Skip to main content
Erschienen in: BMC Pediatrics 1/2020

Open Access 01.12.2020 | Case report

A family of Melnick-Needles syndrome: a case report

verfasst von: Chi Hoon Oh, Chang Ho Lee, So Young Kim, So-Young Lee, Hak Hoon Jun, Soonchul Lee

Erschienen in: BMC Pediatrics | Ausgabe 1/2020

Abstract

Background

Melnick-Needles syndrome (MNS) is an extremely rare osteochondrodysplasia caused by a mutation of FLNA, the gene encoding filamin A. MNS is inherited in an X-linked dominant manner. In this study, we describe three members of the same family with MNS, who exhibited different phenotypic severity despite having an identical FLNA gene mutation.

Case presentation

The patient was 16 months old, with a history of delayed physical development, multiple upper respiratory infections and otitis media episodes. She was referred to our orthopedic clinic because of bowed legs and an abnormal plain chest radiograph. Both upper and lower extremities were bowed. Plain X-rays showed thoracolumbar kyphoscoliosis, with anterior and posterior vertebral scalloping, and thin, wavy ribs. Hypoplasia of the pubis and ischium, with bilateral coxa valga, were also noted. Target exome sequencing revealed a heterozygous mutation of FLNA, c.3578 T > C, p.Lys1193Pro, which confirmed the diagnosis of MNS. Her older sister and mother had minimal deformities of the axial and extremity skeleton, but genetic analyses revealed the same FLNA mutation as the patient. The mutation identified in this family has not been previously reported.

Conclusion

This report illustrates the potential inherited nature of MNS and the phenotypic variability of clinicoradiologic characteristics. In patients with traits suggestive of MNS, a careful medical and family history should be obtained, and genetic testing should be performed for the patient, as well as all family members.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
MNS
Melnick-Needles syndrome
OPS
Otopalatodigital syndrome
FMD
Frontometaphyseal dysplasia
TODPD
Terminal osseous dysplasia with/without pigmentary defects
CED
Camurati-Engelmann disease

Background

Melnick-Needles syndrome (MNS, OMIM: #309350) is an extremely rare osteochondrodysplasia [13]. To date, less than 70 cases of MNS have been reported worldwide [4]. MNS is caused by gain-of-function mutations in the FLNA gene (OMIM: #30017) which encodes filamin A. Patients with MNS typically have unusual facial features, short ribbon-like ribs, scoliosis, bowing of the long bones, and vertebral scalloping [5]. Intelligence is not impaired. In more severe cases, affected individuals die in the second or third decade of life from respiratory failure secondary to the chest wall abnormalities [4].
MNS is a member of a group of five X-linked diseases with overlapping clinical phenotypes, known collectively as otopalatodigital syndrome (OPS) spectrum disorders [6]. Other members of the group are OPS type 1 (OMIM: #311300), OPS type 2 (OMIM: #304120), frontometaphyseal dysplasia (FMD, OMIM: #305620), and terminal osseous dysplasia with/without pigmentary defects (TODPD, OMIM: #300244). MNS is found almost exclusively in females, as the syndrome is lethal during gestation or the perinatal period in almost all affected males [7]. In males that do survive to term, the phenotype is clinically indistinguishable from that of OPS type 2 [8]. Females with MNS have characteristic clinical and radiologic diagnostic findings. Table 1 shows details of the clinical features of patients with MNS reported in the past 15 years [914].
Table 1
Summary of Melnick-Needles syndrome case reports within the past 15 years
Case
Year
Sex
Age
Described clinical features
1 [13]a
2017
F
27
Mandibular hypoplasia, retrognathia sleep apnea
2 [13]a
2017
F
21
Mandibular hypoplasia, retrognathia, hypodontia
3 [12]
2016
F
13
Cranial hyperostosis, short upper limbs, bowed long bones, metaphyseal thickening, genu valgum, shortened distal phalanges, hypoplastic pelvis and shoulders, rib tapering and irregularities, elongation of vertebrae, kyphoscoliosis, micrognathia, mandibular hypoplasia, abnormal dental development
4 [10]
2013
F
17
Prominent forehead, severely deformed chest with a significant mid-thoracic kyphosis, genu valgum, limb length inequality
5 [10]
2013
F
18
Prominent eyes, full cheeks, small chin, large prominent forehead, genu valgum, low weight and small height, significant lung disease (stent in right main bronchus)
6 [14]
2012
F
18
Unfavourable aesthetics, masticatory problems, sigmatism in her speech, sclerosis of the skull base, moderate kyphoscoliosis, curved clavicle, small rib cage, lowed long bones with metaphyseal flaring, coxa valga, hypoplastic pelvis
7 [9]
2009
F
6
Exophthalmos, full cheeks, high forehead, micrognathia, malaligned teeth, genu valgum, small chest wall with pectus carinatus, low weight and small height
8 [11]
2006
F
39
Dyspnea with congestion and wheezing, micrognathia, small and crowded oropharynx, kyphoscoliosis
aCases 1 and 2 are sisters. In other cases, however, there is no familial report, so there is no information about inheritance
Because MNS is extremely rare and some cases are lethal, mostly it is detected as de novo condition, but once it is developed, it is inherited in an X-linked dominant manner [15, 16]. However, previous reports did not describe the familial characteristics of the disease in detail. In this case report, we describe a family with MNS who exhibited variable severity of phenotypic changes despite having an identical FLNA gene mutation.

