Skip to main content
Erschienen in: Clinical Orthopaedics and Related Research® 5/2017

28.11.2016 | Basic Research

What Are the Biomechanical Properties of the Taylor Spatial Frame™?

verfasst von: Daniel J. Henderson, FRCS (Orth), Jeremy L. Rushbrook, FRCS (Orth), Paul J. Harwood, FRCS (Orth), Todd D. Stewart, PhD

Erschienen in: Clinical Orthopaedics and Related Research® | Ausgabe 5/2017

Einloggen, um Zugang zu erhalten

Abstract

Background

The Taylor Spatial Frame™ (TSF) is a versatile variant of the traditional Ilizarov circular fixator. Although in widespread use, little comparative data exist to quantify the biomechanical effect of substituting the tried-and-tested Ilizarov construct for the TSF hexapod system.

Questions/purposes

This study was designed to investigate the mechanical properties of the TSF system under physiologic loads, with and without the addition of a simulated bone model, with comparison to the standard Ilizarov frame.

Methods

The mechanical behaviors of three identical four-ring TSF and Ilizarov constructs were tested under levels of axial compression, bending, and rotational torque to simulate loading during normal gait. An acrylic-pipe fracture model subsequently was mounted, using fine wires and 5 mm half pins, and the testing was repeated. Load-deformation curves, and so rigidity, for each construct were calculated, with statistical comparisons performed using paired t-tests.

Results

Under axial loading, the TSF was found to be less rigid than the Ilizarov frame (645 ± 57 N/mm versus 1269 ± 256 N/mm; mean difference, 623 N/mm; 95% CI, 438.3–808.5 N/mm; p < 0.001), but more rigid under bending and torsional loads (bending: 42 ± 9 Nm/degree versus 78 ± 13 Nm/degree; mean difference, 37 Nm/degree; 95% CI, 25.0–47.9 Nm/degree; p < 0.001; torsion: 16 ± 2 Nm/degree versus 5 ± 0.35 Nm/degree; mean difference, 11 Nm/degree; 95% CI, 9.5–12.2 Nm/degree; p < 0.001). On mounting the bone models, these relationships broadly remained in the half-pin and fine-wire groups, however the half-pin constructs were universally more rigid than those using fine wires. This effect resulted in the TSF, using half pins, showing no difference in axial rigidity to the fine-wire Ilizarov (107 ± 3 N/mm versus 107 ± 4 N/mm; mean difference, 0.05 N/mm; 95% CI, −6.99 to 7.1 N/mm; p > 0.999), while retaining greater bending and torsional rigidity. Throughout testing, a small amount of laxity was observed in the TSF construct on either side of neutral loading, amounting to 0.72 mm (±0.37 mm) for a change in loading between −10 N and 10 N axial load, and which persisted with the addition of the synthetic fracture model.

Conclusions

This study broadly shows the TSF construct to generate lower axial rigidity, but greater bending and torsional rigidity, when compared with the Ilizarov frame, under physiologic loads. The anecdotally described laxity in the TSF hexapod strut system was shown in vitro, but only at low levels of loading around neutral. It also was shown that the increased stiffness generated by use of half pins produced a TSF construct replicating the axial rigidity of a fine-wire Ilizarov frame, for which much evidence of good clinical and radiologic outcomes exist, while providing greater rigidity and so improved resistance to potentially detrimental bending and rotational shear loads.

