Skip to main content
Erschienen in: Inflammation 6/2023

12.07.2023 | RESEARCH

Cysteine-cysteine Chemokine Receptor Type 5 Plays a Critical Role in Exercise Performance by Regulating Mitochondrial Content in Skeletal Muscle

verfasst von: Chien-Wei Chen, Luen-Kui Chen, Yi-Ting Chung, Shui-Yu Liu, Shuoh-Wen Chen, Yuan-I Chang, Po-Shiuan Hsieh, Chi-Chang Juan

Erschienen in: Inflammation | Ausgabe 6/2023

Einloggen, um Zugang zu erhalten

Abstract

Cysteine-cysteine chemokine receptor type 5 (CCR5) is thought to play an important role in the trafficking of lymphoid cells but has recently also been associated with AMPK signaling pathways that are implicated in energy metabolism in skeletal muscle. We hypothesized that genetic deletions of CCR5 would alter mitochondria content and exercise performance in mice. CCR5−/− and wild-type mice with the same genetic background were subjected to endurance exercise and grip strength tests. The soleus muscle was stained with immunofluorescence for myosin heavy chain 7 (MYH7) and succinate dehydrogenase (SDH) analysis as well as the expression of genes associated with muscle atrophy and mitochondrial oxidative phosphorylation were measured using qPCR. Although there were no differences in the weight of the soleus muscle between the CCR5−/− group and the wild-type mice, the CCR5−/− mice showed the following muscular dysfunctions: (i) decreased MYH7 percentage and cross-section area, (ii) higher myostatin and atrogin-1 mRNA levels, (iii) dropped expression of mitochondrial DNA-encoded electron respiratory chain genes (cytochrome B, cytochrome c oxidase subunit III, and ATP synthase subunit 6) as well as mitochondrial generation genes (PPARγ and PGC-1α), and (iv) lower SDH activity and exercise performance when compared with wild-type mice. In addition, genes associated with mitochondrial biogenesis (PGC-1α, PPARγ, and MFN2) and mitochondrial complex (ND4 and Cytb) were upregulated when the skeletal muscle cell line C2C12 was exposed to cysteine-cysteine chemokine ligand 4 (a ligand of CCR5) in vitro. These findings suggested that attenuation of endurance exercise performance is related to the loss of mitochondrial content and lower SDH activity of soleus muscle in CCR5 knockout mice. The present study provides evidence indicating that the chemokine receptor CCR5 might modulate the skeletal muscle metabolic energy system during exercise.
Literatur
1.
Zurück zum Zitat Hargreaves, M., and L.L. Spriet. 2020. Skeletal muscle energy metabolism during exercise. Nature Metabolism 2: 817–828.CrossRefPubMed Hargreaves, M., and L.L. Spriet. 2020. Skeletal muscle energy metabolism during exercise. Nature Metabolism 2: 817–828.CrossRefPubMed
2.
3.
Zurück zum Zitat Merrill, G.F., E.J. Kurth, D.G. Hardie, and W.W. Winder. 1997. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. American Journal of Physiology 273: E1107–E1112. Merrill, G.F., E.J. Kurth, D.G. Hardie, and W.W. Winder. 1997. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. American Journal of Physiology 273: E1107–E1112.
4.
Zurück zum Zitat Lantier, L., J. Fentz, R. Mounier, J. Leclerc, J.T. Treebak, C. Pehmoller, N. Sanz, I. Sakakibara, E. Saint-Amand, S. Rimbaud, P. Maire, A. Marette, R. Ventura-Clapier, A. Ferry, J.F. Wojtaszewski, M. Foretz, and B. Viollet. 2014. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB Journal 28: 3211–3224.CrossRefPubMed Lantier, L., J. Fentz, R. Mounier, J. Leclerc, J.T. Treebak, C. Pehmoller, N. Sanz, I. Sakakibara, E. Saint-Amand, S. Rimbaud, P. Maire, A. Marette, R. Ventura-Clapier, A. Ferry, J.F. Wojtaszewski, M. Foretz, and B. Viollet. 2014. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB Journal 28: 3211–3224.CrossRefPubMed
5.
Zurück zum Zitat Hardie, D.G., F.A. Ross, and S.A. Hawley. 2012. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nature Reviews: Molecular Cell Biology 13: 251–262.CrossRefPubMed Hardie, D.G., F.A. Ross, and S.A. Hawley. 2012. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nature Reviews: Molecular Cell Biology 13: 251–262.CrossRefPubMed
6.
