Skip to main content
Erschienen in: Strahlentherapie und Onkologie 12/2023

02.06.2023 | Review Article

YB-1 activating cascades as potential targets in KRAS-mutated tumors

verfasst von: Shayan Khozooei, Soundaram Veerappan, Prof. Dr. Mahmoud Toulany

Erschienen in: Strahlentherapie und Onkologie | Ausgabe 12/2023

Einloggen, um Zugang zu erhalten

Abstract

Y‑box binding protein‑1 (YB-1) is a multifunctional protein that is highly expressed in human solid tumors of various entities. Several cellular processes, e.g. cell cycle progression, cancer stemness and DNA damage signaling that are involved in the response to chemoradiotherapy (CRT) are tightly governed by YB‑1. KRAS gene with about 30% mutations in all cancers, is considered the most commonly mutated oncogene in human cancers. Accumulating evidence indicates that oncogenic KRAS mediates CRT resistance. AKT and p90 ribosomal S6 kinase are downstream of KRAS and are the major kinases that stimulate YB‑1 phosphorylation. Thus, there is a close link between the KRAS mutation status and YB‑1 activity. In this review paper, we highlight the importance of the KRAS/YB‑1 cascade in the response of KRAS-mutated solid tumors to CRT. Likewise, the opportunities to interfere with this pathway to improve CRT outcome are discussed in light of the current literature.
Literatur
2.
4.
Zurück zum Zitat Yahata H et al (2002) Increased nuclear localization of transcription factor YB‑1 in acquired cisplatin-resistant ovarian cancer. J Cancer Res Clin Oncol 128(11):621–626PubMedCrossRef Yahata H et al (2002) Increased nuclear localization of transcription factor YB‑1 in acquired cisplatin-resistant ovarian cancer. J Cancer Res Clin Oncol 128(11):621–626PubMedCrossRef
5.
Zurück zum Zitat Nishio S et al (2014) Nuclear Y‑box-binding protein‑1 is a poor prognostic marker and related to epidermal growth factor receptor in uterine cervical cancer. Gynecol Oncol 132(3):703–708PubMedCrossRef Nishio S et al (2014) Nuclear Y‑box-binding protein‑1 is a poor prognostic marker and related to epidermal growth factor receptor in uterine cervical cancer. Gynecol Oncol 132(3):703–708PubMedCrossRef
6.
Zurück zum Zitat Dahl E et al (2009) Nuclear detection of Y‑boxprotein‑1 (YB-1) closely associates with progesterone receptor negativity and is a strong adverse survival factor in human breast cancer. BMC Cancer 9(1):410PubMedPubMedCentralCrossRef Dahl E et al (2009) Nuclear detection of Y‑boxprotein‑1 (YB-1) closely associates with progesterone receptor negativity and is a strong adverse survival factor in human breast cancer. BMC Cancer 9(1):410PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Fushimi F et al (2013) Peroxiredoxins, thioredoxin, and Y‑box-binding protein‑1 are involved in the pathogenesis and progression of dialysis-associated renal cell carcinoma. Virchows Arch 463(4):553–562PubMedCrossRef Fushimi F et al (2013) Peroxiredoxins, thioredoxin, and Y‑box-binding protein‑1 are involved in the pathogenesis and progression of dialysis-associated renal cell carcinoma. Virchows Arch 463(4):553–562PubMedCrossRef
8.
Zurück zum Zitat Sheridan CM et al (2015) YB‑1 and MTA1 protein levels and not DNA or mRNA alterations predict for prostate cancer recurrence. Oncotarget 6(10):7470–7480PubMedPubMedCentralCrossRef Sheridan CM et al (2015) YB‑1 and MTA1 protein levels and not DNA or mRNA alterations predict for prostate cancer recurrence. Oncotarget 6(10):7470–7480PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Shibahara K et al (2001) Nuclear expression of the Y‑box binding protein, YB‑1, as a novel marker of disease progression in non-small cell lung cancer1. Clin Cancer Res 7(10):3151–3155PubMed Shibahara K et al (2001) Nuclear expression of the Y‑box binding protein, YB‑1, as a novel marker of disease progression in non-small cell lung cancer1. Clin Cancer Res 7(10):3151–3155PubMed
10.
Zurück zum Zitat Guo T et al (2017) YB‑1 regulates tumor growth by promoting MACC1/c-Met pathway in human lung adenocarcinoma. Oncotarget 8(29):48110–48125PubMedPubMedCentralCrossRef Guo T et al (2017) YB‑1 regulates tumor growth by promoting MACC1/c-Met pathway in human lung adenocarcinoma. Oncotarget 8(29):48110–48125PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Sinnberg T et al (2012) MAPK and PI3K/AKT mediated YB‑1 activation promotes melanoma cell proliferation which is counteracted by an autoregulatory loop. Exp Dermatol 21(4):265–270PubMedCrossRef Sinnberg T et al (2012) MAPK and PI3K/AKT mediated YB‑1 activation promotes melanoma cell proliferation which is counteracted by an autoregulatory loop. Exp Dermatol 21(4):265–270PubMedCrossRef
12.
Zurück zum Zitat Song YH et al (2014) Twist1 and Y‑box-binding protein‑1 are potential prognostic factors in bladder cancer. Urol Oncol 32(1):31.e1–31.e7PubMedCrossRef Song YH et al (2014) Twist1 and Y‑box-binding protein‑1 are potential prognostic factors in bladder cancer. Urol Oncol 32(1):31.e1–31.e7PubMedCrossRef
13.
Zurück zum Zitat Chao H‑M et al (2016) Y‑box binding protein‑1 promotes hepatocellular carcinoma-initiating cell progression and tumorigenesis via Wnt/β-catenin pathway. Oncotarget 8(2):2604–2616PubMedCentralCrossRef Chao H‑M et al (2016) Y‑box binding protein‑1 promotes hepatocellular carcinoma-initiating cell progression and tumorigenesis via Wnt/β-catenin pathway. Oncotarget 8(2):2604–2616PubMedCentralCrossRef
14.
Zurück zum Zitat Yan X et al (2014) High expression of Y‑box-binding protein 1 is associated with local recurrence and predicts poor outcome in patients with colorectal cancer. Int J Clin Exp Pathol 7(12):8715–8723PubMedPubMedCentral Yan X et al (2014) High expression of Y‑box-binding protein 1 is associated with local recurrence and predicts poor outcome in patients with colorectal cancer. Int J Clin Exp Pathol 7(12):8715–8723PubMedPubMedCentral
15.
Zurück zum Zitat Zhang Y et al (2012) Overexpression of Y‑box binding protein‑1 in cervical cancer and its association with the pathological response rate to chemoradiotherapy. Med Oncol 29(3):1992–1997PubMedCrossRef Zhang Y et al (2012) Overexpression of Y‑box binding protein‑1 in cervical cancer and its association with the pathological response rate to chemoradiotherapy. Med Oncol 29(3):1992–1997PubMedCrossRef
16.
Zurück zum Zitat Mylona E et al (2014) Y‑box-binding protein 1 (YB1) in breast carcinomas: relation to aggressive tumor phenotype and identification of patients at high risk for relapse. Eur J Surg Oncol 40(3):289–296PubMedCrossRef Mylona E et al (2014) Y‑box-binding protein 1 (YB1) in breast carcinomas: relation to aggressive tumor phenotype and identification of patients at high risk for relapse. Eur J Surg Oncol 40(3):289–296PubMedCrossRef
17.
Zurück zum Zitat Shibahara K et al (2004) Targeted disruption of one allele of the Y‑box binding protein‑1 (YB-1) gene in mouse embryonic stem cells and increased sensitivity to cisplatin and mitomycin C. Cancer Sci 95(4):348–353PubMedCrossRef Shibahara K et al (2004) Targeted disruption of one allele of the Y‑box binding protein‑1 (YB-1) gene in mouse embryonic stem cells and increased sensitivity to cisplatin and mitomycin C. Cancer Sci 95(4):348–353PubMedCrossRef
18.
Zurück zum Zitat Chatterjee M et al (2008) The Y‑box binding protein YB‑1 is associated with progressive disease and mediates survival and drug resistance in multiple myeloma. Blood 111(7):3714–3722PubMedCrossRef Chatterjee M et al (2008) The Y‑box binding protein YB‑1 is associated with progressive disease and mediates survival and drug resistance in multiple myeloma. Blood 111(7):3714–3722PubMedCrossRef
19.
Zurück zum Zitat Kim ER et al (2013) The proteolytic YB‑1 fragment interacts with DNA repair machinery and enhances survival during DNA damaging stress. Cell Cycle 12(24):3791–3803PubMedPubMedCentralCrossRef Kim ER et al (2013) The proteolytic YB‑1 fragment interacts with DNA repair machinery and enhances survival during DNA damaging stress. Cell Cycle 12(24):3791–3803PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Johnson TG et al (2019) Why be one protein when you can affect many? The multiple roles of YB‑1 in lung cancer and mesothelioma. Front Cell Dev Biol 7:221PubMedPubMedCentralCrossRef Johnson TG et al (2019) Why be one protein when you can affect many? The multiple roles of YB‑1 in lung cancer and mesothelioma. Front Cell Dev Biol 7:221PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Kohno Y et al (2006) Expression of Y‑box-binding protein dbpC/contrin, a potentially new cancer/testis antigen. Br J Cancer 94(5):710–716PubMedPubMedCentralCrossRef Kohno Y et al (2006) Expression of Y‑box-binding protein dbpC/contrin, a potentially new cancer/testis antigen. Br J Cancer 94(5):710–716PubMedPubMedCentralCrossRef
23.
24.
Zurück zum Zitat Liu RT et al (2016) RNAi-mediated downregulation of DNA binding protein A inhibits tumorigenesis in colorectal cancer. Int J Mol Med 38(3):703–712PubMedPubMedCentralCrossRef Liu RT et al (2016) RNAi-mediated downregulation of DNA binding protein A inhibits tumorigenesis in colorectal cancer. Int J Mol Med 38(3):703–712PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Yasen M et al (2005) The up-regulation of Y‑box binding proteins (DNA binding protein A and Y‑box binding protein-1) as prognostic markers of hepatocellular carcinoma. Clin Cancer Res 11(20):7354–7361PubMedCrossRef Yasen M et al (2005) The up-regulation of Y‑box binding proteins (DNA binding protein A and Y‑box binding protein-1) as prognostic markers of hepatocellular carcinoma. Clin Cancer Res 11(20):7354–7361PubMedCrossRef
26.
Zurück zum Zitat Hayashi J et al (2002) Somatic mutation and SNP in the promoter of dbpA and human hepatocarcinogenesis. Int J Oncol 21(4):847–850PubMed Hayashi J et al (2002) Somatic mutation and SNP in the promoter of dbpA and human hepatocarcinogenesis. Int J Oncol 21(4):847–850PubMed
27.
