Skip to main content
Erschienen in: Inflammation 6/2023

22.08.2023 | RESEARCH

Incomplete Knockdown of MyD88 Inhibits LPS-Induced Lung Injury and Lung Fibrosis in a Mouse Model

verfasst von: Hui Fan, Yanni Wang, Kaochang Zhao, Li Su, Chong Deng, Jie Huang, Guozhong Chen

Erschienen in: Inflammation | Ausgabe 6/2023

Einloggen, um Zugang zu erhalten

Abstract

Acute lung injury (ALI) is a life-threatening disorder stemmed mainly from an uncontrolled inflammatory response. Lipopolysaccharide (LPS) is commonly used to induce ALI animal models. Toll-like receptor 4 (TLR4) is the main receptor for LPS, and myeloid differentiation factor 88 (MyD88) is a key adaptor protein molecule in the Toll-like receptor (TLR) signaling pathway. Thus, MyD88 knockdown heterozygous mice (MyD88+/−) were used to investigate the effect of incomplete knockout of the MyD88 gene on indirect LPS-induced ALI through intraperitoneal injection of LPS. The LPS-induced ALI significantly upregulated MyD88 expression, and heterozygous mice with incomplete knockout of the MyD88 gene (MyD88+/−) ameliorated LPS-induced histopathological injury and collagen fiber deposition. Heterozygous mice with incomplete knockout of the MyD88 gene (MyD88+/−) inhibited LPS-induced nuclear factor-κB (NF-κB) pathway activation, but TLR-4 expression tended to be upregulated. Incomplete knockdown of the MyD88 gene also downregulated LPS-induced expression of IL1-β, IL-6, TNF-α, TGF-β, SMAD2, and α-SMA. The transcriptome sequencing also revealed significant changes in LPS-regulated genes (such as IL-17 signaling pathway genes) after the incomplete knockdown of MyD88. In conclusion, this paper clarified that LPS activates the downstream NF-κB pathway depending on the MyD88 signaling pathway, which induces the secretion of inflammatory cytokines such as IL-1β/IL-6/TNF-α and ultimately triggers ALI. Incomplete knockdown of the MyD88 reverses LPS-induced lung fibrosis, which confirmed the vital role of MyD88 in LPS-induced ALI.
Literatur
1.
Zurück zum Zitat Matuschak, G.M., and A.J. Lechner. 2010. Acute lung injury and the acute respiratory distress syndrome: pathophysiology and treatment. Missouri Medicine 107 (4): 252–258.PubMedPubMedCentral Matuschak, G.M., and A.J. Lechner. 2010. Acute lung injury and the acute respiratory distress syndrome: pathophysiology and treatment. Missouri Medicine 107 (4): 252–258.PubMedPubMedCentral
2.
Zurück zum Zitat Mokra, D. 2020. Acute lung injury - from pathophysiology to treatment. Physiological Research 69 (Suppl 3): S353–S366.PubMedPubMedCentral Mokra, D. 2020. Acute lung injury - from pathophysiology to treatment. Physiological Research 69 (Suppl 3): S353–S366.PubMedPubMedCentral
3.
Zurück zum Zitat Matthay, M.A., and G.A. Zimmerman. 2005. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. American Journal of Respiratory Cell and Molecular Biology 33 (4): 319–327.PubMedPubMedCentralCrossRef Matthay, M.A., and G.A. Zimmerman. 2005. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. American Journal of Respiratory Cell and Molecular Biology 33 (4): 319–327.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Herold, S., N.M. Gabrielli, and I. Vadasz. 2013. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. American Journal of Physiology. Lung Cellular and Molecular Physiology 305 (10): L665-681.PubMedCrossRef Herold, S., N.M. Gabrielli, and I. Vadasz. 2013. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. American Journal of Physiology. Lung Cellular and Molecular Physiology 305 (10): L665-681.PubMedCrossRef
5.