Zurück zum Zitat Brelot, A., and L.A. Chakrabarti. 2018. CCR5 revisited: How mechanisms of HIV entry govern AIDS pathogenesis. Journal of Molecular Biology 430: 2557–2589.CrossRefPubMed Brelot, A., and L.A. Chakrabarti. 2018. CCR5 revisited: How mechanisms of HIV entry govern AIDS pathogenesis. Journal of Molecular Biology 430: 2557–2589.CrossRefPubMed
7.
Zurück zum Zitat Aldinucci, D., C. Borghese, and N. Casagrande. 2020. The CCL5/CCR5 axis in cancer progression. Cancers 12: 1765. Aldinucci, D., C. Borghese, and N. Casagrande. 2020. The CCL5/CCR5 axis in cancer progression. Cancers 12: 1765.
8.
Zurück zum Zitat Zeng, Z., T. Lan, Y. Wei, and X. Wei. 2022. CCL5/CCR5 axis in human diseases and related treatments. Genetics Disorder 9: 12–27. Zeng, Z., T. Lan, Y. Wei, and X. Wei. 2022. CCL5/CCR5 axis in human diseases and related treatments. Genetics Disorder 9: 12–27.
9.
Zurück zum Zitat Agresti, N., J.P. Lalezari, P.P. Amodeo, K. Mody, S.F. Mosher, H. Seethamraju, S.A. Kelly, N.Z. Pourhassan, C.D. Sudduth, C. Bovinet, A.E. ElSharkawi, B.K. Patterson, R. Stephen, J.B. Sacha, H.L. Wu, S.A. Gross, and K. Dhody. 2021. Disruption of CCR5 signaling to treat COVID-19-associated cytokine storm: Case series of four critically ill patients treated with leronlimab. The Journal of Translational Autoimmunity 4: 100083. Agresti, N., J.P. Lalezari, P.P. Amodeo, K. Mody, S.F. Mosher, H. Seethamraju, S.A. Kelly, N.Z. Pourhassan, C.D. Sudduth, C. Bovinet, A.E. ElSharkawi, B.K. Patterson, R. Stephen, J.B. Sacha, H.L. Wu, S.A. Gross, and K. Dhody. 2021. Disruption of CCR5 signaling to treat COVID-19-associated cytokine storm: Case series of four critically ill patients treated with leronlimab. The Journal of Translational Autoimmunity 4: 100083.
10.
Zurück zum Zitat Chan, O., J.D. Burke, D.F. Gao, and E.N. Fish. 2012. The chemokine CCL5 regulates glucose uptake and AMP kinase signaling in activated T cells to facilitate chemotaxis. Journal of Biological Chemistry 287: 29406–29416.CrossRefPubMedPubMedCentral Chan, O., J.D. Burke, D.F. Gao, and E.N. Fish. 2012. The chemokine CCL5 regulates glucose uptake and AMP kinase signaling in activated T cells to facilitate chemotaxis. Journal of Biological Chemistry 287: 29406–29416.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Chou, S.Y., R. Ajoy, C.A. Changou, Y.T. Hsieh, Y.K. Wang, and B. Hoffer. 2016. CCL5/RANTES contributes to hypothalamic insulin signaling for systemic insulin responsiveness through CCR5. Scientific Reports 6: 37659.CrossRefPubMedPubMedCentral Chou, S.Y., R. Ajoy, C.A. Changou, Y.T. Hsieh, Y.K. Wang, and B. Hoffer. 2016. CCL5/RANTES contributes to hypothalamic insulin signaling for systemic insulin responsiveness through CCR5. Scientific Reports 6: 37659.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Chan, P.C., L.M. Hung, J.P. Huang, Y.J. Day, C.L. Yu, F.C. Kuo, C.H. Lu, Y.F. Tian, and P.S. Hsieh. 2022. Augmented CCL5/CCR5 signaling in brown adipose tissue inhibits adaptive thermogenesis and worsens insulin resistance in obesity. Clinical Science (London, England: 1979) 136, 121–137. Chan, P.C., L.M. Hung, J.P. Huang, Y.J. Day, C.L. Yu, F.C. Kuo, C.H. Lu, Y.F. Tian, and P.S. Hsieh. 2022. Augmented CCL5/CCR5 signaling in brown adipose tissue inhibits adaptive thermogenesis and worsens insulin resistance in obesity. Clinical Science (London, England: 1979) 136, 121–137.