Zurück zum Zitat Nakatsura T et al (2001) Gene cloning of immunogenic antigens overexpressed in pancreatic cancer. Biochem Biophys Res Commun 281(4):936–944PubMedCrossRef Nakatsura T et al (2001) Gene cloning of immunogenic antigens overexpressed in pancreatic cancer. Biochem Biophys Res Commun 281(4):936–944PubMedCrossRef
28.
Zurück zum Zitat Hohlfeld R et al (2018) Crosstalk between Akt signaling and cold shock proteins in mediating invasive cell phenotypes. Oncotarget 9(27):19039–19049PubMedPubMedCentralCrossRef Hohlfeld R et al (2018) Crosstalk between Akt signaling and cold shock proteins in mediating invasive cell phenotypes. Oncotarget 9(27):19039–19049PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Wang W et al (2016) Antimicrobial peptide LL-37 promotes the proliferation and invasion of skin squamous cell carcinoma by upregulating DNA-binding protein A. Oncol Lett 12(3):1745–1752PubMedPubMedCentralCrossRef Wang W et al (2016) Antimicrobial peptide LL-37 promotes the proliferation and invasion of skin squamous cell carcinoma by upregulating DNA-binding protein A. Oncol Lett 12(3):1745–1752PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Tong C et al (2020) Knockdown of DNA-binding protein A enhances the chemotherapy sensitivity of colorectal cancer via suppressing the Wnt/β-catenin/Chk1 pathway. Cell Biol Int 44(10):2075–2085PubMedCrossRef Tong C et al (2020) Knockdown of DNA-binding protein A enhances the chemotherapy sensitivity of colorectal cancer via suppressing the Wnt/β-catenin/Chk1 pathway. Cell Biol Int 44(10):2075–2085PubMedCrossRef
31.
Zurück zum Zitat Yang X‑J et al (2019) Crystal structure of a Y-box binding protein 1 (YB-1)–RNA complex reveals key features and residues interacting with RNA. J Biol Chem 294(28):10998–11010PubMedPubMedCentralCrossRef Yang X‑J et al (2019) Crystal structure of a Y-box binding protein 1 (YB-1)–RNA complex reveals key features and residues interacting with RNA. J Biol Chem 294(28):10998–11010PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Zhang J et al (2020) Structural basis of DNA binding to human YB‑1 cold shock domain regulated by phosphorylation. Nucleic Acids Res 48(16):9361–9371PubMedPubMedCentralCrossRef Zhang J et al (2020) Structural basis of DNA binding to human YB‑1 cold shock domain regulated by phosphorylation. Nucleic Acids Res 48(16):9361–9371PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Matsumoto K, Wolffe AP (1998) Gene regulation by Y‑box proteins: coupling control of transcription and translation. Trends Cell Biol 8(8):318–323PubMedCrossRef Matsumoto K, Wolffe AP (1998) Gene regulation by Y‑box proteins: coupling control of transcription and translation. Trends Cell Biol 8(8):318–323PubMedCrossRef
34.
Zurück zum Zitat Lyabin DN, Eliseeva IA, Ovchinnikov LP (2014) YB‑1 protein: functions and regulation. Wiley Interdiscip Rev RNA 5(1):95–110PubMedCrossRef Lyabin DN, Eliseeva IA, Ovchinnikov LP (2014) YB‑1 protein: functions and regulation. Wiley Interdiscip Rev RNA 5(1):95–110PubMedCrossRef
35.
Zurück zum Zitat Evdokimova VM et al (1998) The major core protein of messenger ribonucleoprotein particles (p50) promotes initiation of protein biosynthesis in vitro. J Biol Chem 273(6):3574–3581PubMedCrossRef Evdokimova VM et al (1998) The major core protein of messenger ribonucleoprotein particles (p50) promotes initiation of protein biosynthesis in vitro. J Biol Chem 273(6):3574–3581PubMedCrossRef
36.
Zurück zum Zitat Evdokimova VM et al (1995) The major protein of messenger ribonucleoprotein particles in somatic cells is a member of the Y‑box binding transcription factor family. J Biol Chem 270(7):3186–3192PubMedCrossRef Evdokimova VM et al (1995) The major protein of messenger ribonucleoprotein particles in somatic cells is a member of the Y‑box binding transcription factor family. J Biol Chem 270(7):3186–3192PubMedCrossRef
37.
Zurück zum Zitat Minich WB, Maidebura IP, Ovchinnikov LP (1993) Purification and characterization of the major 50-kDa repressor protein from cytoplasmic mRNP of rabbit reticulocytes. Eur J Biochem 212(3):633–638PubMedCrossRef Minich WB, Maidebura IP, Ovchinnikov LP (1993) Purification and characterization of the major 50-kDa repressor protein from cytoplasmic mRNP of rabbit reticulocytes. Eur J Biochem 212(3):633–638PubMedCrossRef
38.
Zurück zum Zitat Hamon L, Budkina K, Pastré D (2022) YB‑1 structure/function relationship in the packaging of mRNPs and consequences for translation regulation and stress granule assembly in cells. Biochemistry 87(1):S20–S31PubMed Hamon L, Budkina K, Pastré D (2022) YB‑1 structure/function relationship in the packaging of mRNPs and consequences for translation regulation and stress granule assembly in cells. Biochemistry 87(1):S20–S31PubMed
39.
Zurück zum Zitat van Roeyen CRC et al (2013) Cold shock Y‑box protein‑1 proteolysis autoregulates its transcriptional activities. Cell Commun Signal 11(1):63PubMedPubMedCentralCrossRef van Roeyen CRC et al (2013) Cold shock Y‑box protein‑1 proteolysis autoregulates its transcriptional activities. Cell Commun Signal 11(1):63PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Hamon L, Budkina K, Pastre D (2022) YB‑1 structure/function relationship in the packaging of mRNPs and consequences for translation regulation and stress granule assembly in cells. Biochemistry (Mosc) 87(1):S20–S93PubMedCrossRef Hamon L, Budkina K, Pastre D (2022) YB‑1 structure/function relationship in the packaging of mRNPs and consequences for translation regulation and stress granule assembly in cells. Biochemistry (Mosc) 87(1):S20–S93PubMedCrossRef
41.
Zurück zum Zitat Perner F et al (2022) YBX1 mediates translation of oncogenic transcripts to control cell competition in AML. Leukemia 36(2):426–437PubMedCrossRef Perner F et al (2022) YBX1 mediates translation of oncogenic transcripts to control cell competition in AML. Leukemia 36(2):426–437PubMedCrossRef
42.
Zurück zum Zitat El-Naggar AM et al (2015) Translational activation of HIF1α by YB‑1 promotes sarcoma metastasis. Cancer Cell 27(5):682–697PubMedCrossRef El-Naggar AM et al (2015) Translational activation of HIF1α by YB‑1 promotes sarcoma metastasis. Cancer Cell 27(5):682–697PubMedCrossRef
43.
Zurück zum Zitat Evdokimova V et al (2009) Translational activation of snail1 and other developmentally regulated transcription factors by YB‑1 promotes an epithelial-mesenchymal transition. Cancer Cell 15(5):402–415PubMedCrossRef Evdokimova V et al (2009) Translational activation of snail1 and other developmentally regulated transcription factors by YB‑1 promotes an epithelial-mesenchymal transition. Cancer Cell 15(5):402–415PubMedCrossRef
44.
Zurück zum Zitat Evdokimova V et al (2001) The major mRNA-associated protein YB‑1 is a potent 5′ cap-dependent mRNA stabilizer. EMBO J 20(19):5491–5502PubMedPubMedCentralCrossRef Evdokimova V et al (2001) The major mRNA-associated protein YB‑1 is a potent 5′ cap-dependent mRNA stabilizer. EMBO J 20(19):5491–5502PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Evdokimova VM, Ovchinnikov LP (1999) Translational regulation by Y‑box transcription factor: involvement of the major mRNA-associated protein, p50. Int J Biochem Cell Biol 31(1):139–149PubMedCrossRef Evdokimova VM, Ovchinnikov LP (1999) Translational regulation by Y‑box transcription factor: involvement of the major mRNA-associated protein, p50. Int J Biochem Cell Biol 31(1):139–149PubMedCrossRef
46.
Zurück zum Zitat Minich WB, Ovchinnikov LP (1992) Role of cytoplasmic mRNP proteins in translation. Biochimie 74(5):477–483PubMedCrossRef Minich WB, Ovchinnikov LP (1992) Role of cytoplasmic mRNP proteins in translation. Biochimie 74(5):477–483PubMedCrossRef
47.
Zurück zum Zitat Nekrasov MP et al (2003) The mRNA-binding protein YB‑1 (p50) prevents association of the eukaryotic initiation factor eIF4G with mRNA and inhibits protein synthesis at the initiation stage. J Biol Chem 278(16):13936–13943PubMedCrossRef Nekrasov MP et al (2003) The mRNA-binding protein YB‑1 (p50) prevents association of the eukaryotic initiation factor eIF4G with mRNA and inhibits protein synthesis at the initiation stage. J Biol Chem 278(16):13936–13943PubMedCrossRef
48.
Zurück zum Zitat McKernan CM et al (2022) ABL kinases regulate translation in HER2+ cells through Y‑box-binding protein 1 to facilitate colonization of the brain. Cell Rep 40(9):111268PubMedPubMedCentralCrossRef McKernan CM et al (2022) ABL kinases regulate translation in HER2+ cells through Y‑box-binding protein 1 to facilitate colonization of the brain. Cell Rep 40(9):111268PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Kosnopfel C et al (2018) YB‑1 expression and phosphorylation regulate tumorigenicity and invasiveness in melanoma by influencing EMT. Mol Cancer Res 16(7):1149–1160PubMedCrossRef Kosnopfel C et al (2018) YB‑1 expression and phosphorylation regulate tumorigenicity and invasiveness in melanoma by influencing EMT. Mol Cancer Res 16(7):1149–1160PubMedCrossRef
50.
Zurück zum Zitat Somasekharan SP et al (2015) YB‑1 regulates stress granule formation and tumor progression by translationally activating G3BP1. J Cell Biol 208(7):913–929PubMedPubMedCentralCrossRef Somasekharan SP et al (2015) YB‑1 regulates stress granule formation and tumor progression by translationally activating G3BP1. J Cell Biol 208(7):913–929PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Chu P‑C et al (2018) Mutant KRAS promotes liver metastasis of colorectal cancer, in part, by upregulating the MEK-Sp1-DNMT1-miR-137-YB-1-IGF-IR signaling pathway. Oncogene 37(25):3440–3455PubMedCrossRef Chu P‑C et al (2018) Mutant KRAS promotes liver metastasis of colorectal cancer, in part, by upregulating the MEK-Sp1-DNMT1-miR-137-YB-1-IGF-IR signaling pathway. Oncogene 37(25):3440–3455PubMedCrossRef
52.
Zurück zum Zitat Koike K et al (1997) Nuclear translocation of the Y‑box binding protein by ultraviolet irradiation. FEBS Lett 417(3):390–394PubMedCrossRef Koike K et al (1997) Nuclear translocation of the Y‑box binding protein by ultraviolet irradiation. FEBS Lett 417(3):390–394PubMedCrossRef
53.
