Skip to main content
Erschienen in: Inflammation 6/2022

02.07.2022 | Review

Tight Junctions, the Epithelial Barrier, and Toll-like Receptor-4 During Lung Injury

verfasst von: Nachiket M. Godbole, Asif Alam Chowdhury, Neha Chataut, Shanjana Awasthi

Erschienen in: Inflammation | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract—

Lung epithelium is constantly exposed to the environment and is critically important for the orchestration of initial responses to infectious organisms, toxins, and allergic stimuli, and maintenance of normal gaseous exchange and pulmonary function. The integrity of lung epithelium, fluid balance, and transport of molecules is dictated by the tight junctions (TJs). The TJs are formed between adjacent cells. We have focused on the topic of the TJ structure and function in lung epithelial cells. This review includes a summary of the last twenty years of literature reports published on the disrupted TJs and epithelial barrier in various lung conditions and expression and regulation of specific TJ proteins against pathogenic stimuli. We discuss the molecular signaling and crosstalk among signaling pathways that control the TJ structure and function. The Toll-like receptor-4 (TLR4) recognizes the pathogen- and damage-associated molecular patterns released during lung injury and inflammation and coordinates cellular responses. The molecular aspects of TLR4 signaling in the context of TJs or the epithelial barrier are not fully known. We describe the current knowledge and possible networking of the TLR4-signaling with cellular and molecular mechanisms of TJs, lung epithelial barrier function, and resistance to treatment strategies.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Mercer, R.R., M.L. Russell, V.L. Roggli, and J.D. Crapo. 1994. Cell number and distribution in human and rat airways. American Journal of Respiratory Cell and Molecular Biology 10 (6): 613–624.PubMedCrossRef Mercer, R.R., M.L. Russell, V.L. Roggli, and J.D. Crapo. 1994. Cell number and distribution in human and rat airways. American Journal of Respiratory Cell and Molecular Biology 10 (6): 613–624.PubMedCrossRef
2.
Zurück zum Zitat Ward, H.E., and T.E. Nicholas. 1984. Alveolar type I and type II cells. Australian and New Zealand Journal of Medicine 14 (5 Suppl 3): 731–734.PubMedCrossRef Ward, H.E., and T.E. Nicholas. 1984. Alveolar type I and type II cells. Australian and New Zealand Journal of Medicine 14 (5 Suppl 3): 731–734.PubMedCrossRef
3.
Zurück zum Zitat Crystal, R.G., S.H. Randell, J.F. Engelhardt, J. Voynow, and M.E. Sunday. 2008. Airway epithelial cells: Current concepts and challenges. Proceedings of the American Thoracic Society 5 (7): 772–777.PubMedCentralPubMedCrossRef Crystal, R.G., S.H. Randell, J.F. Engelhardt, J. Voynow, and M.E. Sunday. 2008. Airway epithelial cells: Current concepts and challenges. Proceedings of the American Thoracic Society 5 (7): 772–777.PubMedCentralPubMedCrossRef
4.
Zurück zum Zitat Rezaee, F., and S.N. Georas. 2014. Breaking barriers. New insights into airway epithelial barrier function in health and disease. American Journal of Respiratory Cell and Molecular Biology 50(5): 857–869. Rezaee, F., and S.N. Georas. 2014. Breaking barriers. New insights into airway epithelial barrier function in health and disease. American Journal of Respiratory Cell and Molecular Biology 50(5): 857–869.
5.
Zurück zum Zitat Flynn, A.N., O.A. Itani, T.O. Moninger, and M.J. Welsh. 2009. Acute regulation of tight junction ion selectivity in human airway epithelia. Proceedings of the National Academy of Sciences of the United States of America 106 (9): 3591–3596.PubMedCentralPubMedCrossRef Flynn, A.N., O.A. Itani, T.O. Moninger, and M.J. Welsh. 2009. Acute regulation of tight junction ion selectivity in human airway epithelia. Proceedings of the National Academy of Sciences of the United States of America 106 (9): 3591–3596.PubMedCentralPubMedCrossRef
6.
Zurück zum Zitat Feldman, G.J., J.M. Mullin, and M.P. Ryan. 2005. Occludin: Structure, function and regulation. Advanced Drug Delivery Reviews 57 (6): 883–917.PubMedCrossRef Feldman, G.J., J.M. Mullin, and M.P. Ryan. 2005. Occludin: Structure, function and regulation. Advanced Drug Delivery Reviews 57 (6): 883–917.PubMedCrossRef
7.