13.
Zurück zum Zitat Lei, H., Y. Sun, Z. Luo, G. Yourek, H. Gui, Y. Yang, D.F. Su, and X. Liu. 2016. Fatigue-induced orosomucoid 1 acts on C-C chemokine receptor type 5 to enhance muscle endurance. Scientific Reports 6: 18839.CrossRefPubMedPubMedCentral Lei, H., Y. Sun, Z. Luo, G. Yourek, H. Gui, Y. Yang, D.F. Su, and X. Liu. 2016. Fatigue-induced orosomucoid 1 acts on C-C chemokine receptor type 5 to enhance muscle endurance. Scientific Reports 6: 18839.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Qin, Z., J.J. Wan, Y. Sun, P.Y. Wang, D.F. Su, H. Lei, and X. Liu. 2016. ORM promotes skeletal muscle glycogen accumulation via CCR5-activated AMPK pathway in mice. Frontiers in Pharmacology 7: 302.CrossRefPubMedPubMedCentral Qin, Z., J.J. Wan, Y. Sun, P.Y. Wang, D.F. Su, H. Lei, and X. Liu. 2016. ORM promotes skeletal muscle glycogen accumulation via CCR5-activated AMPK pathway in mice. Frontiers in Pharmacology 7: 302.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Herzig, S., and R.J. Shaw. 2018. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nature Reviews: Molecular Cell Biology 19: 121–135.CrossRefPubMed Herzig, S., and R.J. Shaw. 2018. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nature Reviews: Molecular Cell Biology 19: 121–135.CrossRefPubMed
16.
Zurück zum Zitat Toyama, E.Q., S. Herzig, J. Courchet, T.L. Lewis Jr., O.C. Loson, K. Hellberg, N.P. Young, H. Chen, F. Polleux, D.C. Chan, and R.J. Shaw. 2016. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351: 275–281.CrossRefPubMedPubMedCentral Toyama, E.Q., S. Herzig, J. Courchet, T.L. Lewis Jr., O.C. Loson, K. Hellberg, N.P. Young, H. Chen, F. Polleux, D.C. Chan, and R.J. Shaw. 2016. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351: 275–281.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Boengler, K., M. Kosiol, M. Mayr, R. Schulz, and S. Rohrbach. 2017. Mitochondria and ageing: Role in heart, skeletal muscle and adipose tissue. Journal of Cachexia, Sarcopenia and Muscle 8: 349–369.CrossRefPubMedPubMedCentral Boengler, K., M. Kosiol, M. Mayr, R. Schulz, and S. Rohrbach. 2017. Mitochondria and ageing: Role in heart, skeletal muscle and adipose tissue. Journal of Cachexia, Sarcopenia and Muscle 8: 349–369.CrossRefPubMedPubMedCentral
18.
19.
Zurück zum Zitat Majumdar, S., and P.M. Murphy. 2020. Chemokine regulation during epidemic coronavirus infection. Frontiers in Pharmacology 11: 600369.CrossRefPubMed Majumdar, S., and P.M. Murphy. 2020. Chemokine regulation during epidemic coronavirus infection. Frontiers in Pharmacology 11: 600369.CrossRefPubMed
20.
Zurück zum Zitat Amsellem, V., L. Lipskaia, S. Abid, L. Poupel, A. Houssaini, R. Quarck, E. Marcos, N. Mouraret, A. Parpaleix, R. Bobe, G. Gary-Bobo, M. Saker, J.L. Dubois-Rande, M.T. Gladwin, K.A. Norris, M. Delcroix, C. Combadiere, and S. Adnot. 2014. CCR5 as a treatment target in pulmonary arterial hypertension. Circulation 130: 880–891.CrossRefPubMedPubMedCentral Amsellem, V., L. Lipskaia, S. Abid, L. Poupel, A. Houssaini, R. Quarck, E. Marcos, N. Mouraret, A. Parpaleix, R. Bobe, G. Gary-Bobo, M. Saker, J.L. Dubois-Rande, M.T. Gladwin, K.A. Norris, M. Delcroix, C. Combadiere, and S. Adnot. 2014. CCR5 as a treatment target in pulmonary arterial hypertension. Circulation 130: 880–891.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Gómez, J., E. Cuesta-Llavona, G.M. Albaiceta, M. García-Clemente, C. López-Larrea, L. Amado-Rodríguez, I. López-Alonso, T. Hermida, A.I. EnrÍquez, and H. Gil. 2020. The CCR5-delta32 variant might explain part of the association between COVID-19 and the chemokine-receptor gene cluster. medRxiv, 2020. Gómez, J., E. Cuesta-Llavona, G.M. Albaiceta, M. García-Clemente, C. López-Larrea, L. Amado-Rodríguez, I. López-Alonso, T. Hermida, A.I. EnrÍquez, and H. Gil. 2020. The CCR5-delta32 variant might explain part of the association between COVID-19 and the chemokine-receptor gene cluster. medRxiv, 2020.