Zurück zum Zitat Rauen T et al (2016) Cold shock protein YB‑1 is involved in hypoxia-dependent gene transcription. Biochem Biophys Res Commun 478(2):982–987PubMedCrossRef Rauen T et al (2016) Cold shock protein YB‑1 is involved in hypoxia-dependent gene transcription. Biochem Biophys Res Commun 478(2):982–987PubMedCrossRef
55.
Zurück zum Zitat Yokoyama H et al (2003) Regulation of YB‑1 gene expression by GATA transcription factors. Biochem Biophys Res Commun 303(1):140–145PubMedCrossRef Yokoyama H et al (2003) Regulation of YB‑1 gene expression by GATA transcription factors. Biochem Biophys Res Commun 303(1):140–145PubMedCrossRef
56.
Zurück zum Zitat Uramoto H et al (2002) p73 Interacts with c‑Myc to regulate Y‑box-binding protein‑1 expression. J Biol Chem 277(35):31694–31702PubMedCrossRef Uramoto H et al (2002) p73 Interacts with c‑Myc to regulate Y‑box-binding protein‑1 expression. J Biol Chem 277(35):31694–31702PubMedCrossRef
57.
Zurück zum Zitat Bommert KS et al (2013) The feed-forward loop between YB‑1 and MYC is essential for multiple myeloma cell survival. Leukemia 27(2):441–450PubMedCrossRef Bommert KS et al (2013) The feed-forward loop between YB‑1 and MYC is essential for multiple myeloma cell survival. Leukemia 27(2):441–450PubMedCrossRef
58.
Zurück zum Zitat Shiota M et al (2008) Twist promotes tumor cell growth through YB‑1 expression. Cancer Res 68(1):98–105PubMedCrossRef Shiota M et al (2008) Twist promotes tumor cell growth through YB‑1 expression. Cancer Res 68(1):98–105PubMedCrossRef
59.
Zurück zum Zitat Kobayashi S et al (2015) YB‑1 gene expression is kept constant during myocyte differentiation through replacement of different transcription factors and then falls gradually under the control of neural activity. Int J Biochem Cell Biol 68:1–8PubMedCrossRef Kobayashi S et al (2015) YB‑1 gene expression is kept constant during myocyte differentiation through replacement of different transcription factors and then falls gradually under the control of neural activity. Int J Biochem Cell Biol 68:1–8PubMedCrossRef
60.
Zurück zum Zitat Skabkina OV et al (2005) YB‑1 autoregulates translation of its own mRNA at or prior to the step of 40S ribosomal subunit joining. Mol Cell Biol 25(8):3317–3323PubMedPubMedCentralCrossRef Skabkina OV et al (2005) YB‑1 autoregulates translation of its own mRNA at or prior to the step of 40S ribosomal subunit joining. Mol Cell Biol 25(8):3317–3323PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Skabkina OV et al (2003) Poly(A)-binding protein positively affects YB‑1 mRNA translation through specific interaction with YB‑1 mRNA. J Biol Chem 278(20):18191–18198PubMedCrossRef Skabkina OV et al (2003) Poly(A)-binding protein positively affects YB‑1 mRNA translation through specific interaction with YB‑1 mRNA. J Biol Chem 278(20):18191–18198PubMedCrossRef
62.
63.
Zurück zum Zitat Lu J et al (2017) YB‑1 expression promotes pancreatic cancer metastasis that is inhibited by microRNA-216a. Exp Cell Res 359(2):319–326PubMedCrossRef Lu J et al (2017) YB‑1 expression promotes pancreatic cancer metastasis that is inhibited by microRNA-216a. Exp Cell Res 359(2):319–326PubMedCrossRef
64.
65.
Zurück zum Zitat Liu SL, Sui YF, Lin MZ (2016) MiR-375 is epigenetically downregulated due to promoter methylation and modulates multi-drug resistance in breast cancer cells via targeting YBX1. Eur Rev Med Pharmacol Sci 20(15):3223–3229PubMed Liu SL, Sui YF, Lin MZ (2016) MiR-375 is epigenetically downregulated due to promoter methylation and modulates multi-drug resistance in breast cancer cells via targeting YBX1. Eur Rev Med Pharmacol Sci 20(15):3223–3229PubMed
66.
Zurück zum Zitat Stratford AL et al (2007) Epidermal growth factor receptor (EGFR) is transcriptionally induced by the Y‑box binding protein‑1 (YB-1) and can be inhibited with Iressa in basal-like breast cancer, providing a potential target for therapy. Breast Cancer Res 9(5):R61PubMedPubMedCentralCrossRef Stratford AL et al (2007) Epidermal growth factor receptor (EGFR) is transcriptionally induced by the Y‑box binding protein‑1 (YB-1) and can be inhibited with Iressa in basal-like breast cancer, providing a potential target for therapy. Breast Cancer Res 9(5):R61PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Wu J et al (2006) Disruption of the Y‑box binding protein‑1 results in suppression of the epidermal growth factor receptor and HER‑2. Cancer Res 66(9):4872–4879PubMedCrossRef Wu J et al (2006) Disruption of the Y‑box binding protein‑1 results in suppression of the epidermal growth factor receptor and HER‑2. Cancer Res 66(9):4872–4879PubMedCrossRef
68.
Zurück zum Zitat Bader AG, Vogt PK (2008) Phosphorylation by Akt disables the anti-oncogenic activity of YB‑1. Oncogene 27(8):1179–1182PubMedCrossRef Bader AG, Vogt PK (2008) Phosphorylation by Akt disables the anti-oncogenic activity of YB‑1. Oncogene 27(8):1179–1182PubMedCrossRef
69.
Zurück zum Zitat Gieseler-Halbach S et al (2017) RSK-mediated nuclear accumulation of the cold-shock Y‑box protein‑1 controls proliferation of T cells and T‑ALL blasts. Cell Death Differ 24(2):371–383PubMedCrossRef Gieseler-Halbach S et al (2017) RSK-mediated nuclear accumulation of the cold-shock Y‑box protein‑1 controls proliferation of T cells and T‑ALL blasts. Cell Death Differ 24(2):371–383PubMedCrossRef
70.
Zurück zum Zitat Sutherland BW et al (2005) Akt phosphorylates the Y‑box binding protein 1 at Ser102 located in the cold shock domain and affects the anchorage-independent growth of breast cancer cells. Oncogene 24(26):4281–4292PubMedCrossRef Sutherland BW et al (2005) Akt phosphorylates the Y‑box binding protein 1 at Ser102 located in the cold shock domain and affects the anchorage-independent growth of breast cancer cells. Oncogene 24(26):4281–4292PubMedCrossRef
72.
Zurück zum Zitat Sogorina EM et al (2022) YB‑1 phosphorylation at serine 209 inhibits its nuclear translocation. Int J Mol Sci 23(1):428CrossRef Sogorina EM et al (2022) YB‑1 phosphorylation at serine 209 inhibits its nuclear translocation. Int J Mol Sci 23(1):428CrossRef
73.
Zurück zum Zitat Mehta S et al (2020) Dephosphorylation of YB‑1 is required for nuclear localisation during G(2) phase of the cell cycle. Cancers (Basel) 12(2):315PubMedPubMedCentralCrossRef Mehta S et al (2020) Dephosphorylation of YB‑1 is required for nuclear localisation during G(2) phase of the cell cycle. Cancers (Basel) 12(2):315PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Jayavelu AK et al (2020) Splicing factor YBX1 mediates persistence of JAK2-mutated neoplasms. Nature 588(7836):157–163PubMedCrossRef Jayavelu AK et al (2020) Splicing factor YBX1 mediates persistence of JAK2-mutated neoplasms. Nature 588(7836):157–163PubMedCrossRef
75.
Zurück zum Zitat Nöthen T et al (2023) DNA-dependent protein kinase mediates YB‑1 (Y-box binding protein)-induced double strand break repair. ATVB 43(2):300–311CrossRef Nöthen T et al (2023) DNA-dependent protein kinase mediates YB‑1 (Y-box binding protein)-induced double strand break repair. ATVB 43(2):300–311CrossRef
76.
Zurück zum Zitat Wang J et al (2016) Therapeutic nuclear shuttling of YB‑1 reduces renal damage and fibrosis. Kidney Int 90(6):1226–1237PubMedCrossRef Wang J et al (2016) Therapeutic nuclear shuttling of YB‑1 reduces renal damage and fibrosis. Kidney Int 90(6):1226–1237PubMedCrossRef
77.
Zurück zum Zitat Kretov DA et al (2020) Inhibition of transcription induces phosphorylation of YB‑1 at Ser102 and its accumulation in the nucleus. Cells 9(1):104CrossRef Kretov DA et al (2020) Inhibition of transcription induces phosphorylation of YB‑1 at Ser102 and its accumulation in the nucleus. Cells 9(1):104CrossRef
78.
Zurück zum Zitat Prabhu L et al (2015) Critical role of phosphorylation of serine 165 of YBX1 on the activation of NF-κB in colon cancer. Oncotarget 6(30):29396–29412PubMedPubMedCentralCrossRef Prabhu L et al (2015) Critical role of phosphorylation of serine 165 of YBX1 on the activation of NF-κB in colon cancer. Oncotarget 6(30):29396–29412PubMedPubMedCentralCrossRef
79.
81.
Zurück zum Zitat El-Naggar AM et al (2019) Class I HDAC inhibitors enhance YB‑1 acetylation and oxidative stress to block sarcoma metastasis. EMBO Rep 20(12):e48375PubMedPubMedCentralCrossRef El-Naggar AM et al (2019) Class I HDAC inhibitors enhance YB‑1 acetylation and oxidative stress to block sarcoma metastasis. EMBO Rep 20(12):e48375PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Frye BC et al (2009) Y‑box protein‑1 is actively secreted through a non-classical pathway and acts as an extracellular mitogen. EMBO Rep 10(7):783–789PubMedPubMedCentralCrossRef Frye BC et al (2009) Y‑box protein‑1 is actively secreted through a non-classical pathway and acts as an extracellular mitogen. EMBO Rep 10(7):783–789PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Palicharla VR, Maddika S (2015) HACE1 mediated K27 ubiquitin linkage leads to YB‑1 protein secretion. Cell Signal 27(12):2355–2362PubMedCrossRef Palicharla VR, Maddika S (2015) HACE1 mediated K27 ubiquitin linkage leads to YB‑1 protein secretion. Cell Signal 27(12):2355–2362PubMedCrossRef
86.
Zurück zum Zitat Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8(12):947–956PubMedCrossRef Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8(12):947–956PubMedCrossRef
87.
Zurück zum Zitat Mai RT et al (2022) Sumoylation participates in the regulation of YB-1-mediated mismatch repair deficiency and alkylator tolerance. Am J Cancer Res 12(12):5462–5483PubMedPubMedCentral Mai RT et al (2022) Sumoylation participates in the regulation of YB-1-mediated mismatch repair deficiency and alkylator tolerance. Am J Cancer Res 12(12):5462–5483PubMedPubMedCentral
88.
