decompression was used to relieve symptoms and ALK inhibitors were prescribed for adjuvant therapy, the lesion size did not change significantly. In addition, the lesions on the right humerus might be possibility of progression of disease. The poor effect might be caused by the poor penetration of the brain-blood barrier, the big size of the lesions in the brain, multiple lesions, and the weak constitution and intracranial infection due to the several surgeries. At present, many ALK inhibitors have an excellent ability to penetrate the blood–brain barrier. Crizotinib has a limited CNS passage to penetrate the blood–brain barrier [20]. However, the application of these medications, such as alectinib, ceritinib and lorlatinib, can increase the brain-to-blood exposure ratio [21]. Another ALK inhibitor, alectinib, is effective in treating disseminated ALK-positive histiocytosis in CNS [12].
In addition, managing surgery complications, such as hydrocephalus, SDE, and intracranial infection after surgery, can be challenging. A subdural effusion with hydrocephalus (SDEH) has been reported in cases of foramen magnum decompression and clipping of intracranial aneurysms after surgery [22, 23]. Several successful cases with the ventricle drainage tube implanted have been reported [2325], as in the present case. Finding the site of bacterial colonization is crucial. In our case, symptoms of an intracranial infection were relieved after the drainage tube and Ommaya reservoir were removed.
In general, the present study reported the case of a one-year-and-four-month-old boy with ALK-positive histiocytosis involving the suprasellar region. The adjuvant chemotherapy drugs are needed when ALK-inhibitor treatment is ineffective in treating the lesion. The SDEH may be relieved with the implantation of ventricle drainage. The disease in the CNS is characterized by only KIF5B-ALK fusion, the effectiveness of gross total resection alone, localized or disseminated lesion, more common in Asians, and efficacy of ALK-inhibitor treatment.

Acknowledgements

All authors appreciate the patient and his family for their consent to publish this report.

Declarations

This study was approved by the Ethics Committee on Biomedical Research, West China Hospital of Sichuan University. The patient’s family provided written informed consent prior to the investigation.
Written informed consent for publication was obtained from the parents of the patient. Our study complied with the CARE Checklist.