Zurück zum Zitat Dengler, V., G.P. Downey, R.M. Tuder, H.K. Eltzschig, and E.P. Schmidt. 2013. Neutrophil intercellular communication in acute lung injury. Emerging roles of microparticles and gap junctions. American Journal of Respiratory Cell and Molecular Biology 49 (1): 1–5.PubMedPubMedCentralCrossRef Dengler, V., G.P. Downey, R.M. Tuder, H.K. Eltzschig, and E.P. Schmidt. 2013. Neutrophil intercellular communication in acute lung injury. Emerging roles of microparticles and gap junctions. American Journal of Respiratory Cell and Molecular Biology 49 (1): 1–5.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Densmore, J.C., P.R. Signorino, J. Ou, O.A. Hatoum, J.J. Rowe, Y. Shi, S. Kaul, D.W. Jones, R.E. Sabina, K.A. Pritchard Jr., et al. 2006. Endothelium-derived microparticles induce endothelial dysfunction and acute lung injury. Shock 26 (5): 464–471.PubMedCrossRef Densmore, J.C., P.R. Signorino, J. Ou, O.A. Hatoum, J.J. Rowe, Y. Shi, S. Kaul, D.W. Jones, R.E. Sabina, K.A. Pritchard Jr., et al. 2006. Endothelium-derived microparticles induce endothelial dysfunction and acute lung injury. Shock 26 (5): 464–471.PubMedCrossRef
7.
Zurück zum Zitat Lee, W.L., and G.P. Downey. 2001. Neutrophil activation and acute lung injury. Current Opinion in Critical Care 7 (1): 1–7.PubMedCrossRef Lee, W.L., and G.P. Downey. 2001. Neutrophil activation and acute lung injury. Current Opinion in Critical Care 7 (1): 1–7.PubMedCrossRef
8.
Zurück zum Zitat Mowery, N.T., W.T.H. Terzian, and A.C. Nelson. 2020. Acute lung injury. Current Problems in Surgery 57 (5): 100777.PubMedCrossRef Mowery, N.T., W.T.H. Terzian, and A.C. Nelson. 2020. Acute lung injury. Current Problems in Surgery 57 (5): 100777.PubMedCrossRef
9.
Zurück zum Zitat Litvak, V., S.A. Ramsey, A.G. Rust, D.E. Zak, K.A. Kennedy, A.E. Lampano, M. Nykter, I. Shmulevich, and A. Aderem. 2009. Function of C/EBPdelta in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nature Immunology 10 (4): 437–443.PubMedPubMedCentralCrossRef Litvak, V., S.A. Ramsey, A.G. Rust, D.E. Zak, K.A. Kennedy, A.E. Lampano, M. Nykter, I. Shmulevich, and A. Aderem. 2009. Function of C/EBPdelta in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nature Immunology 10 (4): 437–443.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Medzhitov, R., and T. Horng. 2009. Transcriptional control of the inflammatory response. Nature Reviews Immunology 9 (10): 692–703.PubMedCrossRef Medzhitov, R., and T. Horng. 2009. Transcriptional control of the inflammatory response. Nature Reviews Immunology 9 (10): 692–703.PubMedCrossRef
11.
Zurück zum Zitat Buchholz, B.M., T.R. Billiar, and A.J. Bauer. 2010. Dominant role of the MyD88-dependent signaling pathway in mediating early endotoxin-induced murine ileus. American Journal of Physiology. Gastrointestinal and Liver Physiology 299 (2): G531-538.PubMedPubMedCentralCrossRef Buchholz, B.M., T.R. Billiar, and A.J. Bauer. 2010. Dominant role of the MyD88-dependent signaling pathway in mediating early endotoxin-induced murine ileus. American Journal of Physiology. Gastrointestinal and Liver Physiology 299 (2): G531-538.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Wong, D.V., R.C. Lima-Junior, C.B. Carvalho, V.F. Borges, C.W. Wanderley, A.X. Bem, C.A. Leite, M.A. Teixeira, G.L. Batista, R.L. Silva, et al. 2015. The adaptor protein Myd88 is a key signaling molecule in the pathogenesis of irinotecan-induced intestinal mucositis. PLoS ONE 10 (10): e0139985.PubMedPubMedCentralCrossRef Wong, D.V., R.C. Lima-Junior, C.B. Carvalho, V.F. Borges, C.W. Wanderley, A.X. Bem, C.A. Leite, M.A. Teixeira, G.L. Batista, R.L. Silva, et al. 2015. The adaptor protein Myd88 is a key signaling molecule in the pathogenesis of irinotecan-induced intestinal mucositis. PLoS ONE 10 (10): e0139985.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Chen, L., L. Zheng, P. Chen, and G. Liang. 2020. Myeloid differentiation primary response protein 88 (MyD88): the central hub of TLR/IL-1R signaling. Journal of Medicinal Chemistry 63 (22): 13316–13329.PubMedCrossRef Chen, L., L. Zheng, P. Chen, and G. Liang. 2020. Myeloid differentiation primary response protein 88 (MyD88): the central hub of TLR/IL-1R signaling. Journal of Medicinal Chemistry 63 (22): 13316–13329.PubMedCrossRef
14.