Zurück zum Zitat Chang YW et al (2014) YB‑1 disrupts mismatch repair complex formation, interferes with MutSα recruitment on mismatch and inhibits mismatch repair through interacting with PCNA. Oncogene 33(43):5065–5077PubMedCrossRef Chang YW et al (2014) YB‑1 disrupts mismatch repair complex formation, interferes with MutSα recruitment on mismatch and inhibits mismatch repair through interacting with PCNA. Oncogene 33(43):5065–5077PubMedCrossRef
89.
Zurück zum Zitat Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941PubMedCrossRef Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941PubMedCrossRef
90.
Zurück zum Zitat Pagano C et al (2017) The tumor-associated YB‑1 protein: new player in the circadian control of cell proliferation. Oncotarget 8(4):6193–6205PubMedCrossRef Pagano C et al (2017) The tumor-associated YB‑1 protein: new player in the circadian control of cell proliferation. Oncotarget 8(4):6193–6205PubMedCrossRef
91.
Zurück zum Zitat Liu Q et al (2016) Hyper-O-GlcNAcylation of YB‑1 affects Ser102 phosphorylation and promotes cell proliferation in hepatocellular carcinoma. Exp Cell Res 349(2):230–238PubMedCrossRef Liu Q et al (2016) Hyper-O-GlcNAcylation of YB‑1 affects Ser102 phosphorylation and promotes cell proliferation in hepatocellular carcinoma. Exp Cell Res 349(2):230–238PubMedCrossRef
92.
Zurück zum Zitat Fujiwara-Okada Y et al (2013) Y‑box binding protein‑1 regulates cell proliferation and is associated with clinical outcomes of osteosarcoma. Br J Cancer 108(4):836–847PubMedPubMedCentralCrossRef Fujiwara-Okada Y et al (2013) Y‑box binding protein‑1 regulates cell proliferation and is associated with clinical outcomes of osteosarcoma. Br J Cancer 108(4):836–847PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Lasham A et al (2012) YB‑1, the E2F pathway, and regulation of tumor cell growth. J Natl Cancer Inst 104(2):133–146PubMedCrossRef Lasham A et al (2012) YB‑1, the E2F pathway, and regulation of tumor cell growth. J Natl Cancer Inst 104(2):133–146PubMedCrossRef
94.
Zurück zum Zitat Jurchott K et al (2003) YB‑1 as a cell cycle-regulated transcription factor facilitating cyclin A and cyclin B1 gene expression. J Biol Chem 278(30):27988–27996PubMedCrossRef Jurchott K et al (2003) YB‑1 as a cell cycle-regulated transcription factor facilitating cyclin A and cyclin B1 gene expression. J Biol Chem 278(30):27988–27996PubMedCrossRef
96.
Zurück zum Zitat Gaudreault I, Guay D, Lebel M (2004) YB‑1 promotes strand separation in vitro of duplex DNA containing either mispaired bases or cisplatin modifications, exhibits endonucleolytic activities and binds several DNA repair proteins. Nucleic Acids Res 32(1):316–327PubMedPubMedCentralCrossRef Gaudreault I, Guay D, Lebel M (2004) YB‑1 promotes strand separation in vitro of duplex DNA containing either mispaired bases or cisplatin modifications, exhibits endonucleolytic activities and binds several DNA repair proteins. Nucleic Acids Res 32(1):316–327PubMedPubMedCentralCrossRef
97.
98.
Zurück zum Zitat Lettau K, Zips D, Toulany M (2021) Simultaneous targeting of RSK and AKT efficiently inhibits YB-1-mediated repair of ionizing radiation-induced DNA double-strand breaks in breast cancer cells. Int J Radiat Oncol Biol Phys 109(2):567–580PubMedCrossRef Lettau K, Zips D, Toulany M (2021) Simultaneous targeting of RSK and AKT efficiently inhibits YB-1-mediated repair of ionizing radiation-induced DNA double-strand breaks in breast cancer cells. Int J Radiat Oncol Biol Phys 109(2):567–580PubMedCrossRef
99.
Zurück zum Zitat Khozooei S et al (2022) Fisetin induces DNA double-strand break and interferes with the repair of radiation-induced damage to radiosensitize triple negative breast cancer cells. J Exp Clin Cancer Res 41(1):256PubMedPubMedCentralCrossRef Khozooei S et al (2022) Fisetin induces DNA double-strand break and interferes with the repair of radiation-induced damage to radiosensitize triple negative breast cancer cells. J Exp Clin Cancer Res 41(1):256PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Ise T et al (1999) Transcription factor Y‑box binding protein 1 binds preferentially to cisplatin-modified DNA and interacts with proliferating cell nuclear antigen. Cancer Res 59(2):342–346PubMed Ise T et al (1999) Transcription factor Y‑box binding protein 1 binds preferentially to cisplatin-modified DNA and interacts with proliferating cell nuclear antigen. Cancer Res 59(2):342–346PubMed
101.
Zurück zum Zitat Hasegawa SL et al (1991) DNA binding properties of YB‑1 and dbpA: binding to double-stranded, single-stranded, and abasic site containing DNAs. Nucleic Acids Res 19(18):4915–4920PubMedPubMedCentralCrossRef Hasegawa SL et al (1991) DNA binding properties of YB‑1 and dbpA: binding to double-stranded, single-stranded, and abasic site containing DNAs. Nucleic Acids Res 19(18):4915–4920PubMedPubMedCentralCrossRef
102.
103.
Zurück zum Zitat Alemasova EE et al (2018) The multifunctional protein YB‑1 potentiates PARP1 activity and decreases the efficiency of PARP1 inhibitors. Oncotarget 9(34):23349–23365PubMedPubMedCentralCrossRef Alemasova EE et al (2018) The multifunctional protein YB‑1 potentiates PARP1 activity and decreases the efficiency of PARP1 inhibitors. Oncotarget 9(34):23349–23365PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Lettau K et al (2021) Targeting the Y‑box binding protein‑1 axis to overcome radiochemotherapy resistance in solid tumors. Int J Radiat Oncol Biol Phys 111(4):1072–1087PubMedCrossRef Lettau K et al (2021) Targeting the Y‑box binding protein‑1 axis to overcome radiochemotherapy resistance in solid tumors. Int J Radiat Oncol Biol Phys 111(4):1072–1087PubMedCrossRef
105.
Zurück zum Zitat Kosnopfel C, Sinnberg T, Schittek B (2014) Y‑box binding protein 1—a prognostic marker and target in tumour therapy. Eur J Cell Biol 93(1):61–70PubMedCrossRef Kosnopfel C, Sinnberg T, Schittek B (2014) Y‑box binding protein 1—a prognostic marker and target in tumour therapy. Eur J Cell Biol 93(1):61–70PubMedCrossRef
106.
Zurück zum Zitat Toulany M (2023) Targeting K‑Ras-mediated DNA damage response in radiation oncology: current status, challenges and future perspectives. Clin Transl Radiat Oncol 38:6–14PubMed Toulany M (2023) Targeting K‑Ras-mediated DNA damage response in radiation oncology: current status, challenges and future perspectives. Clin Transl Radiat Oncol 38:6–14PubMed
107.
Zurück zum Zitat Shinkai K et al (2016) Nuclear expression of Y‑box binding protein‑1 is associated with poor prognosis in patients with pancreatic cancer and its knockdown inhibits tumor growth and metastasis in mice tumor models. Int J Cancer 139(2):433–445PubMedCrossRef Shinkai K et al (2016) Nuclear expression of Y‑box binding protein‑1 is associated with poor prognosis in patients with pancreatic cancer and its knockdown inhibits tumor growth and metastasis in mice tumor models. Int J Cancer 139(2):433–445PubMedCrossRef
108.
Zurück zum Zitat Shiraiwa S et al (2016) Nuclear Y‑box-binding protein‑1 expression predicts poor clinical outcome in stage III colorectal cancer. Anticancer Res 36(7):3781–3788PubMed Shiraiwa S et al (2016) Nuclear Y‑box-binding protein‑1 expression predicts poor clinical outcome in stage III colorectal cancer. Anticancer Res 36(7):3781–3788PubMed
109.
Zurück zum Zitat Ardito F et al (2014) Strong YB‑1 expression predicts liver recurrence following resection for colorectal metastases. J Gastrointest Surg 18(11):1987–1993PubMedCrossRef Ardito F et al (2014) Strong YB‑1 expression predicts liver recurrence following resection for colorectal metastases. J Gastrointest Surg 18(11):1987–1993PubMedCrossRef
110.
111.
Zurück zum Zitat Nagasu S et al (2019) Yboxbinding protein 1 inhibits apoptosis and upregulates EGFR in colon cancer. Oncol Rep 41(5):2889–2896PubMed Nagasu S et al (2019) Yboxbinding protein 1 inhibits apoptosis and upregulates EGFR in colon cancer. Oncol Rep 41(5):2889–2896PubMed
112.
Zurück zum Zitat Kashihara M et al (2009) Nuclear Y‑box binding protein‑1, a predictive marker of prognosis, is correlated with expression of HER2/ErbB2 and HER3/ErbB3 in non-small cell lung cancer. J Thorac Oncol 4(9):1066–1074PubMedCrossRef Kashihara M et al (2009) Nuclear Y‑box binding protein‑1, a predictive marker of prognosis, is correlated with expression of HER2/ErbB2 and HER3/ErbB3 in non-small cell lung cancer. J Thorac Oncol 4(9):1066–1074PubMedCrossRef
113.
Zurück zum Zitat Gessner C et al (2004) Nuclear YB‑1 expression as a negative prognostic marker in nonsmall cell lung cancer. Eur Respir J 23(1):14–19PubMedCrossRef Gessner C et al (2004) Nuclear YB‑1 expression as a negative prognostic marker in nonsmall cell lung cancer. Eur Respir J 23(1):14–19PubMedCrossRef
114.
Zurück zum Zitat Jiang L et al (2017) Positive expression of Y‑box binding protein 1 and prognosis in non-small cell lung cancer: a meta-analysis. Oncotarget 8(33):55613–55621PubMedPubMedCentralCrossRef Jiang L et al (2017) Positive expression of Y‑box binding protein 1 and prognosis in non-small cell lung cancer: a meta-analysis. Oncotarget 8(33):55613–55621PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Schlichting I et al (1990) Time-resolved X‑ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis. Nature 345(6273):309–315PubMedCrossRef Schlichting I et al (1990) Time-resolved X‑ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis. Nature 345(6273):309–315PubMedCrossRef
119.
Zurück zum Zitat Milburn MV et al (1990) Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247(4945):939–945PubMedCrossRef Milburn MV et al (1990) Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247(4945):939–945PubMedCrossRef
120.
Zurück zum Zitat Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299–1304PubMedCrossRef Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299–1304PubMedCrossRef
121.
Zurück zum Zitat Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865–877PubMedCrossRef Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865–877PubMedCrossRef
122.