Zurück zum Zitat Tobioka, H., Y. Tokunaga, H. Isomura, Y. Kokai, J. Yamaguchi, and N. Sawada. 2004. Expression of occludin, a tight-junction-associated protein, in human lung carcinomas. Virchows Archiv 445 (5): 472–476.PubMedCrossRef Tobioka, H., Y. Tokunaga, H. Isomura, Y. Kokai, J. Yamaguchi, and N. Sawada. 2004. Expression of occludin, a tight-junction-associated protein, in human lung carcinomas. Virchows Archiv 445 (5): 472–476.PubMedCrossRef
8.
Zurück zum Zitat Kawabe, H., H. Nakanishi, M. Asada, A. Fukuhara, K. Morimoto, M. Takeuchi, and Y. Takai. 2001. Pilt, a novel peripheral membrane protein at tight junctions in epithelial cells. Journal of Biological Chemistry 276 (51): 48350–48355.PubMedCrossRef Kawabe, H., H. Nakanishi, M. Asada, A. Fukuhara, K. Morimoto, M. Takeuchi, and Y. Takai. 2001. Pilt, a novel peripheral membrane protein at tight junctions in epithelial cells. Journal of Biological Chemistry 276 (51): 48350–48355.PubMedCrossRef
9.
Zurück zum Zitat Fanning, A.S., C.M. Van Itallie, and J.M. Anderson. 2012. Zonula occludens-1 and -2 regulate apical cell structure and the zonula adherens cytoskeleton in polarized epithelia. Molecular Biology of the Cell 23 (4): 577–590.PubMedCentralPubMedCrossRef Fanning, A.S., C.M. Van Itallie, and J.M. Anderson. 2012. Zonula occludens-1 and -2 regulate apical cell structure and the zonula adherens cytoskeleton in polarized epithelia. Molecular Biology of the Cell 23 (4): 577–590.PubMedCentralPubMedCrossRef
10.
Zurück zum Zitat Takai, Y., and H. Nakanishi. 2003. Nectin and afadin: Novel organizers of intercellular junctions. Journal of Cell Science 116 (Pt 1): 17–27.PubMedCrossRef Takai, Y., and H. Nakanishi. 2003. Nectin and afadin: Novel organizers of intercellular junctions. Journal of Cell Science 116 (Pt 1): 17–27.PubMedCrossRef
11.
Zurück zum Zitat Nawijn, M.C., T.L. Hackett, D.S. Postma, A.J. van Oosterhout, and I.H. Heijink. 2011. E-cadherin: Gatekeeper of airway mucosa and allergic sensitization. Trends in Immunology 32 (6): 248–255.PubMedCrossRef Nawijn, M.C., T.L. Hackett, D.S. Postma, A.J. van Oosterhout, and I.H. Heijink. 2011. E-cadherin: Gatekeeper of airway mucosa and allergic sensitization. Trends in Immunology 32 (6): 248–255.PubMedCrossRef
12.
Zurück zum Zitat Koval, M. 2002. Sharing signals: Connecting lung epithelial cells with gap junction channels. American Journal of Physiology. Lung Cellular and Molecular Physiology 283 (5): L875-893.PubMedCrossRef Koval, M. 2002. Sharing signals: Connecting lung epithelial cells with gap junction channels. American Journal of Physiology. Lung Cellular and Molecular Physiology 283 (5): L875-893.PubMedCrossRef
13.