22.
Zurück zum Zitat Wu, L., G. LaRosa, N. Kassam, C.J. Gordon, H. Heath, N. Ruffing, H. Chen, J. Humblias, M. Samson, M. Parmentier, J.P. Moore, and C.R. Mackay. 1997. Interaction of chemokine receptor CCR5 with its ligands: Multiple domains for HIV-1 gp120 binding and a single domain for chemokine binding. Journal of Experimental Medicine 186: 1373–1381.CrossRefPubMedPubMedCentral Wu, L., G. LaRosa, N. Kassam, C.J. Gordon, H. Heath, N. Ruffing, H. Chen, J. Humblias, M. Samson, M. Parmentier, J.P. Moore, and C.R. Mackay. 1997. Interaction of chemokine receptor CCR5 with its ligands: Multiple domains for HIV-1 gp120 binding and a single domain for chemokine binding. Journal of Experimental Medicine 186: 1373–1381.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Files, D.C., F. Tacke, A. O’Sullivan, P. Dorr, W.G. Ferguson, and W.G. Powderly. 2022. Rationale of using the dual chemokine receptor CCR2/CCR5 inhibitor cenicriviroc for the treatment of COVID-19. PLoS Pathogens 18: e1010547.CrossRefPubMedPubMedCentral Files, D.C., F. Tacke, A. O’Sullivan, P. Dorr, W.G. Ferguson, and W.G. Powderly. 2022. Rationale of using the dual chemokine receptor CCR2/CCR5 inhibitor cenicriviroc for the treatment of COVID-19. PLoS Pathogens 18: e1010547.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Seow, K.M., P.S. Liu, K.H. Chen, C.W. Chen, L.K. Chen, C.H. Ho, J.L. Hwang, P.H. Wang, and C.C. Juan. 2021. Cysteinecysteine motif chemokine receptor 5 expression in letrozole-induced polycystic ovary syndrome mice. International Journal of Molecular Sciences 23: 134. Seow, K.M., P.S. Liu, K.H. Chen, C.W. Chen, L.K. Chen, C.H. Ho, J.L. Hwang, P.H. Wang, and C.C. Juan. 2021. Cysteinecysteine motif chemokine receptor 5 expression in letrozole-induced polycystic ovary syndrome mice. International Journal of Molecular Sciences 23: 134.
25.
Zurück zum Zitat Lin, C.S., P.S. Hsieh, L.L. Hwang, Y.H. Lee, S.H. Tsai, Y.C. Tu, Y.W. Hung, C.C. Liu, Y.P. Chuang, M.T. Liao, S. Chien, and M.C. Tsai. 2018. The CCL5/CCR5 Axis Promotes Vascular Smooth Muscle Cell Proliferation and atherogenic phenotype switching. Cellular Physiology and Biochemistry 47: 707–720.CrossRefPubMed Lin, C.S., P.S. Hsieh, L.L. Hwang, Y.H. Lee, S.H. Tsai, Y.C. Tu, Y.W. Hung, C.C. Liu, Y.P. Chuang, M.T. Liao, S. Chien, and M.C. Tsai. 2018. The CCL5/CCR5 Axis Promotes Vascular Smooth Muscle Cell Proliferation and atherogenic phenotype switching. Cellular Physiology and Biochemistry 47: 707–720.CrossRefPubMed
26.