Case presentation

A 16-month-old female was referred to our orthopedic department because of bowed legs and an abnormal chest X-ray. She was 80 cm (50th percentile) tall and weighed 9.7 kg (25th percentile). Her past medical history was positive for delayed physical development, as well as recurrent respiratory tract infections and episodes of otitis media. Examination revealed several facial characteristics of MNS, including prominent eyes, supraorbital hyperostosis, full cheeks, and micrognathia (Fig. 1). Plain radiographs revealed a number of abnormalities.
X-ray showed thoracolumbar kyphoscoliosis and anterior and posterior vertebral scalloping; humerus cortical irregularity with bowing; thin wavy ribs; pelvis hypoplasia of the pubis and ischium and bilateral coxa valga; bilateral bowed leg deformities, with normal epiphyses and metaphyses. The bone age estimated from X-rays of the hand was 1.5 years, which was similar with the patient’s chronological age (Fig. 2).
To confirm the clinical impression of MNS, we performed genetic analyses. Target exome sequencing revealed a heterozygous mutation in the FLNA gene, c.3578 T > C, p.L1193P, which confirmed the diagnosis. Subsequently, the patient continued to have repeated respiratory tract infections and otitis media episodes. She died at the age of 6 years of a cardiac arrest, the direct cause of which was undetermined.
Target exome sequencing was also performed for all available family members. Her mother and older sister were found to have the exact same mutation, although they exhibited less severe MNS phenotypes. Her mother had full cheeks (like the patient) and lumbar scoliosis, but she had minimal leg deformities (Fig. 3). Her older sister had essentially no MNS facial characteristics, but she did exhibit coxa valga deformities (Fig. 4). When initially assessed, the sister’s spinal alignment was normal, but thoracolumbar kyphoscoliosis was observed at 9 years of age.