Zurück zum Zitat Li, G., P. Flodby, J. Luo, H. Kage, A. Sipos, D. Gao, Y. Ji, L.L. Beard, C.N. Marconett, L. DeMaio, Y.H. Kim, K.J. Kim, I.A. Laird-Offringa, P. Minoo, J.M. Liebler, B. Zhou, E.D. Crandall, and Z. Borok. 2014. Knockout mice reveal key roles for claudin 18 in alveolar barrier properties and fluid homeostasis. American Journal of Respiratory Cell and Molecular Biology 51 (2): 210–222.PubMedCentralPubMedCrossRef Li, G., P. Flodby, J. Luo, H. Kage, A. Sipos, D. Gao, Y. Ji, L.L. Beard, C.N. Marconett, L. DeMaio, Y.H. Kim, K.J. Kim, I.A. Laird-Offringa, P. Minoo, J.M. Liebler, B. Zhou, E.D. Crandall, and Z. Borok. 2014. Knockout mice reveal key roles for claudin 18 in alveolar barrier properties and fluid homeostasis. American Journal of Respiratory Cell and Molecular Biology 51 (2): 210–222.PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Kage, H., P. Flodby, D. Gao, Y.H. Kim, C.N. Marconett, L. DeMaio, K.J. Kim, E.D. Crandall, and Z. Borok. 2014. Claudin 4 knockout mice: Normal physiological phenotype with increased susceptibility to lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 307 (7): L524-536.PubMedCentralPubMedCrossRef Kage, H., P. Flodby, D. Gao, Y.H. Kim, C.N. Marconett, L. DeMaio, K.J. Kim, E.D. Crandall, and Z. Borok. 2014. Claudin 4 knockout mice: Normal physiological phenotype with increased susceptibility to lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 307 (7): L524-536.PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat LaFemina, M.J., K.M. Sutherland, T. Bentley, L.W. Gonzales, L. Allen, C.J. Chapin, D. Rokkam, K.A. Sweerus, L.G. Dobbs, P.L. Ballard, and J.A. Frank. 2014. Claudin-18 deficiency results in alveolar barrier dysfunction and impaired alveologenesis in mice. American Journal of Respiratory Cell and Molecular Biology 51 (4): 550–558.PubMedCentralPubMedCrossRef LaFemina, M.J., K.M. Sutherland, T. Bentley, L.W. Gonzales, L. Allen, C.J. Chapin, D. Rokkam, K.A. Sweerus, L.G. Dobbs, P.L. Ballard, and J.A. Frank. 2014. Claudin-18 deficiency results in alveolar barrier dysfunction and impaired alveologenesis in mice. American Journal of Respiratory Cell and Molecular Biology 51 (4): 550–558.PubMedCentralPubMedCrossRef
16.
Zurück zum Zitat Tokumasu, R., K. Yamaga, Y. Yamazaki, H. Murota, K. Suzuki, A. Tamura, K. Bando, Y. Furuta, I. Katayama, and S. Tsukita. 2016. Dose-dependent role of claudin-1 in vivo in orchestrating features of atopic dermatitis. Proceedings of the National Academy of Sciences of the United States of America 113 (28): E4061–4068.CrossRef Tokumasu, R., K. Yamaga, Y. Yamazaki, H. Murota, K. Suzuki, A. Tamura, K. Bando, Y. Furuta, I. Katayama, and S. Tsukita. 2016. Dose-dependent role of claudin-1 in vivo in orchestrating features of atopic dermatitis. Proceedings of the National Academy of Sciences of the United States of America 113 (28): E4061–4068.CrossRef
17.
Zurück zum Zitat Ding, L., Z. Lu, O. Foreman, R. Tatum, Q. Lu, R. Renegar, J. Cao, and Y.H. Chen. 2012. Inflammation and disruption of the mucosal architecture in claudin-7-deficient mice. Gastroenterology 142 (2): 305–315.PubMedCrossRef Ding, L., Z. Lu, O. Foreman, R. Tatum, Q. Lu, R. Renegar, J. Cao, and Y.H. Chen. 2012. Inflammation and disruption of the mucosal architecture in claudin-7-deficient mice. Gastroenterology 142 (2): 305–315.PubMedCrossRef
18.
Zurück zum Zitat Mitchell, L.A., C. Ward, M. Kwon, P.O. Mitchell, D.A. Quintero, A. Nusrat, C.A. Parkos, and M. Koval. 2015. Junctional adhesion molecule A promotes epithelial tight junction assembly to augment lung barrier function. American Journal of Pathology 185 (2): 372–386.PubMedCentralPubMedCrossRef Mitchell, L.A., C. Ward, M. Kwon, P.O. Mitchell, D.A. Quintero, A. Nusrat, C.A. Parkos, and M. Koval. 2015. Junctional adhesion molecule A promotes epithelial tight junction assembly to augment lung barrier function. American Journal of Pathology 185 (2): 372–386.PubMedCentralPubMedCrossRef
19.