Clinical Relevance

If replicated in the clinical setting, these findings suggest that when using the TSF, care should be taken to minimize the observed laxity around neutral with appropriate preloading of the construct, but that its use may produce constructs better able to resist bending and torsional loading, although with lower axial rigidity. Use of half pins in a TSF construct however may replicate the axial mechanical behavior of an Ilizarov construct, which is thought to be conducive to bone healing.
Literatur
1.
Zurück zum Zitat Al-Sayyad MJ. Taylor Spatial Frame in the treatment of pediatric and adolescent tibial shaft fractures. J Pediatr Orthop. 2006;26:164–170.CrossRefPubMed Al-Sayyad MJ. Taylor Spatial Frame in the treatment of pediatric and adolescent tibial shaft fractures. J Pediatr Orthop. 2006;26:164–170.CrossRefPubMed
2.
Zurück zum Zitat Antoci V, Voor MJ, Antoci V Jr, Roberts CS. Biomechanics of olive wire positioning and tensioning characteristics. J Pediatr Orthop. 2005;25:798–803.CrossRefPubMed Antoci V, Voor MJ, Antoci V Jr, Roberts CS. Biomechanics of olive wire positioning and tensioning characteristics. J Pediatr Orthop. 2005;25:798–803.CrossRefPubMed
3.
Zurück zum Zitat Augat P, Burger J, Schorlemmer S, Henke T, Peraus M, Claes L. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res. 2003;21:1011–1017.CrossRefPubMed Augat P, Burger J, Schorlemmer S, Henke T, Peraus M, Claes L. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res. 2003;21:1011–1017.CrossRefPubMed
4.
Zurück zum Zitat Binski JC. Taylor Spatial Frame in acute fracture care. Tech Orthop. 2002;17:173–184.CrossRef Binski JC. Taylor Spatial Frame in acute fracture care. Tech Orthop. 2002;17:173–184.CrossRef
5.
Zurück zum Zitat Board TN, Yang L, Saleh M. Why fine-wire fixators work: an analysis of pressure distribution at the wire-bone interface. J Biomech. 2007;40:20–25.CrossRefPubMed Board TN, Yang L, Saleh M. Why fine-wire fixators work: an analysis of pressure distribution at the wire-bone interface. J Biomech. 2007;40:20–25.CrossRefPubMed
6.
Zurück zum Zitat Calhoun JH, Li F, Ledbetter BR, Gill CA. Biomechanics of the Ilizarov fixator for fracture fixation. Clin Orthop Relat Res. 1992;280:15–22. Calhoun JH, Li F, Ledbetter BR, Gill CA. Biomechanics of the Ilizarov fixator for fracture fixation. Clin Orthop Relat Res. 1992;280:15–22.
7.
Zurück zum Zitat de Winter JC. Using the Student’s t-test with extremely small sample sizes. Pract Assess Res Eval. 2013;18:1–12. de Winter JC. Using the Student’s t-test with extremely small sample sizes. Pract Assess Res Eval. 2013;18:1–12.
8.
Zurück zum Zitat Duda GN, Sollmann M, Sporrer S, Hoffmann JE, Kassi JP, Khodadadyan C, Raschke M. Interfragmentary motion in tibial osteotomies stabilized with ring fixators. Clin Orthop Relat Res. 2002;396:163–172.CrossRef Duda GN, Sollmann M, Sporrer S, Hoffmann JE, Kassi JP, Khodadadyan C, Raschke M. Interfragmentary motion in tibial osteotomies stabilized with ring fixators. Clin Orthop Relat Res. 2002;396:163–172.CrossRef
9.
Zurück zum Zitat Eidelman M, Katzman A. Treatment of complex tibial fractures in children with the taylor spatial frame. Orthopedics. 2008;31: pii: orthosupersite.com/view.asp?rID=31513. Eidelman M, Katzman A. Treatment of complex tibial fractures in children with the taylor spatial frame. Orthopedics. 2008;31: pii: orthosupersite.com/view.asp?rID=31513.
10.
Zurück zum Zitat Epari DR, Duda GN, Thompson MS. Mechanobiology of bone healing and regeneration: in vivo models. Proc Inst Mech Eng H. 2010;224:1543–1553.CrossRefPubMed Epari DR, Duda GN, Thompson MS. Mechanobiology of bone healing and regeneration: in vivo models. Proc Inst Mech Eng H. 2010;224:1543–1553.CrossRefPubMed
11.
Zurück zum Zitat Fleming B, Paley D, Kristiansen T, Pope M. A biomechanical analysis of the Ilizarov external fixator. Clin Orthop Relat Res. 1989;241:95–105. Fleming B, Paley D, Kristiansen T, Pope M. A biomechanical analysis of the Ilizarov external fixator. Clin Orthop Relat Res. 1989;241:95–105.
12.
Zurück zum Zitat Foster PA, Barton SB, Jones SC, Morrison RJ, Britten S. The treatment of complex tibial shaft fractures by the Ilizarov method. J Bone Joint Surg Br. 2012;94:1678–1683.CrossRefPubMed Foster PA, Barton SB, Jones SC, Morrison RJ, Britten S. The treatment of complex tibial shaft fractures by the Ilizarov method. J Bone Joint Surg Br. 2012;94:1678–1683.CrossRefPubMed
13.