Zurück zum Zitat Warren, G.L., L. O’Farrell, M. Summan, T. Hulderman, D. Mishra, M.I. Luster, W.A. Kuziel, and P.P. Simeonova. 2004. Role of CC chemokines in skeletal muscle functional restoration after injury. American Journal of Physiology: Cell Physiology 286: C1031–C1036. Warren, G.L., L. O’Farrell, M. Summan, T. Hulderman, D. Mishra, M.I. Luster, W.A. Kuziel, and P.P. Simeonova. 2004. Role of CC chemokines in skeletal muscle functional restoration after injury. American Journal of Physiology: Cell Physiology 286: C1031–C1036.
27.
Zurück zum Zitat Han, H.Q., and W.E. Mitch. 2011. Targeting the myostatin signaling pathway to treat muscle wasting diseases. Current Opinion in Supportive and Palliative Care 5: 334–341.CrossRefPubMedPubMedCentral Han, H.Q., and W.E. Mitch. 2011. Targeting the myostatin signaling pathway to treat muscle wasting diseases. Current Opinion in Supportive and Palliative Care 5: 334–341.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Lee, S.J., and A.C. McPherron. 2001. Regulation of myostatin activity and muscle growth. Proceedings of the National Academy of Sciences of the United States of America 98: 9306–9311.CrossRefPubMedPubMedCentral Lee, S.J., and A.C. McPherron. 2001. Regulation of myostatin activity and muscle growth. Proceedings of the National Academy of Sciences of the United States of America 98: 9306–9311.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Chal, J., and O. Pourquie. 2017. Making muscle: Skeletal myogenesis in vivo and in vitro. Development 144: 2104–2122.CrossRefPubMed Chal, J., and O. Pourquie. 2017. Making muscle: Skeletal myogenesis in vivo and in vitro. Development 144: 2104–2122.CrossRefPubMed
30.
Zurück zum Zitat Kong, X., T. Yao, P. Zhou, L. Kazak, D. Tenen, A. Lyubetskaya, B.A. Dawes, L. Tsai, B.B. Kahn, B.M. Spiegelman, T. Liu, and E.D. Rosen. 2018. Brown adipose tissue controls skeletal muscle function via the secretion of myostatin. Cell Metabolism 28: 631–643. Kong, X., T. Yao, P. Zhou, L. Kazak, D. Tenen, A. Lyubetskaya, B.A. Dawes, L. Tsai, B.B. Kahn, B.M. Spiegelman, T. Liu, and E.D. Rosen. 2018. Brown adipose tissue controls skeletal muscle function via the secretion of myostatin. Cell Metabolism 28: 631–643.
31.
Zurück zum Zitat McPherron, A.C., A.M. Lawler, and S.J. Lee. 1997. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387: 83–90.CrossRefPubMed McPherron, A.C., A.M. Lawler, and S.J. Lee. 1997. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387: 83–90.CrossRefPubMed
32.
Zurück zum Zitat Enoki, Y., T. Nagai, Y. Hamamura, S. Osa, H. Nakamura, K. Taguchi, H. Watanabe, T. Maruyama, and K. Matsumoto. 2023. The G protein-coupled receptor ligand apelin-13 ameliorates skeletal muscle atrophy induced by chronic kidney disease. Journal of Cachexia, Sarcopenia and Muscle 14: 553–564.CrossRefPubMed Enoki, Y., T. Nagai, Y. Hamamura, S. Osa, H. Nakamura, K. Taguchi, H. Watanabe, T. Maruyama, and K. Matsumoto. 2023. The G protein-coupled receptor ligand apelin-13 ameliorates skeletal muscle atrophy induced by chronic kidney disease. Journal of Cachexia, Sarcopenia and Muscle 14: 553–564.CrossRefPubMed
33.