Zurück zum Zitat Saraste M, Sibbald PR, Wittinghofer A (1990) The P‑loop—a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15(11):430–434PubMedCrossRef Saraste M, Sibbald PR, Wittinghofer A (1990) The P‑loop—a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15(11):430–434PubMedCrossRef
123.
Zurück zum Zitat Willumsen BM et al (1984) The p21 ras C‑terminus is required for transformation and membrane association. Nature 310(5978):583–586PubMedCrossRef Willumsen BM et al (1984) The p21 ras C‑terminus is required for transformation and membrane association. Nature 310(5978):583–586PubMedCrossRef
124.
Zurück zum Zitat Gideon P et al (1992) Mutational and kinetic analyses of the GTPase-activating protein (GAP)-p21 interaction: the C‑terminal domain of GAP is not sufficient for full activity. Mol Cell Biol 12(5):2050–2056PubMedPubMedCentral Gideon P et al (1992) Mutational and kinetic analyses of the GTPase-activating protein (GAP)-p21 interaction: the C‑terminal domain of GAP is not sufficient for full activity. Mol Cell Biol 12(5):2050–2056PubMedPubMedCentral
125.
Zurück zum Zitat Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287–1292PubMedPubMedCentral Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287–1292PubMedPubMedCentral
126.
Zurück zum Zitat Cammarata MB et al (2016) Impact of G12 mutations on the structure of K‑Ras probed by ultraviolet photodissociation mass spectrometry. J Am Chem Soc 138(40):13187–13196PubMedCrossRef Cammarata MB et al (2016) Impact of G12 mutations on the structure of K‑Ras probed by ultraviolet photodissociation mass spectrometry. J Am Chem Soc 138(40):13187–13196PubMedCrossRef
127.
128.
Zurück zum Zitat Zhang XF et al (1993) Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c‑Raf‑1. Nature 364(6435):308–313PubMedCrossRef Zhang XF et al (1993) Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c‑Raf‑1. Nature 364(6435):308–313PubMedCrossRef
129.
Zurück zum Zitat Moodie SA et al (1993) Complexes of Ras.GTP with Raf‑1 and mitogen-activated protein kinase kinase. Science 260(5114):1658–1661PubMedCrossRef Moodie SA et al (1993) Complexes of Ras.GTP with Raf‑1 and mitogen-activated protein kinase kinase. Science 260(5114):1658–1661PubMedCrossRef
130.
Zurück zum Zitat Rodriguez-Viciana P et al (1997) Role of phosphoinositide 3‑OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89(3):457–467PubMedCrossRef Rodriguez-Viciana P et al (1997) Role of phosphoinositide 3‑OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89(3):457–467PubMedCrossRef
131.
Zurück zum Zitat White MA et al (1996) A role for the Ral guanine nucleotide dissociation stimulator in mediating Ras-induced transformation. J Biol Chem 271(28):16439–16442PubMedCrossRef White MA et al (1996) A role for the Ral guanine nucleotide dissociation stimulator in mediating Ras-induced transformation. J Biol Chem 271(28):16439–16442PubMedCrossRef
133.
Zurück zum Zitat Jones RP et al (2017) Specific mutations in KRAS codon 12 are associated with worse overall survival in patients with advanced and recurrent colorectal cancer. Br J Cancer 116(7):923–929PubMedPubMedCentralCrossRef Jones RP et al (2017) Specific mutations in KRAS codon 12 are associated with worse overall survival in patients with advanced and recurrent colorectal cancer. Br J Cancer 116(7):923–929PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Imamura Y et al (2012) Specific mutations in KRAS codons 12 and 13, and patient prognosis in 1075 BRAF wild-type colorectal cancers. Clin Cancer Res 18(17):4753–4763PubMedPubMedCentralCrossRef Imamura Y et al (2012) Specific mutations in KRAS codons 12 and 13, and patient prognosis in 1075 BRAF wild-type colorectal cancers. Clin Cancer Res 18(17):4753–4763PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Buscail L, Bournet B, Cordelier P (2020) Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol 17(3):153–168PubMedCrossRef Buscail L, Bournet B, Cordelier P (2020) Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol 17(3):153–168PubMedCrossRef
136.
Zurück zum Zitat Goulding RE et al (2020) KRAS mutation as a prognostic factor and predictive factor in advanced/metastatic non-small cell lung cancer: a systematic literature review and meta-analysis. Cancer Treat Res Commun 24:100200PubMedCrossRef Goulding RE et al (2020) KRAS mutation as a prognostic factor and predictive factor in advanced/metastatic non-small cell lung cancer: a systematic literature review and meta-analysis. Cancer Treat Res Commun 24:100200PubMedCrossRef
137.
Zurück zum Zitat Gurtner K et al (2020) Radioresistance of KRAS/TP53-mutated lung cancer can be overcome by radiation dose escalation or EGFR tyrosine kinase inhibition in vivo. Int J Cancer 147(2):472–477PubMedCrossRef Gurtner K et al (2020) Radioresistance of KRAS/TP53-mutated lung cancer can be overcome by radiation dose escalation or EGFR tyrosine kinase inhibition in vivo. Int J Cancer 147(2):472–477PubMedCrossRef
138.
Zurück zum Zitat Duldulao MP et al (2013) Mutations in specific codons of the KRAS oncogene are associated with variable resistance to neoadjuvant chemoradiation therapy in patients with rectal adenocarcinoma. Ann Surg Oncol 20(7):2166–2171PubMedPubMedCentralCrossRef Duldulao MP et al (2013) Mutations in specific codons of the KRAS oncogene are associated with variable resistance to neoadjuvant chemoradiation therapy in patients with rectal adenocarcinoma. Ann Surg Oncol 20(7):2166–2171PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Mak RH et al (2015) Outcomes by tumor histology and KRAS mutation status after lung stereotactic body radiation therapy for early-stage non-small-cell lung cancer. Clin Lung Cancer 16(1):24–32PubMedCrossRef Mak RH et al (2015) Outcomes by tumor histology and KRAS mutation status after lung stereotactic body radiation therapy for early-stage non-small-cell lung cancer. Clin Lung Cancer 16(1):24–32PubMedCrossRef
140.
Zurück zum Zitat Metro G et al (2014) Clinical outcome with platinum-based chemotherapy in patients with advanced nonsquamous EGFR wild-type non-small-cell lung cancer segregated according to KRAS mutation status. Clin Lung Cancer 15(1):86–92PubMedCrossRef Metro G et al (2014) Clinical outcome with platinum-based chemotherapy in patients with advanced nonsquamous EGFR wild-type non-small-cell lung cancer segregated according to KRAS mutation status. Clin Lung Cancer 15(1):86–92PubMedCrossRef
141.
Zurück zum Zitat Lievre A et al (2006) KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66(8):3992–3995PubMedCrossRef Lievre A et al (2006) KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66(8):3992–3995PubMedCrossRef
142.
Zurück zum Zitat Benvenuti S et al (2007) Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res 67(6):2643–2648PubMedCrossRef Benvenuti S et al (2007) Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res 67(6):2643–2648PubMedCrossRef
143.
Zurück zum Zitat Forster T et al (2020) Cetuximab in pancreatic cancer therapy: a systematic review and meta-analysis. Oncology 98(1):53–60PubMedCrossRef Forster T et al (2020) Cetuximab in pancreatic cancer therapy: a systematic review and meta-analysis. Oncology 98(1):53–60PubMedCrossRef
144.
Zurück zum Zitat Ridouane Y et al (2017) Targeted first-line therapies for advanced colorectal cancer: a Bayesian meta-analysis. Oncotarget 8(39):66458–66466PubMedPubMedCentralCrossRef Ridouane Y et al (2017) Targeted first-line therapies for advanced colorectal cancer: a Bayesian meta-analysis. Oncotarget 8(39):66458–66466PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Smith MJ, Neel BG, Ikura M (2013) NMR-based functional profiling of RASopathies and oncogenic RAS mutations. Proc Natl Acad Sci U S A 110(12):4574–4579PubMedPubMedCentralCrossRef Smith MJ, Neel BG, Ikura M (2013) NMR-based functional profiling of RASopathies and oncogenic RAS mutations. Proc Natl Acad Sci U S A 110(12):4574–4579PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Khrenova MG et al (2014) Modeling the role of G12V and G13V Ras mutations in the Ras-GAP-catalyzed hydrolysis reaction of guanosine triphosphate. Biochemistry 53(45):7093–7099PubMedCrossRef Khrenova MG et al (2014) Modeling the role of G12V and G13V Ras mutations in the Ras-GAP-catalyzed hydrolysis reaction of guanosine triphosphate. Biochemistry 53(45):7093–7099PubMedCrossRef
148.
Zurück zum Zitat Chen CC et al (2013) Computational analysis of KRAS mutations: implications for different effects on the KRAS p.G12D and p.G13D mutations. PLoS One 8(2):e55793PubMedPubMedCentralCrossRef Chen CC et al (2013) Computational analysis of KRAS mutations: implications for different effects on the KRAS p.G12D and p.G13D mutations. PLoS One 8(2):e55793PubMedPubMedCentralCrossRef
149.
Zurück zum Zitat Hunter JC et al (2015) Biochemical and structural analysis of common cancer-associated KRAS mutations. Mol Cancer Res 13(9):1325–1335PubMedCrossRef Hunter JC et al (2015) Biochemical and structural analysis of common cancer-associated KRAS mutations. Mol Cancer Res 13(9):1325–1335PubMedCrossRef
150.
151.
Zurück zum Zitat Buhrman G, Wink G, Mattos C (2007) Transformation efficiency of RasQ61 mutants linked to structural features of the switch regions in the presence of Raf. Structure 15(12):1618–1629PubMedPubMedCentralCrossRef Buhrman G, Wink G, Mattos C (2007) Transformation efficiency of RasQ61 mutants linked to structural features of the switch regions in the presence of Raf. Structure 15(12):1618–1629PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Ihle NT et al (2012) Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome. J Natl Cancer Inst 104(3):228–239PubMedPubMedCentralCrossRef Ihle NT et al (2012) Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome. J Natl Cancer Inst 104(3):228–239PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Hammond DE et al (2015) Differential reprogramming of isogenic colorectal cancer cells by distinct activating KRAS mutations. J Proteome Res 14(3):1535–1546PubMedPubMedCentralCrossRef Hammond DE et al (2015) Differential reprogramming of isogenic colorectal cancer cells by distinct activating KRAS mutations. J Proteome Res 14(3):1535–1546PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Garassino MC et al (2011) Different types of K‑Ras mutations could affect drug sensitivity and tumour behaviour in non-small-cell lung cancer. Ann Oncol 22(1):235–237PubMedCrossRef Garassino MC et al (2011) Different types of K‑Ras mutations could affect drug sensitivity and tumour behaviour in non-small-cell lung cancer. Ann Oncol 22(1):235–237PubMedCrossRef
156.
157.
Zurück zum Zitat Jia Y et al (2017) Characterization of distinct types of KRAS mutation and its impact on first-line platinum-based chemotherapy in Chinese patients with advanced non-small cell lung cancer. Oncol Lett 14(6):6525–6532PubMedPubMedCentral Jia Y et al (2017) Characterization of distinct types of KRAS mutation and its impact on first-line platinum-based chemotherapy in Chinese patients with advanced non-small cell lung cancer. Oncol Lett 14(6):6525–6532PubMedPubMedCentral
158.