Competing interests

The authors declare that there is no conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Chan JK, Lamant L, Algar E, Delsol G, Tsang WY, Lee KC, et al. ALK+ histiocytosis: a novel type of systemic histiocytic proliferative disorder of early infancy. Blood. 2008;112(7):2965–8.CrossRef Chan JK, Lamant L, Algar E, Delsol G, Tsang WY, Lee KC, et al. ALK+ histiocytosis: a novel type of systemic histiocytic proliferative disorder of early infancy. Blood. 2008;112(7):2965–8.CrossRef
2.
Zurück zum Zitat Chang KTE, Tay AZE, Kuick CH, Chen H, Algar E, Taubenheim N, et al. ALK-positive histiocytosis: an expanded clinicopathologic spectrum and frequent presence of KIF5B-ALK fusion. Mod Pathol. 2019;32(5):598–608.CrossRef Chang KTE, Tay AZE, Kuick CH, Chen H, Algar E, Taubenheim N, et al. ALK-positive histiocytosis: an expanded clinicopathologic spectrum and frequent presence of KIF5B-ALK fusion. Mod Pathol. 2019;32(5):598–608.CrossRef
3.
Zurück zum Zitat Lucas CG, Gilani A, Solomon DA, Liang X, Maher OM, Chamyan G, et al. ALK-positive histiocytosis with KIF5B-ALK fusion in the central nervous system. Acta Neuropathol. 2019;138(2):335–7.CrossRef Lucas CG, Gilani A, Solomon DA, Liang X, Maher OM, Chamyan G, et al. ALK-positive histiocytosis with KIF5B-ALK fusion in the central nervous system. Acta Neuropathol. 2019;138(2):335–7.CrossRef
4.
Zurück zum Zitat Tran TAN, Chang KTE, Kuick CH, Goh JY, Chang CC. Local ALK-Positive Histiocytosis With Unusual Morphology and Novel TRIM33-ALK Gene Fusion. Int J Surg Pathol. 2021;29(5):543–9.CrossRef Tran TAN, Chang KTE, Kuick CH, Goh JY, Chang CC. Local ALK-Positive Histiocytosis With Unusual Morphology and Novel TRIM33-ALK Gene Fusion. Int J Surg Pathol. 2021;29(5):543–9.CrossRef
5.
Zurück zum Zitat Kashima J, Yoshida M, Jimbo K, Izutsu K, Ushiku T, Yonemori K, et al. ALK-positive Histiocytosis of the Breast: A Clinicopathologic Study Highlighting Spindle Cell Histology. Am J Surg Pathol. 2021;45(3):347–55.CrossRef Kashima J, Yoshida M, Jimbo K, Izutsu K, Ushiku T, Yonemori K, et al. ALK-positive Histiocytosis of the Breast: A Clinicopathologic Study Highlighting Spindle Cell Histology. Am J Surg Pathol. 2021;45(3):347–55.CrossRef
6.
Zurück zum Zitat Gupta GK, Xi L, Pack SD, Jones JB, Pittaluga S, Raffeld M, et al. ALK-positive histiocytosis with KIF5B-ALK fusion in an adult female. Haematologica. 2019;104(11):e534–6.CrossRef Gupta GK, Xi L, Pack SD, Jones JB, Pittaluga S, Raffeld M, et al. ALK-positive histiocytosis with KIF5B-ALK fusion in an adult female. Haematologica. 2019;104(11):e534–6.CrossRef
7.
Zurück zum Zitat Qiu L, Weitzman SP, Nastoupil LJ, Williams MD, Medeiros LJ, Vega F. Disseminated ALK-positive histiocytosis with KIF5B-ALK fusion in an adult. Leuk Lymphoma. 2021;62(5):1234–8.CrossRef Qiu L, Weitzman SP, Nastoupil LJ, Williams MD, Medeiros LJ, Vega F. Disseminated ALK-positive histiocytosis with KIF5B-ALK fusion in an adult. Leuk Lymphoma. 2021;62(5):1234–8.CrossRef
8.
Zurück zum Zitat Swain F, Williams B, Barbaro P. ALK-Positive Histiocytosis with Peripheral Blood Histiocytes: A Case Report. Acta Haematol. 2021;144(2):218–21.CrossRef Swain F, Williams B, Barbaro P. ALK-Positive Histiocytosis with Peripheral Blood Histiocytes: A Case Report. Acta Haematol. 2021;144(2):218–21.CrossRef
9.
Zurück zum Zitat Huang H, Gheorghe G, North PE, Suchi M. Expanding the Phenotype of ALK-positive Histiocytosis: A Report of 2 Cases. Pediatr Dev Pathol. 2018;21(5):449–55.CrossRef Huang H, Gheorghe G, North PE, Suchi M. Expanding the Phenotype of ALK-positive Histiocytosis: A Report of 2 Cases. Pediatr Dev Pathol. 2018;21(5):449–55.CrossRef
10.
Zurück zum Zitat Jaber OI, Jarrah DA, Hiasat M, Hussaini MA. ALK-Positive Histiocytosis: A Case Report and Literature Review. Turk Patoloji Derg. 2021;37(2):172–7.PubMed Jaber OI, Jarrah DA, Hiasat M, Hussaini MA. ALK-Positive Histiocytosis: A Case Report and Literature Review. Turk Patoloji Derg. 2021;37(2):172–7.PubMed
11.
Zurück zum Zitat Osako T, Kurisaki-Arakawa A, Dobashi A, Togashi Y, Baba S, Shiozawa S, et al. Distinct Clinicopathologic Features and Possible Pathogenesis of Localized ALK-positive Histiocytosis of the Breast. Am J Surg Pathol. 2021. Osako T, Kurisaki-Arakawa A, Dobashi A, Togashi Y, Baba S, Shiozawa S, et al. Distinct Clinicopathologic Features and Possible Pathogenesis of Localized ALK-positive Histiocytosis of the Breast. Am J Surg Pathol. 2021.
12.
Zurück zum Zitat Tian Y, Li J, Liu B, Xie H, Zheng M, Yao W. ALK-positive histiocytosis with disseminated disease responded to alectinib: a case report. Ann Palliat Med. 2021;10(9):10095–101.CrossRef Tian Y, Li J, Liu B, Xie H, Zheng M, Yao W. ALK-positive histiocytosis with disseminated disease responded to alectinib: a case report. Ann Palliat Med. 2021;10(9):10095–101.CrossRef
13.
Zurück zum Zitat Bai Y, Sun W, Niu D, Yang X, Diao X, Yu Y, et al. Localized ALK-positive histiocytosis in a Chinese woman: report of a case in the lung with a novel EML4-ALK rearrangement. Virchows Arch. 2021;479(6):1079–83.CrossRef Bai Y, Sun W, Niu D, Yang X, Diao X, Yu Y, et al. Localized ALK-positive histiocytosis in a Chinese woman: report of a case in the lung with a novel EML4-ALK rearrangement. Virchows Arch. 2021;479(6):1079–83.CrossRef
14.
Zurück zum Zitat Kemps PG, Picarsic J, Durham BH, Helias-Rodzewicz Z, Hiemcke-Jiwa L, van den Bos C, et al. ALK-positive histiocytosis: a new clinicopathologic spectrum highlighting neurologic involvement and responses to ALK inhibition. Blood. 2022;139(2):256–80.CrossRef Kemps PG, Picarsic J, Durham BH, Helias-Rodzewicz Z, Hiemcke-Jiwa L, van den Bos C, et al. ALK-positive histiocytosis: a new clinicopathologic spectrum highlighting neurologic involvement and responses to ALK inhibition. Blood. 2022;139(2):256–80.CrossRef