Zurück zum Zitat Gardner MJ, Putnam SM, Wong A, Streubel PN, Kotiya A, Silva MJ. Differential fracture healing resulting from fixation stiffness variability: a mouse model. J Orthop Sci. 2011;16:298–303.CrossRefPubMedPubMedCentral Gardner MJ, Putnam SM, Wong A, Streubel PN, Kotiya A, Silva MJ. Differential fracture healing resulting from fixation stiffness variability: a mouse model. J Orthop Sci. 2011;16:298–303.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Gasser B, Boman B, Wyder D, Schneider E. Stiffness characteristics of the circular Ilizarov device as opposed to conventional external fixators. J Biomech Eng. 1990;112:15–21.CrossRefPubMed Gasser B, Boman B, Wyder D, Schneider E. Stiffness characteristics of the circular Ilizarov device as opposed to conventional external fixators. J Biomech Eng. 1990;112:15–21.CrossRefPubMed
15.
Zurück zum Zitat Gessmann J, Citak M, Jettkant B, Schildhauer TA, Seybold D. The influence of a weight-bearing platform on the mechanical behavior of two Ilizarov ring fixators: tensioned wires vs. half-pins. J Orthop Surg Res. 2011;6:61. Gessmann J, Citak M, Jettkant B, Schildhauer TA, Seybold D. The influence of a weight-bearing platform on the mechanical behavior of two Ilizarov ring fixators: tensioned wires vs. half-pins. J Orthop Surg Res. 2011;6:61.
16.
Zurück zum Zitat Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38(suppl 4):S3–S6.CrossRef Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38(suppl 4):S3–S6.CrossRef
17.
Zurück zum Zitat Goodship AE, Watkins PE, Rigby HS, Kenwright J. The role of fixator frame stiffness in the control of fracture healing: an experimental study. J Biomech. 1993;26:1027–1035.CrossRefPubMed Goodship AE, Watkins PE, Rigby HS, Kenwright J. The role of fixator frame stiffness in the control of fracture healing: an experimental study. J Biomech. 1993;26:1027–1035.CrossRefPubMed
18.
Zurück zum Zitat Harwood PJ, Stewart TD. Mechanics of musculoskeletal repair devices. Orthop Trauma. 2016;30:192–200.CrossRef Harwood PJ, Stewart TD. Mechanics of musculoskeletal repair devices. Orthop Trauma. 2016;30:192–200.CrossRef
19.
Zurück zum Zitat Henderson DJ, Barron E, Hadland Y, Sharma HK. Functional outcomes after tibial shaft fractures treated using the taylor spatial frame. J Orthop Trauma. 2015;29:e54–59.CrossRefPubMed Henderson DJ, Barron E, Hadland Y, Sharma HK. Functional outcomes after tibial shaft fractures treated using the taylor spatial frame. J Orthop Trauma. 2015;29:e54–59.CrossRefPubMed
20.
Zurück zum Zitat Henderson DJ, Rushbrook JL, Stewart TD, Harwood PJ. What are the biomechanical effects of half-pin and fine-wire configurations on fracture site movement in circular frames? Clin Orthop Relat Res. 2016;474:1041–1049.CrossRefPubMed Henderson DJ, Rushbrook JL, Stewart TD, Harwood PJ. What are the biomechanical effects of half-pin and fine-wire configurations on fracture site movement in circular frames? Clin Orthop Relat Res. 2016;474:1041–1049.CrossRefPubMed
21.
Zurück zum Zitat Henderson ER, Feldman DS, Lusk C, van Bosse HJ, Sala D, Kummer FJ. Conformational instability of the taylor spatial frame: a case report and biomechanical study. J Pediatr Orthop. 2008;28:471–477.CrossRefPubMed Henderson ER, Feldman DS, Lusk C, van Bosse HJ, Sala D, Kummer FJ. Conformational instability of the taylor spatial frame: a case report and biomechanical study. J Pediatr Orthop. 2008;28:471–477.CrossRefPubMed
22.
Zurück zum Zitat Kenwright J, Goodship AE. Controlled mechanical stimulation in the treatment of tibial fractures. Clin Orthop Relat Res. 1989;241:36–47. Kenwright J, Goodship AE. Controlled mechanical stimulation in the treatment of tibial fractures. Clin Orthop Relat Res. 1989;241:36–47.
23.
Zurück zum Zitat Kummer FJ. Biomechanics of the Ilizarov external fixator. Clin Orthop Relat Res. 1992;280:11–14. Kummer FJ. Biomechanics of the Ilizarov external fixator. Clin Orthop Relat Res. 1992;280:11–14.
24.
Zurück zum Zitat Lenarz C, Bledsoe G, Watson JT. Circular external fixation frames with divergent half pins: a pilot biomechanical study. Clin Orthop Relat Res. 2008;466:2933–2939.CrossRefPubMedPubMedCentral Lenarz C, Bledsoe G, Watson JT. Circular external fixation frames with divergent half pins: a pilot biomechanical study. Clin Orthop Relat Res. 2008;466:2933–2939.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Lewis DD, Bronson DG, Cross AR, Welch RD, Kubilis PS. Axial characteristics of circular external skeletal fixator single ring constructs. Vet Surg. 2001;30:386–394.CrossRefPubMed Lewis DD, Bronson DG, Cross AR, Welch RD, Kubilis PS. Axial characteristics of circular external skeletal fixator single ring constructs. Vet Surg. 2001;30:386–394.CrossRefPubMed