Zurück zum Zitat Post, S., I.H. Heijink, L. Hesse, H.K. Koo, F. Shaheen, M. Fouadi, V.N.S. Kuchibhotla, B.N. Lambrecht, A.J.M. Van Oosterhout, T.L. Hackett, and M.C. Nawijn. 2018. Characterization of a lung epithelium specific E-cadherin knock-out model: Implications for obstructive lung pathology. Scientific Reports 8 (1): 13275.CrossRef Post, S., I.H. Heijink, L. Hesse, H.K. Koo, F. Shaheen, M. Fouadi, V.N.S. Kuchibhotla, B.N. Lambrecht, A.J.M. Van Oosterhout, T.L. Hackett, and M.C. Nawijn. 2018. Characterization of a lung epithelium specific E-cadherin knock-out model: Implications for obstructive lung pathology. Scientific Reports 8 (1): 13275.CrossRef
20.
Zurück zum Zitat Birukova, A.A., P. Fu, T. Wu, O. Dubrovskyi, N. Sarich, V. Poroyko, and K.G. Birukov. 2012. Afadin controls p120-catenin-ZO-1 interactions leading to endothelial barrier enhancement by oxidized phospholipids. Journal of Cellular Physiology 227 (5): 1883–1890.PubMedCentralPubMedCrossRef Birukova, A.A., P. Fu, T. Wu, O. Dubrovskyi, N. Sarich, V. Poroyko, and K.G. Birukov. 2012. Afadin controls p120-catenin-ZO-1 interactions leading to endothelial barrier enhancement by oxidized phospholipids. Journal of Cellular Physiology 227 (5): 1883–1890.PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Katsuno, T., K. Umeda, T. Matsui, M. Hata, A. Tamura, M. Itoh, K. Takeuchi, T. Fujimori, Y. Nabeshima, T. Noda, S. Tsukita, and S. Tsukita. 2008. Deficiency of zonula occludens-1 causes embryonic lethal phenotype associated with defected yolk sac angiogenesis and apoptosis of embryonic cells. Molecular Biology of the Cell 19 (6): 2465–2475.PubMedCentralPubMedCrossRef Katsuno, T., K. Umeda, T. Matsui, M. Hata, A. Tamura, M. Itoh, K. Takeuchi, T. Fujimori, Y. Nabeshima, T. Noda, S. Tsukita, and S. Tsukita. 2008. Deficiency of zonula occludens-1 causes embryonic lethal phenotype associated with defected yolk sac angiogenesis and apoptosis of embryonic cells. Molecular Biology of the Cell 19 (6): 2465–2475.PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Xu, J., P.J. Kausalya, D.C. Phua, S.M. Ali, Z. Hossain, and W. Hunziker. 2008. Early embryonic lethality of mice lacking ZO-2, but Not ZO-3, reveals critical and nonredundant roles for individual zonula occludens proteins in mammalian development. Molecular and Cellular Biology 28 (5): 1669–1678.PubMedCentralPubMedCrossRef Xu, J., P.J. Kausalya, D.C. Phua, S.M. Ali, Z. Hossain, and W. Hunziker. 2008. Early embryonic lethality of mice lacking ZO-2, but Not ZO-3, reveals critical and nonredundant roles for individual zonula occludens proteins in mammalian development. Molecular and Cellular Biology 28 (5): 1669–1678.PubMedCentralPubMedCrossRef
23.
Zurück zum Zitat Adachi, M., A. Inoko, M. Hata, K. Furuse, K. Umeda, M. Itoh, and S. Tsukita. 2006. Normal establishment of epithelial tight junctions in mice and cultured cells lacking expression of ZO-3, a tight-junction MAGUK protein. Molecular and Cellular Biology 26 (23): 9003–9015.PubMedCentralPubMedCrossRef Adachi, M., A. Inoko, M. Hata, K. Furuse, K. Umeda, M. Itoh, and S. Tsukita. 2006. Normal establishment of epithelial tight junctions in mice and cultured cells lacking expression of ZO-3, a tight-junction MAGUK protein. Molecular and Cellular Biology 26 (23): 9003–9015.PubMedCentralPubMedCrossRef
24.
Zurück zum Zitat Saitou, M., M. Furuse, H. Sasaki, J.D. Schulzke, M. Fromm, H. Takano, T. Noda, and S. Tsukita. 2000. Complex phenotype of mice lacking occludin, a component of tight junction strands. Molecular Biology of the Cell 11 (12): 4131–4142.PubMedCentralPubMedCrossRef Saitou, M., M. Furuse, H. Sasaki, J.D. Schulzke, M. Fromm, H. Takano, T. Noda, and S. Tsukita. 2000. Complex phenotype of mice lacking occludin, a component of tight junction strands. Molecular Biology of the Cell 11 (12): 4131–4142.PubMedCentralPubMedCrossRef
25.