15.
Zurück zum Zitat Rossi S, Gessi M, Barresi S, Tamburrini G, Giovannoni I, Ruggiero A, et al. ALK-rearranged histiocytosis: Report of two cases with involvement of the central nervous system. Neuropathol Appl Neurobiol. 2021;47(6):878–81.CrossRef Rossi S, Gessi M, Barresi S, Tamburrini G, Giovannoni I, Ruggiero A, et al. ALK-rearranged histiocytosis: Report of two cases with involvement of the central nervous system. Neuropathol Appl Neurobiol. 2021;47(6):878–81.CrossRef
16.
Zurück zum Zitat Diamond EL, Durham BH, Haroche J, Yao Z, Ma J, Parikh SA, et al. Diverse and Targetable Kinase Alterations Drive Histiocytic Neoplasms. Cancer Discov. 2016;6(2):154–65.CrossRef Diamond EL, Durham BH, Haroche J, Yao Z, Ma J, Parikh SA, et al. Diverse and Targetable Kinase Alterations Drive Histiocytic Neoplasms. Cancer Discov. 2016;6(2):154–65.CrossRef
17.
Zurück zum Zitat Durham BH, Lopez Rodrigo E, Picarsic J, Abramson D, Rotemberg V, De Munck S, et al. Activating mutations in CSF1R and additional receptor tyrosine kinases in histiocytic neoplasms. Nat Med. 2019;25(12):1839–42.CrossRef Durham BH, Lopez Rodrigo E, Picarsic J, Abramson D, Rotemberg V, De Munck S, et al. Activating mutations in CSF1R and additional receptor tyrosine kinases in histiocytic neoplasms. Nat Med. 2019;25(12):1839–42.CrossRef
18.
Zurück zum Zitat Ross JS, Ali SM, Fasan O, Block J, Pal S, Elvin JA, et al. ALK Fusions in a Wide Variety of Tumor Types Respond to Anti-ALK Targeted Therapy. Oncologist. 2017;22(12):1444–50.CrossRef Ross JS, Ali SM, Fasan O, Block J, Pal S, Elvin JA, et al. ALK Fusions in a Wide Variety of Tumor Types Respond to Anti-ALK Targeted Therapy. Oncologist. 2017;22(12):1444–50.CrossRef
19.
Zurück zum Zitat Wilson MH, Holzbaur EL. Nesprins anchor kinesin-1 motors to the nucleus to drive nuclear distribution in muscle cells. Development. 2015;142(1):218–28.CrossRef Wilson MH, Holzbaur EL. Nesprins anchor kinesin-1 motors to the nucleus to drive nuclear distribution in muscle cells. Development. 2015;142(1):218–28.CrossRef
20.
Zurück zum Zitat Frampton JE. Crizotinib: a review of its use in the treatment of anaplastic lymphoma kinase-positive, advanced non-small cell lung cancer. Drugs. 2013;73(18):2031–51.CrossRef Frampton JE. Crizotinib: a review of its use in the treatment of anaplastic lymphoma kinase-positive, advanced non-small cell lung cancer. Drugs. 2013;73(18):2031–51.CrossRef
21.
Zurück zum Zitat Kim DW, Mehra R, Tan DSW, Felip E, Chow LQM, Camidge DR, et al. Activity and safety of ceritinib in patients with ALK-rearranged non-small-cell lung cancer (ASCEND-1): updated results from the multicentre, open-label, phase 1 trial. Lancet Oncol. 2016;17(4):452–63.CrossRef Kim DW, Mehra R, Tan DSW, Felip E, Chow LQM, Camidge DR, et al. Activity and safety of ceritinib in patients with ALK-rearranged non-small-cell lung cancer (ASCEND-1): updated results from the multicentre, open-label, phase 1 trial. Lancet Oncol. 2016;17(4):452–63.CrossRef
22.
Zurück zum Zitat Rossini Z, Milani D, Costa F, Castellani C, Lasio G, Fornari M. Subdural Fluid Collection and Hydrocephalus After Foramen Magnum Decompression for Chiari Malformation Type I: Management Algorithm of a Rare Complication. World Neurosurg. 2017;106(1057):e9–15. Rossini Z, Milani D, Costa F, Castellani C, Lasio G, Fornari M. Subdural Fluid Collection and Hydrocephalus After Foramen Magnum Decompression for Chiari Malformation Type I: Management Algorithm of a Rare Complication. World Neurosurg. 2017;106(1057):e9–15.
23.
Zurück zum Zitat Yoshimoto Y, Wakai S, Hamano M. External hydrocephalus after aneurysm surgery: paradoxical response to ventricular shunting. J Neurosurg. 1998;88(3):485–9.CrossRef Yoshimoto Y, Wakai S, Hamano M. External hydrocephalus after aneurysm surgery: paradoxical response to ventricular shunting. J Neurosurg. 1998;88(3):485–9.CrossRef
24.
Zurück zum Zitat Tzerakis N, Orphanides G, Antoniou E, Sioutos PJ, Lafazanos S, Seretis A. Subdural effusions with hydrocephalus after severe head injury: successful treatment with ventriculoperitoneal shunt placement: report of 3 adult cases. Case Rep Med. 2010;2010:743784.CrossRef Tzerakis N, Orphanides G, Antoniou E, Sioutos PJ, Lafazanos S, Seretis A. Subdural effusions with hydrocephalus after severe head injury: successful treatment with ventriculoperitoneal shunt placement: report of 3 adult cases. Case Rep Med. 2010;2010:743784.CrossRef
25.
Zurück zum Zitat Wu R, Ye Y, Ma T, Jia G, Qin H. Management of subdural effusion and hydrocephalus following decompressive craniectomy for posttraumatic cerebral infarction in a patient with traumatic brain injury: a case report. BMC Surg. 2019;19(1):26.CrossRef Wu R, Ye Y, Ma T, Jia G, Qin H. Management of subdural effusion and hydrocephalus following decompressive craniectomy for posttraumatic cerebral infarction in a patient with traumatic brain injury: a case report. BMC Surg. 2019;19(1):26.CrossRef
Metadaten
Titel
Failure of crizotinib based systemic treatment in ALK positive histiocytosis involving the central nervous system: a case report and literature review
verfasst von
Qiang He
Wenjie Zhang
Qiang Li
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
BMC Pediatrics / Ausgabe 1/2022
Elektronische ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-022-03368-1