27.
Zurück zum Zitat Orbay GL, Frankel VH, Kummer FJ. The effect of wire configuration on the stability of the Ilizarov external fixator. Clin Orthop Relat Res. 1992;279:299–302. Orbay GL, Frankel VH, Kummer FJ. The effect of wire configuration on the stability of the Ilizarov external fixator. Clin Orthop Relat Res. 1992;279:299–302.
28.
Zurück zum Zitat Paley D, Fleming B, Catagni M, Kristiansen T, Pope M. Mechanical evaluation of external fixators used in limb lengthening. Clin Orthop Relat Res. 1990;250:50–57. Paley D, Fleming B, Catagni M, Kristiansen T, Pope M. Mechanical evaluation of external fixators used in limb lengthening. Clin Orthop Relat Res. 1990;250:50–57.
29.
Zurück zum Zitat Park SH, O’Connor K, McKellop H, Sarmiento A. The influence of active shear or compressive motion on fracture-healing. J Bone Joint Surg Am. 1998;80:868–878.CrossRefPubMed Park SH, O’Connor K, McKellop H, Sarmiento A. The influence of active shear or compressive motion on fracture-healing. J Bone Joint Surg Am. 1998;80:868–878.CrossRefPubMed
30.
Zurück zum Zitat Pugh KJ, Wolinsky PR, Pienkowski D, Banit D, Dawson JM. Comparative biomechanics of hybrid external fixation. J Orthop Trauma. 1999;13:418–425.CrossRefPubMed Pugh KJ, Wolinsky PR, Pienkowski D, Banit D, Dawson JM. Comparative biomechanics of hybrid external fixation. J Orthop Trauma. 1999;13:418–425.CrossRefPubMed
31.
Zurück zum Zitat Sarpel Y, Gulsen M, Togrul E, Capa M, Herdem M. Comparison of mechanical performance among different frame configurations of the Ilizarov external fixator: experimental study. J Trauma. 2005;58:546–552.CrossRefPubMed Sarpel Y, Gulsen M, Togrul E, Capa M, Herdem M. Comparison of mechanical performance among different frame configurations of the Ilizarov external fixator: experimental study. J Trauma. 2005;58:546–552.CrossRefPubMed
32.
Zurück zum Zitat Seide K, Weinrich N, Wenzl ME, Wolter D, Jurgens C. Three-dimensional load measurements in an external fixator. J Biomech. 2004;37:1361–1369.CrossRefPubMed Seide K, Weinrich N, Wenzl ME, Wolter D, Jurgens C. Three-dimensional load measurements in an external fixator. J Biomech. 2004;37:1361–1369.CrossRefPubMed
33.
Zurück zum Zitat Spiegelberg B, Parratt T, Dheerendra SK, Khan WS, Jennings R, Marsh DR. Ilizarov principles of deformity correction. Ann R Coll Surg Engl. 2010;92:101–105.CrossRefPubMedPubMedCentral Spiegelberg B, Parratt T, Dheerendra SK, Khan WS, Jennings R, Marsh DR. Ilizarov principles of deformity correction. Ann R Coll Surg Engl. 2010;92:101–105.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Steck R, Ueno M, Gregory L, Rijken N, Wullschleger ME, Itoman M, Schuetz MA. Influence of internal fixator flexibility on murine fracture healing as characterized by mechanical testing and microCT imaging. J Orthop Res. 2011;29:1245–1250.CrossRefPubMed Steck R, Ueno M, Gregory L, Rijken N, Wullschleger ME, Itoman M, Schuetz MA. Influence of internal fixator flexibility on murine fracture healing as characterized by mechanical testing and microCT imaging. J Orthop Res. 2011;29:1245–1250.CrossRefPubMed
36.
Zurück zum Zitat Ulstrup AK. Biomechanical concepts of fracture healing in weight-bearing long bones. Acta Orthop Belg. 2008;74:291–302.PubMed Ulstrup AK. Biomechanical concepts of fracture healing in weight-bearing long bones. Acta Orthop Belg. 2008;74:291–302.PubMed
37.
Zurück zum Zitat Yang L, Nayagam S, Saleh M. Stiffness characteristics and inter-fragmentary displacements with different hybrid external fixators. Clin Biomech (Bristol, Avon). 2003;18:166–172.CrossRef Yang L, Nayagam S, Saleh M. Stiffness characteristics and inter-fragmentary displacements with different hybrid external fixators. Clin Biomech (Bristol, Avon). 2003;18:166–172.CrossRef
Metadaten
Titel
What Are the Biomechanical Properties of the Taylor Spatial Frame™?
verfasst von
Daniel J. Henderson, FRCS (Orth)
Jeremy L. Rushbrook, FRCS (Orth)
Paul J. Harwood, FRCS (Orth)
Todd D. Stewart, PhD
Publikationsdatum
28.11.2016
Verlag
Springer US
Erschienen in
Clinical Orthopaedics and Related Research® / Ausgabe 5/2017
Print ISSN: 0009-921X
Elektronische ISSN: 1528-1132
DOI
https://doi.org/10.1007/s11999-016-5182-8