Zurück zum Zitat Bagchi, A., E.A. Herrup, H.S. Warren, J. Trigilio, H.S. Shin, C. Valentine, and J. Hellman. 2007. MyD88-dependent and MyD88-independent pathways in synergy, priming, and tolerance between TLR agonists. The Journal of Immunology 178 (2): 1164–1171.PubMedCrossRef Bagchi, A., E.A. Herrup, H.S. Warren, J. Trigilio, H.S. Shin, C. Valentine, and J. Hellman. 2007. MyD88-dependent and MyD88-independent pathways in synergy, priming, and tolerance between TLR agonists. The Journal of Immunology 178 (2): 1164–1171.PubMedCrossRef
15.
Zurück zum Zitat Jiang, S., X. Li, N.J. Hess, Y. Guan, and R.I. Tapping. 2016. TLR10 is a negative regulator of both MyD88-dependent and -independent TLR signaling. The Journal of Immunology 196 (9): 3834–3841.PubMedCrossRef Jiang, S., X. Li, N.J. Hess, Y. Guan, and R.I. Tapping. 2016. TLR10 is a negative regulator of both MyD88-dependent and -independent TLR signaling. The Journal of Immunology 196 (9): 3834–3841.PubMedCrossRef
16.
Zurück zum Zitat Funami, K., M. Sasai, Y. Ohba, H. Oshiumi, T. Seya, and M. Matsumoto. 2007. Spatiotemporal mobilization of Toll/IL-1 receptor domain-containing adaptor molecule-1 in response to dsRNA. The Journal of Immunology 179 (10): 6867–6872.PubMedCrossRef Funami, K., M. Sasai, Y. Ohba, H. Oshiumi, T. Seya, and M. Matsumoto. 2007. Spatiotemporal mobilization of Toll/IL-1 receptor domain-containing adaptor molecule-1 in response to dsRNA. The Journal of Immunology 179 (10): 6867–6872.PubMedCrossRef
17.
Zurück zum Zitat Gay, N.J., M.F. Symmons, M. Gangloff, and C.E. Bryant. 2014. Assembly and localization of Toll-like receptor signalling complexes. Nature Reviews Immunology 14 (8): 546–558.PubMedCrossRef Gay, N.J., M.F. Symmons, M. Gangloff, and C.E. Bryant. 2014. Assembly and localization of Toll-like receptor signalling complexes. Nature Reviews Immunology 14 (8): 546–558.PubMedCrossRef
18.
Zurück zum Zitat Fitzgerald, K.A., E.M. Palsson-McDermott, A.G. Bowie, C.A. Jefferies, A.S. Mansell, G. Brady, E. Brint, A. Dunne, P. Gray, M.T. Harte, et al. 2001. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413 (6851): 78–83.PubMedCrossRef Fitzgerald, K.A., E.M. Palsson-McDermott, A.G. Bowie, C.A. Jefferies, A.S. Mansell, G. Brady, E. Brint, A. Dunne, P. Gray, M.T. Harte, et al. 2001. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413 (6851): 78–83.PubMedCrossRef
19.
Zurück zum Zitat Ohnishi, H., H. Tochio, Z. Kato, T. Kimura, H. Hiroaki, N. Kondo, and M. Shirakawa. 2010. 1H, 13C, and 15N resonance assignment of the TIR domain of human MyD88. Biomolecular NMR Assignments 4 (2): 123–125.PubMedCrossRef Ohnishi, H., H. Tochio, Z. Kato, T. Kimura, H. Hiroaki, N. Kondo, and M. Shirakawa. 2010. 1H, 13C, and 15N resonance assignment of the TIR domain of human MyD88. Biomolecular NMR Assignments 4 (2): 123–125.PubMedCrossRef
20.