Discussion and conclusions

The locus associated with MNS is the FLNA gene, which encodes the cytoskeletal protein filamin A. FLNA comprises 48 exons and encodes a modular protein with an N-terminal actin-binding domain and a tail of 24 structurally homologous repeats [4]. Cellular functions mediated by filamin include linking signal transduction events to modulation of the actin cytoskeleton and gene transcription [17]. In 2003, Robertson et al. reported that MNS is caused by gain-of-function mutations in the FLNA gene and has an X-linked pattern of inheritance. They also noted that FLNA mutations are responsible for OPS type 1, OPS type 2, FMD, and TODPD (Table 2) [6, 12, 18].
Table 2
Comparisons of key features of OPS spectrum disorders [6, 12, 18]
Type
Sexa
Prognosis
Skeletal dysplasia
Craniofacial anomaly
Other features
MNS
Male
Similar with OPD type 2 but more severe manifestation, dies during embryonic period.
Female
1.Substantial variability is observed in females.
2. Normal fertility
3. Normal intelligence
1. Flexed upper limbs
2. Postaxial polydactyly
3. Bowed limb
4. Clubfeet
5. Kyphoscoliosis
6. Short stature
7. Thoracic hypoplasia
8. Joint subluxation
1. Large fontanelles
2. Malar flattening
3. Bilateral cleft palate
4. Bifid tongue
5. Severe micrognathia
6. Prominent supraorbital ridges
7. Proptosis
8. Full cheeks
1. Fibrosis of pancreas and spleen
2. Bilateral cystic renal dysplasia 2ndary to obstructive uropathy and omphalocele
3. Oligohypodontia
4. Hearing loss (Common)
5. Hydronephrosis 2ndary to ureteric obstruction
(Common)
6. Bleeding diathesis
OPS type 1
Male
1. Phenotypes are evident at birth.
2. No late-onset orthopedic
complications
3. Normal life span
4. Normal fertility
5. Normal intelligence
1. Hypoplasia of thumbs, distal phalanges,
great toe, a long second toe
4. Joint contracture (Wrist, elbow)
5. Bowed limb (Mild)
6. Reduced stature (Mild)
1. Supraorbital hyperostosis
2. Downslanted palpebral fissures
3. Widely spaced eyes
4. Wide nasal bridge and broad nasal tip
1. Hearing loss
2. Cleft palate
Female
Variable clinical severity
OPS type 2
Male
1. Neonatal lethality due to usually from thoracic hypoplasia resulting in pulmonary insufficiency
2. Developmental delay
1. Thoracic hypoplasia
2. Bowed limb
3. Short stature
4. Hypoplasia of thumb & big toe
5. Delayed closure of fontanelles
6. Scoliosis
Similar with male of OPD type 1 but more severe manifestation
1. Hearing loss
2. Cardiac septal defects
3. Omphalocele
4. Hydronephrosis 2ndary to ureteric obstruction
5. Hypospadias
6. Hydrocephalus, cerebellar hypoplasia
Female
Usually present with a subclinical phenotype
FMD
Male
Normal intelligence
1. Hypoplasia of distal phalanges
2. Progressive joint contractures (Hand IP & MP, wrist, elbow, knee, ankle)
3. Progressive scoliosis
4. Bowed limb
1. Very pronounced supraorbital
hyperostosis
2. Downslanted palpebral fissures
3. Widely spaced eyes
1. Hearing loss
2. Oligohypodontia (Frequent)
3. Underdevelopment of the muscle around the shoulder girdle & in the intrinsic muscles of the hands (Common)
4. Subglottic stenosis
5. Urethral stenosis, and hydronephrosis
Female
Characteristic craniofacial features similar to those of affected males
TODPD
Male
A male presentation of TODPD has never been described.
Female
Normal intelligence
1. Disorganized ossification of the carpals and metacarpals.
2. Marked camptodactyly
3. Bowed limbs
4. Radial head dislocation
5. Short stature
6. Scoliosis.
1. Widely spaced eyes
2. Punched out hyperpigmented
lesions characteristically over the temporal region. (Unlike the fibromata, these lesions do not involute with age.)
1. Digital fibromata appear in infancy, eventually involute before age ten years.
2. Cardiac septal defects
3. Ureteric obstruction (Occasional)
4. Alopecia (Variable)
aIn general, female patient shows mild phenotype compared to male
OPS Otopalatodigital syndrome, MNS Melnick-Needles syndrome, FMD Frontometaphyseal dysplasia, TODPD Terminal osseous dysplasia with pigmentary skin defects, IP Interphalangeal, MP Metacarpophalangeal
The pathogenesis of MNS has not been established. Some researchers have reported increased skeletal collagen content, which could explain the sclerosing bone process [9]. Fryns et al. suggested that MNS was a generalized connective tissue disorder because of the hyperlaxity of skin and joints [19]. Urological, pulmonary, and cardiac involvement is also common in patients with MNS [20, 21]. Although diverse phenotypes may occur [22], affected females are usually short and may have delayed motor development, osteoarthritis, a hoarse voice, and urethral stenosis (leading to hydronephrosis), in addition to the main abnormalities [1].
It is not yet known why phenotypes may differ between females with MNS. Skewed X-inactivation and somatic mutation have been suggested as potential mechanisms [23, 24]. For example, Robertson et al. reported monozygotic twin sisters, only one of whom had MNS [24]. In our case, although phenotypic severity differed between female family members, they all had the same heterozygous FLNA mutation (c.3578 T > C, p.L1193P). Interestingly, the mutations identified in this family have not been previously reported in the National Center for Biotechnology Information’s ClinVar. As mentioned earlier, pathogenesis of MNS has not been established well. Further research is also needed to determine pathogenicity of this mutation among these families with MNS.
It should be noted that the patient with MNS would demonstrate the typical bone deformity in the distal femur, which was called as the Erlenmeyer flask deformity like Camurati-Engelmann disease (CED, OMIM: #131300). CED is another rare genetic skeletal disorder caused by tumor growth factor-β1 mutation, which is characterized by limb pain, muscle emaciation and weakness, cortical thickening of the diaphysis of long bones, and also Erlenmeyer flask deformity [25, 26].
Although MNS is rare, physicians should be aware of the disorder, including its variable manifestations, because of the potential lethality of severe disease. A possible hereditary mutation should be suspected even when family members have an almost normal appearance. Thus, in patients exhibiting traits suggestive of MNS, imaging studies and genetic testing should be performed for both the patient and all family members.
Informed written consent was obtained. It contains publication of this report and the accompanying images, including photographic rights of patient, her mother and her sister (Use of medical information for academic purposes, including the portrait rights shown in Figs. 1, 3 and 4). For the patient, her mother and her sister, written consent was obtained from the father and mother for all teaching and academic purposes, including publication of this case report.