Zurück zum Zitat Schulzke, J.D., A.H. Gitter, J. Mankertz, S. Spiegel, U. Seidler, S. Amasheh, M. Saitou, S. Tsukita, and M. Fromm. 2005. Epithelial transport and barrier function in occludin-deficient mice. Biochimica et Biophysica Acta 1669 (1): 34–42.PubMedCrossRef Schulzke, J.D., A.H. Gitter, J. Mankertz, S. Spiegel, U. Seidler, S. Amasheh, M. Saitou, S. Tsukita, and M. Fromm. 2005. Epithelial transport and barrier function in occludin-deficient mice. Biochimica et Biophysica Acta 1669 (1): 34–42.PubMedCrossRef
26.
Zurück zum Zitat Ikenouchi, J., H. Sasaki, S. Tsukita, M. Furuse, and S. Tsukita. 2008. Loss of occludin affects tricellular localization of tricellulin. Molecular Biology of the Cell 19 (11): 4687–4693.PubMedCentralPubMedCrossRef Ikenouchi, J., H. Sasaki, S. Tsukita, M. Furuse, and S. Tsukita. 2008. Loss of occludin affects tricellular localization of tricellulin. Molecular Biology of the Cell 19 (11): 4687–4693.PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat Kitajiri, S., T. Katsuno, H. Sasaki, J. Ito, M. Furuse, and S. Tsukita. 2014. Deafness in occludin-deficient mice with dislocation of tricellulin and progressive apoptosis of the hair cells. Biology Open 3 (8): 759–766.PubMedCentralPubMedCrossRef Kitajiri, S., T. Katsuno, H. Sasaki, J. Ito, M. Furuse, and S. Tsukita. 2014. Deafness in occludin-deficient mice with dislocation of tricellulin and progressive apoptosis of the hair cells. Biology Open 3 (8): 759–766.PubMedCentralPubMedCrossRef
28.
Zurück zum Zitat Pirot, N., H. Delpech, V. Deleuze, C. Dohet, M. Courtade-Saidi, C. Basset-Leobon, E. Chalhoub, D. Mathieu, and V. Pinet. 2014. Lung endothelial barrier disruption in Lyl1-deficient mice. American Journal of Physiology. Lung Cellular and Molecular Physiology 306 (8): L775-785.PubMedCrossRef Pirot, N., H. Delpech, V. Deleuze, C. Dohet, M. Courtade-Saidi, C. Basset-Leobon, E. Chalhoub, D. Mathieu, and V. Pinet. 2014. Lung endothelial barrier disruption in Lyl1-deficient mice. American Journal of Physiology. Lung Cellular and Molecular Physiology 306 (8): L775-785.PubMedCrossRef
29.
30.
Zurück zum Zitat Wyman, A.E., T.T.T. Nguyen, P. Karki, M.E. Tulapurkar, C.O. Zhang, J. Kim, T.G. Feng, A.J. Dabo, N.W. Todd, I.G. Luzina, P. Geraghty, R.F. Foronjy, J.D. Hasday, A.A. Birukova, S.P. Atamas, and K.G. Birukov. 2020. SIRT7 deficiency suppresses inflammation, induces EndoMT, and increases vascular permeability in primary pulmonary endothelial cells. Scientific Reports 10 (1): 12497.CrossRef Wyman, A.E., T.T.T. Nguyen, P. Karki, M.E. Tulapurkar, C.O. Zhang, J. Kim, T.G. Feng, A.J. Dabo, N.W. Todd, I.G. Luzina, P. Geraghty, R.F. Foronjy, J.D. Hasday, A.A. Birukova, S.P. Atamas, and K.G. Birukov. 2020. SIRT7 deficiency suppresses inflammation, induces EndoMT, and increases vascular permeability in primary pulmonary endothelial cells. Scientific Reports 10 (1): 12497.CrossRef
31.
Zurück zum Zitat Fanelli, V., A. Vlachou, S. Ghannadian, U. Simonetti, A.S. Slutsky, and H. Zhang. 2013. Acute respiratory distress syndrome: New definition, current and future therapeutic options. Journal of Thoracic Disease 5 (3): 326–334.PubMedCentralPubMed Fanelli, V., A. Vlachou, S. Ghannadian, U. Simonetti, A.S. Slutsky, and H. Zhang. 2013. Acute respiratory distress syndrome: New definition, current and future therapeutic options. Journal of Thoracic Disease 5 (3): 326–334.PubMedCentralPubMed
32.