Zurück zum Zitat Motshwene, P.G., M.C. Moncrieffe, J.G. Grossmann, C. Kao, M. Ayaluru, A.M. Sandercock, C.V. Robinson, E. Latz, and N.J. Gay. 2009. An oligomeric signaling platform formed by the Toll-like receptor signal transducers MyD88 and IRAK-4. Journal of Biological Chemistry 284 (37): 25404–25411.PubMedPubMedCentralCrossRef Motshwene, P.G., M.C. Moncrieffe, J.G. Grossmann, C. Kao, M. Ayaluru, A.M. Sandercock, C.V. Robinson, E. Latz, and N.J. Gay. 2009. An oligomeric signaling platform formed by the Toll-like receptor signal transducers MyD88 and IRAK-4. Journal of Biological Chemistry 284 (37): 25404–25411.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Wang, Q., R. Dziarski, C.J. Kirschning, M. Muzio, and D. Gupta. 2001. Micrococci and peptidoglycan activate TLR2–>MyD88–>IRAK–>TRAF–>NIK–>IKK–>NF-kappaB signal transduction pathway that induces transcription of interleukin-8. Infection and Immunity 69 (4): 2270–2276.PubMedPubMedCentralCrossRef Wang, Q., R. Dziarski, C.J. Kirschning, M. Muzio, and D. Gupta. 2001. Micrococci and peptidoglycan activate TLR2–>MyD88–>IRAK–>TRAF–>NIK–>IKK–>NF-kappaB signal transduction pathway that induces transcription of interleukin-8. Infection and Immunity 69 (4): 2270–2276.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Chow, J.C., D.W. Young, D.T. Golenbock, W.J. Christ, and F. Gusovsky. 1999. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. Journal of Biological Chemistry 274 (16): 10689–10692.PubMedCrossRef Chow, J.C., D.W. Young, D.T. Golenbock, W.J. Christ, and F. Gusovsky. 1999. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. Journal of Biological Chemistry 274 (16): 10689–10692.PubMedCrossRef
23.
Zurück zum Zitat Nativel, B., D. Couret, P. Giraud, O. Meilhac, C.L. d’Hellencourt, W. Viranaicken, and C.R. Da Silva. 2017. Porphyromonas gingivalis lipopolysaccharides act exclusively through TLR4 with a resilience between mouse and human. Science and Reports 7 (1): 15789.CrossRef Nativel, B., D. Couret, P. Giraud, O. Meilhac, C.L. d’Hellencourt, W. Viranaicken, and C.R. Da Silva. 2017. Porphyromonas gingivalis lipopolysaccharides act exclusively through TLR4 with a resilience between mouse and human. Science and Reports 7 (1): 15789.CrossRef
24.
Zurück zum Zitat Yang, H., D.W. Young, F. Gusovsky, and J.C. Chow. 2000. Cellular events mediated by lipopolysaccharide-stimulated toll-like receptor 4: MD-2 is required for activation of mitogen-activated protein kinases and Elk-1. Journal of Biological Chemistry 275 (27): 20861–20866.PubMedCrossRef Yang, H., D.W. Young, F. Gusovsky, and J.C. Chow. 2000. Cellular events mediated by lipopolysaccharide-stimulated toll-like receptor 4: MD-2 is required for activation of mitogen-activated protein kinases and Elk-1. Journal of Biological Chemistry 275 (27): 20861–20866.PubMedCrossRef
25.
Zurück zum Zitat Hoshino, K., O. Takeuchi, T. Kawai, H. Sanjo, T. Ogawa, Y. Takeda, K. Takeda, and S. Akira. 1999. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. The Journal of Immunology 162 (7): 3749–3752.PubMedCrossRef Hoshino, K., O. Takeuchi, T. Kawai, H. Sanjo, T. Ogawa, Y. Takeda, K. Takeda, and S. Akira. 1999. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. The Journal of Immunology 162 (7): 3749–3752.PubMedCrossRef
26.
Zurück zum Zitat Takeuchi, O., K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda, and S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11 (4): 443–451.PubMedCrossRef Takeuchi, O., K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda, and S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11 (4): 443–451.PubMedCrossRef
27.