Acknowledgements

We thank Drs. Tae Joon Cho and Ok Hwa Kim for assisting with the data analysis and image interpretation.
This study was approved by the CHA Bundang Medical Center institutional review board (number 2018–01-042).
Written informed consent was obtained for publication of this case report and all accompanying images. A copy of the written consent is available for review. In this study, we received a consent form to provide medical information, including photographic rights from parents of the patient. These procedures were approved by our institutional review board.

Competing interests

The authors declare no competing interests. They have no potential, perceived, or real conflicts of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Santos HH, Garcia PP, Pereira L, Leao LL, Aguiar RA, Lana AM, Carvalho MR, Aguiar MJ. Mutational analysis of two boys with the severe perinatally lethal Melnick-Needles syndrome. Am J Med Genet Part A. 2010;152a(3):726–31.PubMed Santos HH, Garcia PP, Pereira L, Leao LL, Aguiar RA, Lana AM, Carvalho MR, Aguiar MJ. Mutational analysis of two boys with the severe perinatally lethal Melnick-Needles syndrome. Am J Med Genet Part A. 2010;152a(3):726–31.PubMed
2.
Zurück zum Zitat Coste F, Maroteaux P, Chouraki L. Osteodysplasty (Melnick and Needles syndrome). Report of a case. Ann Rheum Dis. 1968;27(4):360–6.PubMedPubMedCentral Coste F, Maroteaux P, Chouraki L. Osteodysplasty (Melnick and Needles syndrome). Report of a case. Ann Rheum Dis. 1968;27(4):360–6.PubMedPubMedCentral
3.
Zurück zum Zitat Melnick JC, Needles CF. An undiagnosed bone dysplasia. A 2 family study of 4 generations and 3 generations. Am J Roentgenol Radium Therapy, Nucl Med. 1966;97(1):39–48. Melnick JC, Needles CF. An undiagnosed bone dysplasia. A 2 family study of 4 generations and 3 generations. Am J Roentgenol Radium Therapy, Nucl Med. 1966;97(1):39–48.
4.
Zurück zum Zitat Bandyopadhyay SK, Ghosal J, Chakrabarti N, Dutta A. Melnick- needles osteodysplasty presenting with quadriparesis. J Assoc Physicians India. 2006;54:248–9.PubMed Bandyopadhyay SK, Ghosal J, Chakrabarti N, Dutta A. Melnick- needles osteodysplasty presenting with quadriparesis. J Assoc Physicians India. 2006;54:248–9.PubMed
5.
Zurück zum Zitat Unal VS, Derici O, Oken F, Turan S, Girgin O. Fibular lengthening procedure: treatment for lateral instability of the ankle caused by fibular insufficiency in Melnick-Needles syndrome. J Pediatr Orthop B. 2004;13(2):88–91.PubMed Unal VS, Derici O, Oken F, Turan S, Girgin O. Fibular lengthening procedure: treatment for lateral instability of the ankle caused by fibular insufficiency in Melnick-Needles syndrome. J Pediatr Orthop B. 2004;13(2):88–91.PubMed
6.
Zurück zum Zitat Robertson SP. Otopalatodigital syndrome spectrum disorders: otopalatodigital syndrome types 1 and 2, frontometaphyseal dysplasia and Melnick-Needles syndrome. Eur J Hum Genet. 2007;15(1):3–9.PubMed Robertson SP. Otopalatodigital syndrome spectrum disorders: otopalatodigital syndrome types 1 and 2, frontometaphyseal dysplasia and Melnick-Needles syndrome. Eur J Hum Genet. 2007;15(1):3–9.PubMed
7.
Zurück zum Zitat Donnenfeld AE, Conard KA, Roberts NS, Borns PF, Zackai EH. Melnick-Needles syndrome in males: a lethal multiple congenital anomalies syndrome. Am J Med Genet. 1987;27(1):159–73.PubMed Donnenfeld AE, Conard KA, Roberts NS, Borns PF, Zackai EH. Melnick-Needles syndrome in males: a lethal multiple congenital anomalies syndrome. Am J Med Genet. 1987;27(1):159–73.PubMed
8.
Zurück zum Zitat Robertson S, Gunn T, Allen B, Chapman C, Becroft D. Are Melnick-Needles syndrome and Oto-palato-digital syndrome type II allelic? Observations in a four-generation kindred. Am J Med Genet. 1997;71(3):341–7.PubMed Robertson S, Gunn T, Allen B, Chapman C, Becroft D. Are Melnick-Needles syndrome and Oto-palato-digital syndrome type II allelic? Observations in a four-generation kindred. Am J Med Genet. 1997;71(3):341–7.PubMed