Zurück zum Zitat Nadal E et al (2014) KRAS-G12C mutation is associated with poor outcome in surgically resected lung adenocarcinoma. J Thorac Oncol 9(10):1513–1522PubMedCrossRef Nadal E et al (2014) KRAS-G12C mutation is associated with poor outcome in surgically resected lung adenocarcinoma. J Thorac Oncol 9(10):1513–1522PubMedCrossRef
159.
160.
Zurück zum Zitat Park HE et al (2021) Tumor microenvironment-adjusted prognostic implications of the KRAS mutation subtype in patients with stage III colorectal cancer treated with adjuvant FOLFOX. Sci Rep 11(1):14609PubMedPubMedCentralCrossRef Park HE et al (2021) Tumor microenvironment-adjusted prognostic implications of the KRAS mutation subtype in patients with stage III colorectal cancer treated with adjuvant FOLFOX. Sci Rep 11(1):14609PubMedPubMedCentralCrossRef
161.
Zurück zum Zitat Chida K et al (2021) The prognostic impact of KRAS G12C mutation in patients with metastatic colorectal cancer: a multicenter retrospective observational study. Oncologist 26(10):845–853PubMedPubMedCentralCrossRef Chida K et al (2021) The prognostic impact of KRAS G12C mutation in patients with metastatic colorectal cancer: a multicenter retrospective observational study. Oncologist 26(10):845–853PubMedPubMedCentralCrossRef
162.
163.
Zurück zum Zitat Stratford AL et al (2008) Y‑box binding protein‑1 serine 102 is a downstream target of p90 ribosomal S6 kinase in basal-like breast cancer cells. Breast Cancer Res 10(6):R99PubMedPubMedCentralCrossRef Stratford AL et al (2008) Y‑box binding protein‑1 serine 102 is a downstream target of p90 ribosomal S6 kinase in basal-like breast cancer cells. Breast Cancer Res 10(6):R99PubMedPubMedCentralCrossRef
164.
165.
Zurück zum Zitat Lee CS et al (2019) MAP kinase and autophagy pathways cooperate to maintain RAS mutant cancer cell survival. Proc Natl Acad Sci U S A 116(10):4508–4517PubMedPubMedCentralCrossRef Lee CS et al (2019) MAP kinase and autophagy pathways cooperate to maintain RAS mutant cancer cell survival. Proc Natl Acad Sci U S A 116(10):4508–4517PubMedPubMedCentralCrossRef
167.
Zurück zum Zitat Higuchi M et al (2008) Scaffolding function of PAK in the PDK1-Akt pathway. Nat Cell Biol 10(11):1356–1364PubMedCrossRef Higuchi M et al (2008) Scaffolding function of PAK in the PDK1-Akt pathway. Nat Cell Biol 10(11):1356–1364PubMedCrossRef
168.
Zurück zum Zitat Beeser A et al (2005) Role of group A p21-activated kinases in activation of extracellular-regulated kinase by growth factors. J Biol Chem 280(44):36609–36615PubMedCrossRef Beeser A et al (2005) Role of group A p21-activated kinases in activation of extracellular-regulated kinase by growth factors. J Biol Chem 280(44):36609–36615PubMedCrossRef
169.
170.
Zurück zum Zitat Zang M, Hayne C, Luo Z (2002) Interaction between active Pak1 and Raf‑1 is necessary for phosphorylation and activation of Raf‑1. J Biol Chem 277(6):4395–4405PubMedCrossRef Zang M, Hayne C, Luo Z (2002) Interaction between active Pak1 and Raf‑1 is necessary for phosphorylation and activation of Raf‑1. J Biol Chem 277(6):4395–4405PubMedCrossRef
171.
Zurück zum Zitat Eblen ST et al (2002) Rac-PAK signaling stimulates extracellular signal-regulated kinase (ERK) activation by regulating formation of MEK1-ERK complexes. Mol Cell Biol 22(17):6023–6033PubMedPubMedCentralCrossRef Eblen ST et al (2002) Rac-PAK signaling stimulates extracellular signal-regulated kinase (ERK) activation by regulating formation of MEK1-ERK complexes. Mol Cell Biol 22(17):6023–6033PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Wang Z et al (2013) p21-activated kinase 1 (PAK1) can promote ERK activation in a kinase-independent manner. J Biol Chem 288(27):20093–20099PubMedPubMedCentralCrossRef Wang Z et al (2013) p21-activated kinase 1 (PAK1) can promote ERK activation in a kinase-independent manner. J Biol Chem 288(27):20093–20099PubMedPubMedCentralCrossRef
174.
Zurück zum Zitat Tang Y et al (2000) The Akt proto-oncogene links Ras to Pak and cell survival signals. J Biol Chem 275(13):9106–9109PubMedCrossRef Tang Y et al (2000) The Akt proto-oncogene links Ras to Pak and cell survival signals. J Biol Chem 275(13):9106–9109PubMedCrossRef
175.
176.
Zurück zum Zitat King CC et al (2000) p21-activated kinase (PAK1) is phosphorylated and activated by 3‑phosphoinositide-dependent kinase‑1 (PDK1). J Biol Chem 275(52):41201–41209PubMedCrossRef King CC et al (2000) p21-activated kinase (PAK1) is phosphorylated and activated by 3‑phosphoinositide-dependent kinase‑1 (PDK1). J Biol Chem 275(52):41201–41209PubMedCrossRef
177.
Zurück zum Zitat Ebi H et al (2013) PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P‑Rex1. Proc Natl Acad Sci U S A 110(52):21124–21129PubMedPubMedCentralCrossRef Ebi H et al (2013) PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P‑Rex1. Proc Natl Acad Sci U S A 110(52):21124–21129PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat Thillai K et al (2017) Deciphering the link between PI3K and PAK: an opportunity to target key pathways in pancreatic cancer? Oncotarget 8(8):14173–14191PubMedCrossRef Thillai K et al (2017) Deciphering the link between PI3K and PAK: an opportunity to target key pathways in pancreatic cancer? Oncotarget 8(8):14173–14191PubMedCrossRef
179.
180.
Zurück zum Zitat Linardou H et al (2008) Assessment of somatic k‑RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol 9(10):962–972PubMedCrossRef Linardou H et al (2008) Assessment of somatic k‑RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol 9(10):962–972PubMedCrossRef
181.
Zurück zum Zitat Normanno N et al (2009) Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat Rev Clin Oncol 6(9):519–527PubMedCrossRef Normanno N et al (2009) Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat Rev Clin Oncol 6(9):519–527PubMedCrossRef
182.
Zurück zum Zitat Knickelbein K, Zhang L (2015) Mutant KRAS as a critical determinant of the therapeutic response of colorectal cancer. Genes Dis 2(1):4–12PubMedCrossRef Knickelbein K, Zhang L (2015) Mutant KRAS as a critical determinant of the therapeutic response of colorectal cancer. Genes Dis 2(1):4–12PubMedCrossRef
183.
Zurück zum Zitat Eberhard DA et al (2005) Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 23(25):5900–5909PubMedCrossRef Eberhard DA et al (2005) Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 23(25):5900–5909PubMedCrossRef
184.
Zurück zum Zitat Sumi S et al (1992) Inhibition of pancreatic adenocarcinoma cell growth by lovastatin. Gastroenterology 103(3):982–989PubMedCrossRef Sumi S et al (1992) Inhibition of pancreatic adenocarcinoma cell growth by lovastatin. Gastroenterology 103(3):982–989PubMedCrossRef
185.
Zurück zum Zitat Kohl NE et al (1994) Protein farnesyltransferase inhibitors block the growth of ras-dependent tumors in nude mice. Proc Natl Acad Sci U S A 91(19):9141–9145PubMedPubMedCentralCrossRef Kohl NE et al (1994) Protein farnesyltransferase inhibitors block the growth of ras-dependent tumors in nude mice. Proc Natl Acad Sci U S A 91(19):9141–9145PubMedPubMedCentralCrossRef
186.
Zurück zum Zitat Sun J et al (1995) Ras CAAX peptidomimetic FTI 276 selectively blocks tumor growth in nude mice of a human lung carcinoma with K‑Ras mutation and p53 deletion. Cancer Res 55(19):4243–4247PubMed Sun J et al (1995) Ras CAAX peptidomimetic FTI 276 selectively blocks tumor growth in nude mice of a human lung carcinoma with K‑Ras mutation and p53 deletion. Cancer Res 55(19):4243–4247PubMed
187.
Zurück zum Zitat Santillo M et al (1996) Inhibitors of Ras farnesylation revert the increased resistance to oxidative stress in K‑Ras transformed NIH 3T3 cells. Biochem Biophys Res Commun 229(3):739–745PubMedCrossRef Santillo M et al (1996) Inhibitors of Ras farnesylation revert the increased resistance to oxidative stress in K‑Ras transformed NIH 3T3 cells. Biochem Biophys Res Commun 229(3):739–745PubMedCrossRef
188.
Zurück zum Zitat Hunt JT et al (2000) Discovery of (R)-7-cyano‑2,3,4, 5‑tetrahydro-1-(1H-imidazol-4-ylmethyl)-3-(phenylmethyl)-4-(2-thienylsulfonyl)-1H‑1,4‑benzodiazepine (BMS-214662), a farnesyltransferase inhibitor with potent preclinical antitumor activity. J Med Chem 43(20):3587–3595PubMedCrossRef Hunt JT et al (2000) Discovery of (R)-7-cyano‑2,3,4, 5‑tetrahydro-1-(1H-imidazol-4-ylmethyl)-3-(phenylmethyl)-4-(2-thienylsulfonyl)-1H‑1,4‑benzodiazepine (BMS-214662), a farnesyltransferase inhibitor with potent preclinical antitumor activity. J Med Chem 43(20):3587–3595PubMedCrossRef
189.
Zurück zum Zitat Macdonald JS et al (2005) A phase II study of farnesyl transferase inhibitor R115777 in pancreatic cancer: a Southwest oncology group (SWOG 9924) study. Invest New Drugs 23(5):485–487PubMedCrossRef Macdonald JS et al (2005) A phase II study of farnesyl transferase inhibitor R115777 in pancreatic cancer: a Southwest oncology group (SWOG 9924) study. Invest New Drugs 23(5):485–487PubMedCrossRef
190.
Zurück zum Zitat Rao S et al (2004) Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. J Clin Oncol 22(19):3950–3957PubMedCrossRef Rao S et al (2004) Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. J Clin Oncol 22(19):3950–3957PubMedCrossRef
191.
Zurück zum Zitat Cohen SJ et al (2003) Phase II and pharmacodynamic study of the farnesyltransferase inhibitor R115777 as initial therapy in patients with metastatic pancreatic adenocarcinoma. J Clin Oncol 21(7):1301–1306PubMedCrossRef Cohen SJ et al (2003) Phase II and pharmacodynamic study of the farnesyltransferase inhibitor R115777 as initial therapy in patients with metastatic pancreatic adenocarcinoma. J Clin Oncol 21(7):1301–1306PubMedCrossRef
192.