Weitere Artikel der Ausgabe 5/2017

Clinical Orthopaedics and Related Research® 5/2017 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Knie-TEP: Kein Vorteil durch antibiotikahaltigen Knochenzement

29.05.2024 Periprothetische Infektionen Nachrichten

Zur Zementierung einer Knie-TEP wird in Deutschland zu über 98% Knochenzement verwendet, der mit einem Antibiotikum beladen ist. Ob er wirklich besser ist als Zement ohne Antibiotikum, kann laut Registerdaten bezweifelt werden.

Häusliche Gewalt in der orthopädischen Notaufnahme oft nicht erkannt

28.05.2024 Häusliche Gewalt Nachrichten

In der Notaufnahme wird die Chance, Opfer von häuslicher Gewalt zu identifizieren, von Orthopäden und Orthopädinnen offenbar zu wenig genutzt. Darauf deuten die Ergebnisse einer Fragebogenstudie an der Sahlgrenska-Universität in Schweden hin.

Fehlerkultur in der Medizin – Offenheit zählt!

28.05.2024 Fehlerkultur Podcast

Darüber reden und aus Fehlern lernen, sollte das Motto in der Medizin lauten. Und zwar nicht nur im Sinne der Patientensicherheit. Eine negative Fehlerkultur kann auch die Behandelnden ernsthaft krank machen, warnt Prof. Dr. Reinhard Strametz. Ein Plädoyer und ein Leitfaden für den offenen Umgang mit kritischen Ereignissen in Medizin und Pflege.

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.