9.
Zurück zum Zitat Svejcar J. Biochemical abnormalities in connective tissue of osteodysplasty of Melnick-Needles and dyssegmental dwarfism. Clin Genet. 1983;23(5):369–75.PubMed Svejcar J. Biochemical abnormalities in connective tissue of osteodysplasty of Melnick-Needles and dyssegmental dwarfism. Clin Genet. 1983;23(5):369–75.PubMed
10.
Zurück zum Zitat Lykissas MG, Crawford AH, Shufflebarger HL, Gaines S, Permal V. Correction of spine deformity in patients with Melnick-needles syndrome: report of 2 cases and literature review. J Pediatr Orthop. 2013;33(2):170–4.PubMed Lykissas MG, Crawford AH, Shufflebarger HL, Gaines S, Permal V. Correction of spine deformity in patients with Melnick-needles syndrome: report of 2 cases and literature review. J Pediatr Orthop. 2013;33(2):170–4.PubMed
11.
Zurück zum Zitat Harper D, Bloom DA, Rowley JA, Soubani A, Smith WL. The high-resolution chest CT findings in an adult with Melnick-Needles syndrome. Clin Imaging. 2006;30(5):350–3.PubMed Harper D, Bloom DA, Rowley JA, Soubani A, Smith WL. The high-resolution chest CT findings in an adult with Melnick-Needles syndrome. Clin Imaging. 2006;30(5):350–3.PubMed
12.
Zurück zum Zitat Albuquerque do Nascimento LL, Salgueiro Mda C, Quintela M, Teixeira VP, Mota AC, de Godoy CH, Bussadori SK. Maxillofacial Changes in Melnick-Needles Syndrome. Case Rep Dent. 2016;2016:9685429..PubMedPubMedCentral Albuquerque do Nascimento LL, Salgueiro Mda C, Quintela M, Teixeira VP, Mota AC, de Godoy CH, Bussadori SK. Maxillofacial Changes in Melnick-Needles Syndrome. Case Rep Dent. 2016;2016:9685429..PubMedPubMedCentral
13.
Zurück zum Zitat O'Connell JE, Bourke B, Kearns GJ. Orthognathic surgery in Melnick-Needles syndrome: a review of the literature and report of two siblings. Int J Oral Maxillofac Surg. 2018;47(6):738–42.PubMed O'Connell JE, Bourke B, Kearns GJ. Orthognathic surgery in Melnick-Needles syndrome: a review of the literature and report of two siblings. Int J Oral Maxillofac Surg. 2018;47(6):738–42.PubMed
14.
Zurück zum Zitat Jung S, Wermker K, Joos U, Kleinheinz J. Orthognathic surgery in Melnick-Needles-syndrome. Case report and review of the literature. Int J Oral Maxillofac Surg. 2012;41(3):309–12.PubMed Jung S, Wermker K, Joos U, Kleinheinz J. Orthognathic surgery in Melnick-Needles-syndrome. Case report and review of the literature. Int J Oral Maxillofac Surg. 2012;41(3):309–12.PubMed
15.
Zurück zum Zitat Kustrzycka D, Mikulewicz M, Pelc A, Kosior P, Dobrzyński M. Craniofacial and dental manifestations of Melnick–Needles syndrome: literature review and orthodontic management. Case Rep Pediatr. 2018;2018:5891024.PubMedPubMedCentral Kustrzycka D, Mikulewicz M, Pelc A, Kosior P, Dobrzyński M. Craniofacial and dental manifestations of Melnick–Needles syndrome: literature review and orthodontic management. Case Rep Pediatr. 2018;2018:5891024.PubMedPubMedCentral
16.
Zurück zum Zitat Foley C, Roberts K, Tchrakian N, Morgan T, Fryer A, Robertson S, Tubridy N. Expansion of the Spectrum of FLNA mutations associated with Melnick-Needles syndrome. Mole Syndromol. 2010;1(3):121–6. Foley C, Roberts K, Tchrakian N, Morgan T, Fryer A, Robertson S, Tubridy N. Expansion of the Spectrum of FLNA mutations associated with Melnick-Needles syndrome. Mole Syndromol. 2010;1(3):121–6.
17.
Zurück zum Zitat Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M, Shapiro SS. Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol. 2001;2(2):138–45.PubMed Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M, Shapiro SS. Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol. 2001;2(2):138–45.PubMed
18.