Zurück zum Zitat Bernard, G.R., A. Artigas, K.L. Brigham, J. Carlet, K. Falke, L. Hudson, M. Lamy, J.R. Legall, A. Morris, and R. Spragg. 1994. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. American Journal of Respiratory and Critical Care Medicine 149(3 Pt 1): 818–824. Bernard, G.R., A. Artigas, K.L. Brigham, J. Carlet, K. Falke, L. Hudson, M. Lamy, J.R. Legall, A. Morris, and R. Spragg. 1994. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. American Journal of Respiratory and Critical Care Medicine 149(3 Pt 1): 818–824.
34.
Zurück zum Zitat Denker, B.M., and S.K. Nigam. 1998. Molecular structure and assembly of the tight junction. The American Journal of Physiology 274 (1): F1–9.PubMed Denker, B.M., and S.K. Nigam. 1998. Molecular structure and assembly of the tight junction. The American Journal of Physiology 274 (1): F1–9.PubMed
36.
Zurück zum Zitat Tervonen, A., T.O. Ihalainen, S. Nymark, and J. Hyttinen. 2019. Structural dynamics of tight junctions modulate the properties of the epithelial barrier. PLoS OnE 14 (4): e0214876.PubMedCentralPubMedCrossRef Tervonen, A., T.O. Ihalainen, S. Nymark, and J. Hyttinen. 2019. Structural dynamics of tight junctions modulate the properties of the epithelial barrier. PLoS OnE 14 (4): e0214876.PubMedCentralPubMedCrossRef
37.
Zurück zum Zitat Kachar, B., and T.S. Reese. 1982. Evidence for the lipidic nature of tight junction strands. Nature 296 (5856): 464–466.PubMedCrossRef Kachar, B., and T.S. Reese. 1982. Evidence for the lipidic nature of tight junction strands. Nature 296 (5856): 464–466.PubMedCrossRef
38.
Zurück zum Zitat Francis, S.A., J.M. Kelly, J. McCormack, R.A. Rogers, J. Lai, E.E. Schneeberger, and R.D. Lynch. 1999. Rapid reduction of MDCK cell cholesterol by methyl-beta-cyclodextrin alters steady state transepithelial electrical resistance. European Journal of Cell Biology 78 (7): 473–484.PubMedCrossRef Francis, S.A., J.M. Kelly, J. McCormack, R.A. Rogers, J. Lai, E.E. Schneeberger, and R.D. Lynch. 1999. Rapid reduction of MDCK cell cholesterol by methyl-beta-cyclodextrin alters steady state transepithelial electrical resistance. European Journal of Cell Biology 78 (7): 473–484.PubMedCrossRef
39.
Zurück zum Zitat Nusrat, A., C.A. Parkos, P. Verkade, C.S. Foley, T.W. Liang, W. Innis-Whitehouse, K.K. Eastburn, and J.L. Madara. 2000. Tight junctions are membrane microdomains. Journal of Cell Science 113 (Pt 10): 1771–1781.PubMedCrossRef Nusrat, A., C.A. Parkos, P. Verkade, C.S. Foley, T.W. Liang, W. Innis-Whitehouse, K.K. Eastburn, and J.L. Madara. 2000. Tight junctions are membrane microdomains. Journal of Cell Science 113 (Pt 10): 1771–1781.PubMedCrossRef
40.
Zurück zum Zitat Van Itallie, C.M., A.S. Fanning, J. Holmes, and J.M. Anderson. 2010. Occludin is required for cytokine-induced regulation of tight junction barriers. Journal of Cell Science 123 (Pt 16): 2844–2852.PubMedCentralPubMedCrossRef Van Itallie, C.M., A.S. Fanning, J. Holmes, and J.M. Anderson. 2010. Occludin is required for cytokine-induced regulation of tight junction barriers. Journal of Cell Science 123 (Pt 16): 2844–2852.PubMedCentralPubMedCrossRef
41.