Zurück zum Zitat Adjei AA et al (2003) Phase II study of the farnesyl transferase inhibitor R115777 in patients with advanced non-small-cell lung cancer. J Clin Oncol 21(9):1760–1766PubMedCrossRef Adjei AA et al (2003) Phase II study of the farnesyl transferase inhibitor R115777 in patients with advanced non-small-cell lung cancer. J Clin Oncol 21(9):1760–1766PubMedCrossRef
193.
Zurück zum Zitat Whyte DB et al (1997) K‑ and N‑Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem 272(22):14459–14464PubMedCrossRef Whyte DB et al (1997) K‑ and N‑Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem 272(22):14459–14464PubMedCrossRef
194.
Zurück zum Zitat Lerner EC et al (1997) Inhibition of the prenylation of K‑Ras, but not H‑ or N‑Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyltransferase I inhibitor in human tumor cell lines. Oncogene 15(11):1283–1288PubMedCrossRef Lerner EC et al (1997) Inhibition of the prenylation of K‑Ras, but not H‑ or N‑Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyltransferase I inhibitor in human tumor cell lines. Oncogene 15(11):1283–1288PubMedCrossRef
195.
Zurück zum Zitat Martin NE et al (2004) A phase I trial of the dual farnesyltransferase and geranylgeranyltransferase inhibitor L‑778,123 and radiotherapy for locally advanced pancreatic cancer. Clin Cancer Res 10(16):5447–5454PubMedCrossRef Martin NE et al (2004) A phase I trial of the dual farnesyltransferase and geranylgeranyltransferase inhibitor L‑778,123 and radiotherapy for locally advanced pancreatic cancer. Clin Cancer Res 10(16):5447–5454PubMedCrossRef
196.
Zurück zum Zitat Hahn SM et al (2002) A Phase I trial of the farnesyltransferase inhibitor L‑778,123 and radiotherapy for locally advanced lung and head and neck cancer. Clin Cancer Res 8(5):1065–1072PubMed Hahn SM et al (2002) A Phase I trial of the farnesyltransferase inhibitor L‑778,123 and radiotherapy for locally advanced lung and head and neck cancer. Clin Cancer Res 8(5):1065–1072PubMed
197.
Zurück zum Zitat Sepp-Lorenzino L et al (1995) A peptidomimetic inhibitor of farnesyl:protein transferase blocks the anchorage-dependent and -independent growth of human tumor cell lines. Cancer Res 55(22):5302–5309PubMed Sepp-Lorenzino L et al (1995) A peptidomimetic inhibitor of farnesyl:protein transferase blocks the anchorage-dependent and -independent growth of human tumor cell lines. Cancer Res 55(22):5302–5309PubMed
198.
Zurück zum Zitat End DW et al (2001) Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res 61(1):131–137PubMed End DW et al (2001) Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res 61(1):131–137PubMed
199.
Zurück zum Zitat Di Paolo A et al (2001) Inhibition of protein farnesylation enhances the chemotherapeutic efficacy of the novel geranylgeranyltransferase inhibitor BAL9611 in human colon cancer cells. Br J Cancer 84(11):1535–1543PubMedCrossRef Di Paolo A et al (2001) Inhibition of protein farnesylation enhances the chemotherapeutic efficacy of the novel geranylgeranyltransferase inhibitor BAL9611 in human colon cancer cells. Br J Cancer 84(11):1535–1543PubMedCrossRef
200.
Zurück zum Zitat Song SY et al (2000) K‑Ras-independent effects of the farnesyl transferase inhibitor L‑744,832 on cyclin B1/Cdc2 kinase activity, G2/M cell cycle progression and apoptosis in human pancreatic ductal adenocarcinoma cell. Neoplasia 2(3):261–272PubMedPubMedCentralCrossRef Song SY et al (2000) K‑Ras-independent effects of the farnesyl transferase inhibitor L‑744,832 on cyclin B1/Cdc2 kinase activity, G2/M cell cycle progression and apoptosis in human pancreatic ductal adenocarcinoma cell. Neoplasia 2(3):261–272PubMedPubMedCentralCrossRef
202.
Zurück zum Zitat Aoki K et al (1995) Liposome-mediated in vivo gene transfer of antisense K‑ras construct inhibits pancreatic tumor dissemination in the murine peritoneal cavity. Cancer Res 55(17):3810–3816PubMed Aoki K et al (1995) Liposome-mediated in vivo gene transfer of antisense K‑ras construct inhibits pancreatic tumor dissemination in the murine peritoneal cavity. Cancer Res 55(17):3810–3816PubMed
203.
Zurück zum Zitat Tsuchida T et al (1998) Hammerhead ribozyme specifically inhibits mutant K‑ras mRNA of human pancreatic cancer cells. Biochem Biophys Res Commun 253(2):368–373PubMedCrossRef Tsuchida T et al (1998) Hammerhead ribozyme specifically inhibits mutant K‑ras mRNA of human pancreatic cancer cells. Biochem Biophys Res Commun 253(2):368–373PubMedCrossRef
204.
Zurück zum Zitat Kita K et al (1999) Growth inhibition of human pancreatic cancer cell lines by anti-sense oligonucleotides specific to mutated K‑ras genes. Int J Cancer 80(4):553–558PubMedCrossRef Kita K et al (1999) Growth inhibition of human pancreatic cancer cell lines by anti-sense oligonucleotides specific to mutated K‑ras genes. Int J Cancer 80(4):553–558PubMedCrossRef
205.
Zurück zum Zitat Smakman N et al (2005) Dual effect of Kras(D12) knockdown on tumorigenesis: increased immune-mediated tumor clearance and abrogation of tumor malignancy. Oncogene 24(56):8338–8342PubMedCrossRef Smakman N et al (2005) Dual effect of Kras(D12) knockdown on tumorigenesis: increased immune-mediated tumor clearance and abrogation of tumor malignancy. Oncogene 24(56):8338–8342PubMedCrossRef
206.
Zurück zum Zitat Golan T et al (2015) RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget 6(27):24560–24570PubMedPubMedCentralCrossRef Golan T et al (2015) RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget 6(27):24560–24570PubMedPubMedCentralCrossRef
207.
Zurück zum Zitat Gort E et al (2020) A phase I, open-label, dose-escalation trial of BI 1701963 as monotherapy and in combination with trametinib in patients with KRAS mutated advanced or metastatic solid tumors. J Clin Oncol 38(15):TPS3651–TPS3651CrossRef Gort E et al (2020) A phase I, open-label, dose-escalation trial of BI 1701963 as monotherapy and in combination with trametinib in patients with KRAS mutated advanced or metastatic solid tumors. J Clin Oncol 38(15):TPS3651–TPS3651CrossRef
208.
Zurück zum Zitat Wee S et al (2009) PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res 69(10):4286–4293PubMedCrossRef Wee S et al (2009) PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res 69(10):4286–4293PubMedCrossRef
209.
Zurück zum Zitat Toulany M et al (2016) Dual targeting of PI3K and MEK enhances the radiation response of K‑RAS mutated non-small cell lung cancer. Oncotarget 7(28):43746–43761PubMedPubMedCentralCrossRef Toulany M et al (2016) Dual targeting of PI3K and MEK enhances the radiation response of K‑RAS mutated non-small cell lung cancer. Oncotarget 7(28):43746–43761PubMedPubMedCentralCrossRef
210.
Zurück zum Zitat Toulany M et al (2014) ERK2-dependent reactivation of Akt mediates the limited response of tumor cells with constitutive K‑RAS activity to PI3K inhibition. Cancer Biol Ther 15(3):317–328PubMedCrossRef Toulany M et al (2014) ERK2-dependent reactivation of Akt mediates the limited response of tumor cells with constitutive K‑RAS activity to PI3K inhibition. Cancer Biol Ther 15(3):317–328PubMedCrossRef
211.
Zurück zum Zitat Shapiro GI et al (2020) Phase Ib study of the MEK inhibitor cobimetinib (GDC-0973) in combination with the PI3K inhibitor pictilisib (GDC-0941) in patients with advanced solid tumors. Invest New Drugs 38(2):419–432PubMedCrossRef Shapiro GI et al (2020) Phase Ib study of the MEK inhibitor cobimetinib (GDC-0973) in combination with the PI3K inhibitor pictilisib (GDC-0941) in patients with advanced solid tumors. Invest New Drugs 38(2):419–432PubMedCrossRef
212.
Zurück zum Zitat Lanman BA et al (2020) Discovery of a covalent inhibitor of KRAS(G12C) (AMG 510) for the treatment of solid tumors. J Med Chem 63(1):52–65PubMedCrossRef Lanman BA et al (2020) Discovery of a covalent inhibitor of KRAS(G12C) (AMG 510) for the treatment of solid tumors. J Med Chem 63(1):52–65PubMedCrossRef
213.
Zurück zum Zitat Tanaka N et al (2021) Clinical acquired resistance to KRAS(G12C) inhibition through a novel KRAS switch-II pocket mutation and polyclonal alterations converging on RAS-MAPK reactivation. Cancer Discov 11(8):1913–1922PubMedPubMedCentralCrossRef Tanaka N et al (2021) Clinical acquired resistance to KRAS(G12C) inhibition through a novel KRAS switch-II pocket mutation and polyclonal alterations converging on RAS-MAPK reactivation. Cancer Discov 11(8):1913–1922PubMedPubMedCentralCrossRef
215.
217.
Zurück zum Zitat Hallin J et al (2022) Anti-tumor efficacy of a potent and selective non-covalent KRAS(G12D) inhibitor. Nat Med 28(10):2171–2182PubMedCrossRef Hallin J et al (2022) Anti-tumor efficacy of a potent and selective non-covalent KRAS(G12D) inhibitor. Nat Med 28(10):2171–2182PubMedCrossRef
218.
Zurück zum Zitat Koltun E et al (2021) Abstract 1260: first-in-class, orally bioavailable KRASG12V(ON) tri-complex inhibitors, as single agents and in combinations, drive profound anti-tumor activity in preclinical models of KRASG12V mutant cancers. Cancer Res 81(13):1260–1260CrossRef Koltun E et al (2021) Abstract 1260: first-in-class, orally bioavailable KRASG12V(ON) tri-complex inhibitors, as single agents and in combinations, drive profound anti-tumor activity in preclinical models of KRASG12V mutant cancers. Cancer Res 81(13):1260–1260CrossRef
219.
Zurück zum Zitat Lasham A et al (2012) YB-1: oncoprotein, prognostic marker and therapeutic target? Biochem J 449(1):11–23CrossRef Lasham A et al (2012) YB-1: oncoprotein, prognostic marker and therapeutic target? Biochem J 449(1):11–23CrossRef
220.