Zurück zum Zitat Robertson S. Otopalatodigital spectrum disorders. In: GeneReviews®. Seattle: University of Washington; 2013. Robertson S. Otopalatodigital spectrum disorders. In: GeneReviews®. Seattle: University of Washington; 2013.
19.
Zurück zum Zitat Fryns J, Schinzel A, Van den Berghe H. Reynolds JFJAjomg: Hyperlaxity in males with Melnick-Needles syndrome. Am J Med Genet. 1988;29(3):607–11.PubMed Fryns J, Schinzel A, Van den Berghe H. Reynolds JFJAjomg: Hyperlaxity in males with Melnick-Needles syndrome. Am J Med Genet. 1988;29(3):607–11.PubMed
20.
Zurück zum Zitat Klint RB, Agustsson MH, McAlister WH. Melnick-Needles osteodysplasia associated with pulmonary hypertension, obstructive uropathy and marrow hypoplasia. Pediatr Radiol. 1977;6(1):49–51.PubMed Klint RB, Agustsson MH, McAlister WH. Melnick-Needles osteodysplasia associated with pulmonary hypertension, obstructive uropathy and marrow hypoplasia. Pediatr Radiol. 1977;6(1):49–51.PubMed
21.
Zurück zum Zitat LaMontagne AE. Urological manifestations of the Melnick-Needles syndrome: a case report and review of the literature. J Urol. 1991;145(5):1020–1.PubMed LaMontagne AE. Urological manifestations of the Melnick-Needles syndrome: a case report and review of the literature. J Urol. 1991;145(5):1020–1.PubMed
22.
Zurück zum Zitat Akin L, Adal E, Akin MA, Kurtoglu S. Melnick-Needles syndrome associated with growth hormone deficiency: a case report. J Clin Res Pediatr Endocrinol. 2009;1(5):248–51.PubMedPubMedCentral Akin L, Adal E, Akin MA, Kurtoglu S. Melnick-Needles syndrome associated with growth hormone deficiency: a case report. J Clin Res Pediatr Endocrinol. 2009;1(5):248–51.PubMedPubMedCentral
23.
Zurück zum Zitat Kristiansen M, Knudsen GP, Soyland A, Westvik J, Orstavik KH. Phenotypic variation in Melnick-Needles syndrome is not reflected in X inactivation patterns from blood or buccal smear. Am J Med Genet. 2002;108(2):120–7.PubMed Kristiansen M, Knudsen GP, Soyland A, Westvik J, Orstavik KH. Phenotypic variation in Melnick-Needles syndrome is not reflected in X inactivation patterns from blood or buccal smear. Am J Med Genet. 2002;108(2):120–7.PubMed
24.
Zurück zum Zitat Robertson SP, Thompson S, Morgan T, Holder-Espinasse M, Martinot-Duquenoy V, Wilkie AO, Manouvrier-Hanu S. Postzygotic mutation and germline mosaicism in the otopalatodigital syndrome spectrum disorders. Eur J Hum Genet. 2006;14(5):549–54.PubMed Robertson SP, Thompson S, Morgan T, Holder-Espinasse M, Martinot-Duquenoy V, Wilkie AO, Manouvrier-Hanu S. Postzygotic mutation and germline mosaicism in the otopalatodigital syndrome spectrum disorders. Eur J Hum Genet. 2006;14(5):549–54.PubMed
25.
Zurück zum Zitat Faden MA, Krakow D, Ezgu F, Rimoin DL, Lachman RS. The Erlenmeyer flask bone deformity in the skeletal Dysplasias. Am J Med Genet A. 2009;149A(6):1334–45.PubMedPubMedCentral Faden MA, Krakow D, Ezgu F, Rimoin DL, Lachman RS. The Erlenmeyer flask bone deformity in the skeletal Dysplasias. Am J Med Genet A. 2009;149A(6):1334–45.PubMedPubMedCentral
26.
Zurück zum Zitat Yuldashev AJ, Shin CH, Kim YS, Jang WY, Park MS, Chae JH, Yoo WJ, Choi IH, Kim OH, Cho TJ. Orthopedic manifestations of type I Camurati-Engelmann disease. Clin Orthop Surg. 2017;9(1):109–15.PubMedPubMedCentral Yuldashev AJ, Shin CH, Kim YS, Jang WY, Park MS, Chae JH, Yoo WJ, Choi IH, Kim OH, Cho TJ. Orthopedic manifestations of type I Camurati-Engelmann disease. Clin Orthop Surg. 2017;9(1):109–15.PubMedPubMedCentral
Metadaten
Titel
A family of Melnick-Needles syndrome: a case report
verfasst von
Chi Hoon Oh
Chang Ho Lee
So Young Kim
So-Young Lee
Hak Hoon Jun
Soonchul Lee
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Pediatrics / Ausgabe 1/2020
Elektronische ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-020-02288-2