Weitere Artikel der Ausgabe 1/2022

BMC Pediatrics 1/2022 Zur Ausgabe

Mit dem Seitenschneider gegen das Reißverschluss-Malheur

03.06.2024 Urologische Notfallmedizin Nachrichten

Wer ihn je erlebt hat, wird ihn nicht vergessen: den Schmerz, den die beim Öffnen oder Schließen des Reißverschlusses am Hosenschlitz eingeklemmte Haut am Penis oder Skrotum verursacht. Eine neue Methode für rasche Abhilfe hat ein US-Team getestet.

Reanimation bei Kindern – besser vor Ort oder während Transport?

29.05.2024 Reanimation im Kindesalter Nachrichten

Zwar scheint es laut einer Studie aus den USA und Kanada bei der Reanimation von Kindern außerhalb einer Klinik keinen Unterschied für das Überleben zu machen, ob die Wiederbelebungsmaßnahmen während des Transports in die Klinik stattfinden oder vor Ort ausgeführt werden. Jedoch gibt es dabei einige Einschränkungen und eine wichtige Ausnahme.

Alter der Mutter beeinflusst Risiko für kongenitale Anomalie

28.05.2024 Kinder- und Jugendgynäkologie Nachrichten

Welchen Einfluss das Alter ihrer Mutter auf das Risiko hat, dass Kinder mit nicht chromosomal bedingter Malformation zur Welt kommen, hat eine ungarische Studie untersucht. Sie zeigt: Nicht nur fortgeschrittenes Alter ist riskant.

Begünstigt Bettruhe der Mutter doch das fetale Wachstum?

Ob ungeborene Kinder, die kleiner als die meisten Gleichaltrigen sind, schneller wachsen, wenn die Mutter sich mehr ausruht, wird diskutiert. Die Ergebnisse einer US-Studie sprechen dafür.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.