Zurück zum Zitat Testa, M.T.J., P.S. Cella, P.C. Marinello, F.T.T. Frajacomo, C.S. Padilha, P.C. Perandini, F.A. Moura, J.A. Duarte, R. Cecchini, F.A. Guarnier, and R. Deminice. 2022. Resistance training attenuates activation of stat3 and muscle atrophy in tumor-bearing mice. Frontiers in Oncology 12: 880787.CrossRefPubMedPubMedCentral Testa, M.T.J., P.S. Cella, P.C. Marinello, F.T.T. Frajacomo, C.S. Padilha, P.C. Perandini, F.A. Moura, J.A. Duarte, R. Cecchini, F.A. Guarnier, and R. Deminice. 2022. Resistance training attenuates activation of stat3 and muscle atrophy in tumor-bearing mice. Frontiers in Oncology 12: 880787.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Enoki, Y., H. Watanabe, R. Arake, R. Sugimoto, T. Imafuku, Y. Tominaga, Y. Ishima, S. Kotani, M. Nakajima, M. Tanaka, K. Matsushita, M. Fukagawa, M. Otagiri, and T. Maruyama. 2016. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1. Scientific Reports 6: 32084.CrossRefPubMedPubMedCentral Enoki, Y., H. Watanabe, R. Arake, R. Sugimoto, T. Imafuku, Y. Tominaga, Y. Ishima, S. Kotani, M. Nakajima, M. Tanaka, K. Matsushita, M. Fukagawa, M. Otagiri, and T. Maruyama. 2016. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1. Scientific Reports 6: 32084.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Chiu, H.C., R.S. Yang, T.I. Weng, C.Y. Chiu, K.C. Lan, and S.H. Liu. 2023. A ubiquitous endocrine disruptor tributyltin induces muscle wasting and retards muscle regeneration. Journal of Cachexia, Sarcopenia and Muscle 14: 167–181.CrossRefPubMed Chiu, H.C., R.S. Yang, T.I. Weng, C.Y. Chiu, K.C. Lan, and S.H. Liu. 2023. A ubiquitous endocrine disruptor tributyltin induces muscle wasting and retards muscle regeneration. Journal of Cachexia, Sarcopenia and Muscle 14: 167–181.CrossRefPubMed
36.
Zurück zum Zitat Seo, E., C.S. Truong, and H.S. Jun. 2022. Psoralea corylifolia L. seed extract attenuates dexamethasone-induced muscle atrophy in mice by inhibition of oxidative stress and inflammation. Journal of Ethnopharmacology 296, 115490. Seo, E., C.S. Truong, and H.S. Jun. 2022. Psoralea corylifolia L. seed extract attenuates dexamethasone-induced muscle atrophy in mice by inhibition of oxidative stress and inflammation. Journal of Ethnopharmacology 296, 115490.
37.
Zurück zum Zitat Davis, J.M., E.A. Murphy, M.D. Carmichael, and B. Davis. 2009. Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 296: R1071–R1077. Davis, J.M., E.A. Murphy, M.D. Carmichael, and B. Davis. 2009. Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 296: R1071–R1077.
37.
Zurück zum Zitat Dent, J.R., B. Stocks, D.G. Campelj, and A. Philp. 2023. Transient changes to metabolic homeostasis initiate mitochondrial adaptation to endurance exercise. Seminars in Cell and Developmental Biology 143: 3-16. Dent, J.R., B. Stocks, D.G. Campelj, and A. Philp. 2023. Transient changes to metabolic homeostasis initiate mitochondrial adaptation to endurance exercise. Seminars in Cell and Developmental Biology 143: 3-16.
39.
Zurück zum Zitat Yoo, A., Y.J. Jang, J. Ahn, C.H. Jung, and T.Y. Ha. 2021. 2,6-Dimethoxy-1,4-benzoquinone increases skeletal muscle mass and performance by regulating AKT/mTOR signaling and mitochondrial function. Phytomedicine 91: 153658.CrossRefPubMed Yoo, A., Y.J. Jang, J. Ahn, C.H. Jung, and T.Y. Ha. 2021. 2,6-Dimethoxy-1,4-benzoquinone increases skeletal muscle mass and performance by regulating AKT/mTOR signaling and mitochondrial function. Phytomedicine 91: 153658.CrossRefPubMed
40.
Zurück zum Zitat Payne, B.A., and P.F. Chinnery. 2015. Mitochondrial dysfunction in aging: Much progress but many unresolved questions. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1847, 1347–1353. Payne, B.A., and P.F. Chinnery. 2015. Mitochondrial dysfunction in aging: Much progress but many unresolved questions. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1847, 1347–1353.
Metadaten
Titel
Cysteine-cysteine Chemokine Receptor Type 5 Plays a Critical Role in Exercise Performance by Regulating Mitochondrial Content in Skeletal Muscle
verfasst von
Chien-Wei Chen
Luen-Kui Chen
Yi-Ting Chung
Shui-Yu Liu
Shuoh-Wen Chen
Yuan-I Chang
Po-Shiuan Hsieh
Chi-Chang Juan
Publikationsdatum
12.07.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01864-9

Weitere Artikel der Ausgabe 6/2023

Inflammation 6/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.