Weitere Artikel der Ausgabe 1/2020

BMC Pediatrics 1/2020 Zur Ausgabe

Mit dem Seitenschneider gegen das Reißverschluss-Malheur

03.06.2024 Urologische Notfallmedizin Nachrichten

Wer ihn je erlebt hat, wird ihn nicht vergessen: den Schmerz, den die beim Öffnen oder Schließen des Reißverschlusses am Hosenschlitz eingeklemmte Haut am Penis oder Skrotum verursacht. Eine neue Methode für rasche Abhilfe hat ein US-Team getestet.

Ähnliche Überlebensraten nach Reanimation während des Transports bzw. vor Ort

29.05.2024 Reanimation im Kindesalter Nachrichten

Laut einer Studie aus den USA und Kanada scheint es bei der Reanimation von Kindern außerhalb einer Klinik keinen Unterschied für das Überleben zu machen, ob die Wiederbelebungsmaßnahmen während des Transports in die Klinik stattfinden oder vor Ort ausgeführt werden. Jedoch gibt es dabei einige Einschränkungen und eine wichtige Ausnahme.

Alter der Mutter beeinflusst Risiko für kongenitale Anomalie

28.05.2024 Kinder- und Jugendgynäkologie Nachrichten

Welchen Einfluss das Alter ihrer Mutter auf das Risiko hat, dass Kinder mit nicht chromosomal bedingter Malformation zur Welt kommen, hat eine ungarische Studie untersucht. Sie zeigt: Nicht nur fortgeschrittenes Alter ist riskant.

Begünstigt Bettruhe der Mutter doch das fetale Wachstum?

Ob ungeborene Kinder, die kleiner als die meisten Gleichaltrigen sind, schneller wachsen, wenn die Mutter sich mehr ausruht, wird diskutiert. Die Ergebnisse einer US-Studie sprechen dafür.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.