Zurück zum Zitat Wang, P., X. Han, B. Mo, G. Huang, and C. Wang. 2017. LPS enhances TLR4 expression and IFNgamma production via the TLR4/IRAK/NFkappaB signaling pathway in rat pulmonary arterial smooth muscle cells. Molecular Medicine Reports 16 (3): 3111–3116.PubMedPubMedCentralCrossRef Wang, P., X. Han, B. Mo, G. Huang, and C. Wang. 2017. LPS enhances TLR4 expression and IFNgamma production via the TLR4/IRAK/NFkappaB signaling pathway in rat pulmonary arterial smooth muscle cells. Molecular Medicine Reports 16 (3): 3111–3116.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Hagar, J.A., D.A. Powell, Y. Aachoui, R.K. Ernst, and E.A. Miao. 2013. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341 (6151): 1250–1253.PubMedPubMedCentralCrossRef Hagar, J.A., D.A. Powell, Y. Aachoui, R.K. Ernst, and E.A. Miao. 2013. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341 (6151): 1250–1253.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Johnson, E.R., and M.A. Matthay. 2010. Acute lung injury: epidemiology, pathogenesis, and treatment. Journal of Aerosol Medicine and Pulmonary Drug Delivery 23 (4): 243–252.PubMedPubMedCentralCrossRef Johnson, E.R., and M.A. Matthay. 2010. Acute lung injury: epidemiology, pathogenesis, and treatment. Journal of Aerosol Medicine and Pulmonary Drug Delivery 23 (4): 243–252.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Andonegui, G., S.M. Goyert, and P. Kubes. 2002. Lipopolysaccharide-induced leukocyte-endothelial cell interactions: a role for CD14 versus toll-like receptor 4 within microvessels. The Journal of Immunology 169 (4): 2111–2119.PubMedCrossRef Andonegui, G., S.M. Goyert, and P. Kubes. 2002. Lipopolysaccharide-induced leukocyte-endothelial cell interactions: a role for CD14 versus toll-like receptor 4 within microvessels. The Journal of Immunology 169 (4): 2111–2119.PubMedCrossRef
31.
Zurück zum Zitat He, Z., Y. Zhu, and H. Jiang. 2009. Toll-like receptor 4 mediates lipopolysaccharide-induced collagen secretion by phosphoinositide3-kinase-Akt pathway in fibroblasts during acute lung injury. Journal of Receptor and Signal Transduction Research 29 (2): 119–125.PubMedCrossRef He, Z., Y. Zhu, and H. Jiang. 2009. Toll-like receptor 4 mediates lipopolysaccharide-induced collagen secretion by phosphoinositide3-kinase-Akt pathway in fibroblasts during acute lung injury. Journal of Receptor and Signal Transduction Research 29 (2): 119–125.PubMedCrossRef
32.
Zurück zum Zitat Janga, H., L. Cassidy, F. Wang, D. Spengler, S. Oestern-Fitschen, M.F. Krause, A. Seekamp, A. Tholey, and S. Fuchs. 2018. Site-specific and endothelial-mediated dysfunction of the alveolar-capillary barrier in response to lipopolysaccharides. Journal of Cellular and Molecular Medicine 22 (2): 982–998.PubMedCrossRef Janga, H., L. Cassidy, F. Wang, D. Spengler, S. Oestern-Fitschen, M.F. Krause, A. Seekamp, A. Tholey, and S. Fuchs. 2018. Site-specific and endothelial-mediated dysfunction of the alveolar-capillary barrier in response to lipopolysaccharides. Journal of Cellular and Molecular Medicine 22 (2): 982–998.PubMedCrossRef
33.