Zurück zum Zitat Sangermano F, Delicato A, Calabrò V (2020) Y box binding protein 1 (YB-1) oncoprotein at the hub of DNA proliferation, damage and cancer progression. Biochimie 179:205–216PubMedCrossRef Sangermano F, Delicato A, Calabrò V (2020) Y box binding protein 1 (YB-1) oncoprotein at the hub of DNA proliferation, damage and cancer progression. Biochimie 179:205–216PubMedCrossRef
221.
223.
Zurück zum Zitat Kosnopfel C et al (2017) Human melanoma cells resistant to MAPK inhibitors can be effectively targeted by inhibition of the p90 ribosomal S6 kinase. Oncotarget 8(22):35761–35775PubMedPubMedCentralCrossRef Kosnopfel C et al (2017) Human melanoma cells resistant to MAPK inhibitors can be effectively targeted by inhibition of the p90 ribosomal S6 kinase. Oncotarget 8(22):35761–35775PubMedPubMedCentralCrossRef
224.
Zurück zum Zitat Ushijima M et al (2022) An oral first-in-class small molecule RSK inhibitor suppresses AR variants and tumor growth in prostate cancer. Cancer Sci 113(5):1731–1738PubMedPubMedCentralCrossRef Ushijima M et al (2022) An oral first-in-class small molecule RSK inhibitor suppresses AR variants and tumor growth in prostate cancer. Cancer Sci 113(5):1731–1738PubMedPubMedCentralCrossRef
225.
Zurück zum Zitat Shibata T et al (2020) Targeting phosphorylation of Y‑box–binding protein YBX1 by TAS0612 and everolimus in overcoming antiestrogen resistance. Mol Cancer Ther 19(3):882–894PubMedCrossRef Shibata T et al (2020) Targeting phosphorylation of Y‑box–binding protein YBX1 by TAS0612 and everolimus in overcoming antiestrogen resistance. Mol Cancer Ther 19(3):882–894PubMedCrossRef
226.
Zurück zum Zitat Tang KJ et al (2016) Focal adhesion kinase regulates the DNA damage response and its inhibition radiosensitizes mutant KRAS lung cancer. Clin Cancer Res 22(23):5851–5863PubMedPubMedCentralCrossRef Tang KJ et al (2016) Focal adhesion kinase regulates the DNA damage response and its inhibition radiosensitizes mutant KRAS lung cancer. Clin Cancer Res 22(23):5851–5863PubMedPubMedCentralCrossRef
228.
Zurück zum Zitat Khatri A et al (2019) ABL kinase inhibition sensitizes primary lung adenocarcinomas to chemotherapy by promoting tumor cell differentiation. Oncotarget 10(20):1874–1886PubMedPubMedCentralCrossRef Khatri A et al (2019) ABL kinase inhibition sensitizes primary lung adenocarcinomas to chemotherapy by promoting tumor cell differentiation. Oncotarget 10(20):1874–1886PubMedPubMedCentralCrossRef
229.
Zurück zum Zitat Gupta K et al (2022) Identification of synergistic drug combinations to target KRAS-driven chemoradioresistant cancers utilizing tumoroid models of colorectal adenocarcinoma and recurrent glioblastoma. Front Oncol 12:840241PubMedPubMedCentralCrossRef Gupta K et al (2022) Identification of synergistic drug combinations to target KRAS-driven chemoradioresistant cancers utilizing tumoroid models of colorectal adenocarcinoma and recurrent glioblastoma. Front Oncol 12:840241PubMedPubMedCentralCrossRef
230.
Zurück zum Zitat Khan N et al (2013) Fisetin: a dietary antioxidant for health promotion. Antioxidants Redox Signal 19(2):151–162CrossRef Khan N et al (2013) Fisetin: a dietary antioxidant for health promotion. Antioxidants Redox Signal 19(2):151–162CrossRef
232.
Zurück zum Zitat Sechi M et al (2018) Fisetin targets YB-1/RSK axis independent of its effect on ERK signaling: insights from in vitro and in vivo melanoma models. Sci Rep 8(1):15726PubMedPubMedCentralCrossRef Sechi M et al (2018) Fisetin targets YB-1/RSK axis independent of its effect on ERK signaling: insights from in vitro and in vivo melanoma models. Sci Rep 8(1):15726PubMedPubMedCentralCrossRef
233.
Zurück zum Zitat Khan MI et al (2014) YB‑1 expression promotes epithelial-to-mesenchymal transition in prostate cancer that is inhibited by a small molecule fisetin. Oncotarget 5(9):2462–2474PubMedPubMedCentralCrossRef Khan MI et al (2014) YB‑1 expression promotes epithelial-to-mesenchymal transition in prostate cancer that is inhibited by a small molecule fisetin. Oncotarget 5(9):2462–2474PubMedPubMedCentralCrossRef
234.
Zurück zum Zitat Huang C et al (2022) ZC3H13-mediated N6-methyladenosine modification of PHF10 is impaired by fisetin which inhibits the DNA damage response in pancreatic cancer. Cancer Lett 530:16–28PubMedCrossRef Huang C et al (2022) ZC3H13-mediated N6-methyladenosine modification of PHF10 is impaired by fisetin which inhibits the DNA damage response in pancreatic cancer. Cancer Lett 530:16–28PubMedCrossRef
235.
237.
Zurück zum Zitat Tanaka T et al (2021) 7‑Hydorxyindirubin is capable of specifically inhibiting anticancer drug-induced YB‑1 nuclear translocation without showing cytotoxicity in HepG2 hepatocellular carcinoma cells. Biochem Biophys Res Commun 544:15–21PubMedCrossRef Tanaka T et al (2021) 7‑Hydorxyindirubin is capable of specifically inhibiting anticancer drug-induced YB‑1 nuclear translocation without showing cytotoxicity in HepG2 hepatocellular carcinoma cells. Biochem Biophys Res Commun 544:15–21PubMedCrossRef
238.
Zurück zum Zitat Ma J‑W et al (2016) Aloe-emodin inhibits HER‑2 expression through the downregulation of Y‑box binding protein‑1 in HER-2-overexpressing human breast cancer cells. Oncotarget 7(37):58915–58930PubMedPubMedCentralCrossRef Ma J‑W et al (2016) Aloe-emodin inhibits HER‑2 expression through the downregulation of Y‑box binding protein‑1 in HER-2-overexpressing human breast cancer cells. Oncotarget 7(37):58915–58930PubMedPubMedCentralCrossRef
239.
Zurück zum Zitat Chan C et al (2016) Qualitative and quantitative analysis of chemical constituents of centipeda minima by HPLC-QTOF-MS & HPLC-DAD. J Pharm Biomed Anal 125:400–407PubMedCrossRef Chan C et al (2016) Qualitative and quantitative analysis of chemical constituents of centipeda minima by HPLC-QTOF-MS & HPLC-DAD. J Pharm Biomed Anal 125:400–407PubMedCrossRef
240.
Zurück zum Zitat Liu YQ et al (2015) Skp1 in lung cancer: clinical significance and therapeutic efficacy of its small molecule inhibitors. Oncotarget 6(33):34953–34967PubMedPubMedCentralCrossRef Liu YQ et al (2015) Skp1 in lung cancer: clinical significance and therapeutic efficacy of its small molecule inhibitors. Oncotarget 6(33):34953–34967PubMedPubMedCentralCrossRef
241.
Zurück zum Zitat Li C et al (2018) Sesquiterpene lactone 6‑O-angeloylplenolin reverses vincristine resistance by inhibiting YB‑1 nuclear translocation in colon carcinoma cells. Oncol Lett 15(6):9673–9680PubMedPubMedCentral Li C et al (2018) Sesquiterpene lactone 6‑O-angeloylplenolin reverses vincristine resistance by inhibiting YB‑1 nuclear translocation in colon carcinoma cells. Oncol Lett 15(6):9673–9680PubMedPubMedCentral
242.
Zurück zum Zitat El Hage K et al (2023) Targeting RNA:protein interactions with an integrative approach leads to the identification of potent YBX1 inhibitors. Elife 12:e80387PubMedPubMedCentralCrossRef El Hage K et al (2023) Targeting RNA:protein interactions with an integrative approach leads to the identification of potent YBX1 inhibitors. Elife 12:e80387PubMedPubMedCentralCrossRef
243.
Zurück zum Zitat Tailor D et al (2021) Y box binding protein 1 inhibition as a targeted therapy for ovarian cancer. Cell Chem Biol 28(8):1206–1220.e6PubMedCrossRef Tailor D et al (2021) Y box binding protein 1 inhibition as a targeted therapy for ovarian cancer. Cell Chem Biol 28(8):1206–1220.e6PubMedCrossRef
244.
Zurück zum Zitat Gunasekaran VP et al (2018) Identification of 2,4-dihydroxy-5-pyrimidinyl imidothiocarbomate as a novel inhibitor to Y box binding protein‑1 (YB-1) and its therapeutic actions against breast cancer. Eur J Pharm Sci 116:2–14PubMedCrossRef Gunasekaran VP et al (2018) Identification of 2,4-dihydroxy-5-pyrimidinyl imidothiocarbomate as a novel inhibitor to Y box binding protein‑1 (YB-1) and its therapeutic actions against breast cancer. Eur J Pharm Sci 116:2–14PubMedCrossRef
245.
Zurück zum Zitat Higashi K et al (2011) A novel small compound that promotes nuclear translocation of YB‑1 ameliorates experimental hepatic fibrosis in mice. J Biol Chem 286(6):4485–4492PubMedCrossRef Higashi K et al (2011) A novel small compound that promotes nuclear translocation of YB‑1 ameliorates experimental hepatic fibrosis in mice. J Biol Chem 286(6):4485–4492PubMedCrossRef
246.
Zurück zum Zitat Law JH et al (2010) Molecular decoy to the Y‑box binding protein‑1 suppresses the growth of breast and prostate cancer cells whilst sparing normal cell viability. PLoS One 5(9):e12661PubMedPubMedCentralCrossRef Law JH et al (2010) Molecular decoy to the Y‑box binding protein‑1 suppresses the growth of breast and prostate cancer cells whilst sparing normal cell viability. PLoS One 5(9):e12661PubMedPubMedCentralCrossRef
247.
Zurück zum Zitat Izumi H et al (2016) Optimal sequence of antisense DNA to silence YB‑1 in lung cancer by use of a novel polysaccharide drug delivery system. Int J Oncol 48(6):2472–2478PubMedCrossRef Izumi H et al (2016) Optimal sequence of antisense DNA to silence YB‑1 in lung cancer by use of a novel polysaccharide drug delivery system. Int J Oncol 48(6):2472–2478PubMedCrossRef
Metadaten
Titel
YB-1 activating cascades as potential targets in KRAS-mutated tumors
verfasst von
Shayan Khozooei
Soundaram Veerappan
Prof. Dr. Mahmoud Toulany
Publikationsdatum
02.06.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Strahlentherapie und Onkologie / Ausgabe 12/2023
Print ISSN: 0179-7158
Elektronische ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-023-02092-8

Weitere Artikel der Ausgabe 12/2023

Strahlentherapie und Onkologie 12/2023 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.