Zurück zum Zitat Imai, Y., K. Kuba, G.G. Neely, R. Yaghubian-Malhami, T. Perkmann, G. van Loo, M. Ermolaeva, R. Veldhuizen, Y.H. Leung, H. Wang, et al. 2008. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133 (2): 235–249.PubMedPubMedCentralCrossRef Imai, Y., K. Kuba, G.G. Neely, R. Yaghubian-Malhami, T. Perkmann, G. van Loo, M. Ermolaeva, R. Veldhuizen, Y.H. Leung, H. Wang, et al. 2008. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133 (2): 235–249.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Chao, H.H., P.Y. Chen, W.R. Hao, W.P. Chiang, T.H. Cheng, S.H. Loh, Y.M. Leung, J.C. Liu, J.J. Chen, and L.C. Sung. 2017. Lipopolysaccharide pretreatment increases protease-activated receptor-2 expression and monocyte chemoattractant protein-1 secretion in vascular endothelial cells. Journal of Biomedical Science 24 (1): 85.PubMedPubMedCentralCrossRef Chao, H.H., P.Y. Chen, W.R. Hao, W.P. Chiang, T.H. Cheng, S.H. Loh, Y.M. Leung, J.C. Liu, J.J. Chen, and L.C. Sung. 2017. Lipopolysaccharide pretreatment increases protease-activated receptor-2 expression and monocyte chemoattractant protein-1 secretion in vascular endothelial cells. Journal of Biomedical Science 24 (1): 85.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat He, Z., Y. Gao, Y. Deng, W. Li, Y. Chen, S. Xing, X. Zhao, J. Ding, and X. Wang. 2012. Lipopolysaccharide induces lung fibroblast proliferation through Toll-like receptor 4 signaling and the phosphoinositide3-kinase-Akt pathway. PLoS ONE 7 (4): e35926.PubMedPubMedCentralCrossRef He, Z., Y. Gao, Y. Deng, W. Li, Y. Chen, S. Xing, X. Zhao, J. Ding, and X. Wang. 2012. Lipopolysaccharide induces lung fibroblast proliferation through Toll-like receptor 4 signaling and the phosphoinositide3-kinase-Akt pathway. PLoS ONE 7 (4): e35926.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Alam, S., S. Javor, M. Degardin, D. Ajami, M. Rebek, T.L. Kissner, D.M. Waag, J. Rebek Jr., and K.U. Saikh. 2015. Structure-based design and synthesis of a small molecule that exhibits anti-inflammatory activity by inhibition of MyD88-mediated signaling to bacterial toxin exposure. Chemical Biology & Drug Design 86 (2): 200–209.CrossRef Alam, S., S. Javor, M. Degardin, D. Ajami, M. Rebek, T.L. Kissner, D.M. Waag, J. Rebek Jr., and K.U. Saikh. 2015. Structure-based design and synthesis of a small molecule that exhibits anti-inflammatory activity by inhibition of MyD88-mediated signaling to bacterial toxin exposure. Chemical Biology & Drug Design 86 (2): 200–209.CrossRef
37.
Zurück zum Zitat Adachi, O., T. Kawai, K. Takeda, M. Matsumoto, H. Tsutsui, M. Sakagami, K. Nakanishi, and S. Akira. 1998. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9 (1): 143–150.PubMedCrossRef Adachi, O., T. Kawai, K. Takeda, M. Matsumoto, H. Tsutsui, M. Sakagami, K. Nakanishi, and S. Akira. 1998. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9 (1): 143–150.PubMedCrossRef
38.
Zurück zum Zitat Kawai, T., O. Adachi, T. Ogawa, K. Takeda, and S. Akira. 1999. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11 (1): 115–122.PubMedCrossRef Kawai, T., O. Adachi, T. Ogawa, K. Takeda, and S. Akira. 1999. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11 (1): 115–122.PubMedCrossRef
39.
Zurück zum Zitat Lord, K.A., B. Hoffman-Liebermann, and D.A. Liebermann. 1990. Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene 5 (7): 1095–1097.PubMed Lord, K.A., B. Hoffman-Liebermann, and D.A. Liebermann. 1990. Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene 5 (7): 1095–1097.PubMed
40.
Zurück zum Zitat Wesche, H., W.J. Henzel, W. Shillinglaw, S. Li, and Z. Cao. 1997. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7 (6): 837–847.PubMedCrossRef Wesche, H., W.J. Henzel, W. Shillinglaw, S. Li, and Z. Cao. 1997. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7 (6): 837–847.PubMedCrossRef
41.
Zurück zum Zitat Cao, F., C. Wang, D. Long, Y. Deng, K. Mao, and H. Zhong. 2021. Network-based integrated analysis of transcriptomic studies in dissecting gene signatures for LPS-induced acute lung injury. Inflammation 44 (6): 2486–2498.PubMedCrossRef Cao, F., C. Wang, D. Long, Y. Deng, K. Mao, and H. Zhong. 2021. Network-based integrated analysis of transcriptomic studies in dissecting gene signatures for LPS-induced acute lung injury. Inflammation 44 (6): 2486–2498.PubMedCrossRef
Metadaten
Titel
Incomplete Knockdown of MyD88 Inhibits LPS-Induced Lung Injury and Lung Fibrosis in a Mouse Model
verfasst von
Hui Fan
Yanni Wang
Kaochang Zhao
Li Su
Chong Deng
Jie Huang
Guozhong Chen
Publikationsdatum
22.08.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01877-4

Weitere Artikel der Ausgabe 6/2023

Inflammation 6/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.