Zurück zum Zitat Marchiando, A.M., L. Shen, W.V. Graham, C.R. Weber, B.T. Schwarz, J.R. Austin 2nd., D.R. Raleigh, Y. Guan, A.J. Watson, M.H. Montrose, and J.R. Turner. 2010. Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. The Journal of Cell Biology 189 (1): 111–126. Marchiando, A.M., L. Shen, W.V. Graham, C.R. Weber, B.T. Schwarz, J.R. Austin 2nd., D.R. Raleigh, Y. Guan, A.J. Watson, M.H. Montrose, and J.R. Turner. 2010. Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. The Journal of Cell Biology 189 (1): 111–126.
42.
Zurück zum Zitat Terry, S., M. Nie, K. Matter, and M.S. Balda. 2010. Rho signaling and tight junction functions. Physiology (Bethesda, Md.) 25 (1): 16–26. Terry, S., M. Nie, K. Matter, and M.S. Balda. 2010. Rho signaling and tight junction functions. Physiology (Bethesda, Md.) 25 (1): 16–26.
43.
Zurück zum Zitat Gonzalez-Mariscal, L., R. Tapia, and D. Chamorro. 2008. Crosstalk of tight junction components with signaling pathways. Biochimica et Biophysica Acta 1778 (3): 729–756.PubMedCrossRef Gonzalez-Mariscal, L., R. Tapia, and D. Chamorro. 2008. Crosstalk of tight junction components with signaling pathways. Biochimica et Biophysica Acta 1778 (3): 729–756.PubMedCrossRef
44.
Zurück zum Zitat Antonov, A., C. Snead, B. Gorshkov, G.N. Antonova, A.D. Verin, and J.D. Catravas. 2008. Heat shock protein 90 inhibitors protect and restore pulmonary endothelial barrier function. American Journal of Respiratory Cell and Molecular Biology 39 (5): 551–559.PubMedCentralPubMedCrossRef Antonov, A., C. Snead, B. Gorshkov, G.N. Antonova, A.D. Verin, and J.D. Catravas. 2008. Heat shock protein 90 inhibitors protect and restore pulmonary endothelial barrier function. American Journal of Respiratory Cell and Molecular Biology 39 (5): 551–559.PubMedCentralPubMedCrossRef
45.
Zurück zum Zitat Dudek, S.M., and J.G. Garcia. 2001. Cytoskeletal regulation of pulmonary vascular permeability. Journal of Applied Physiology 91(4): 1487–1500. Dudek, S.M., and J.G. Garcia. 2001. Cytoskeletal regulation of pulmonary vascular permeability. Journal of Applied Physiology 91(4): 1487–1500.
46.
Zurück zum Zitat Yang, M., X.M. Chen, X.G. Du, F.F. Cao, S. Vijaya Luxmi, and Q. Shen. 2013. Continuous blood purification ameliorates endothelial hyperpermeability in SAP patients with MODS by regulating tight junction proteins via ROCK. The International Journal of Artificial Organs 36 (10): 700–709.PubMedCrossRef Yang, M., X.M. Chen, X.G. Du, F.F. Cao, S. Vijaya Luxmi, and Q. Shen. 2013. Continuous blood purification ameliorates endothelial hyperpermeability in SAP patients with MODS by regulating tight junction proteins via ROCK. The International Journal of Artificial Organs 36 (10): 700–709.PubMedCrossRef
47.
Zurück zum Zitat Schnoor, M., A. Garcia Ponce, E. Vadillo, R. Pelayo, J. Rossaint, and A. Zarbock. 2017. Actin dynamics in the regulation of endothelial barrier functions and neutrophil recruitment during endotoxemia and sepsis. Cellular and Molecular Life Sciences 74 (11): 1985–1997.PubMedCrossRef Schnoor, M., A. Garcia Ponce, E. Vadillo, R. Pelayo, J. Rossaint, and A. Zarbock. 2017. Actin dynamics in the regulation of endothelial barrier functions and neutrophil recruitment during endotoxemia and sepsis. Cellular and Molecular Life Sciences 74 (11): 1985–1997.PubMedCrossRef
48.
Zurück zum Zitat Eutamene, H., V. Theodorou, F. Schmidlin, V. Tondereau, R. Garcia-Villar, C. Salvador-Cartier, M. Chovet, C. Bertrand, and L. Bueno. 2005. LPS-induced lung inflammation is linked to increased epithelial permeability: Role of MLCK. The European Respiratory Journal 25 (5): 789–796.PubMedCrossRef Eutamene, H., V. Theodorou, F. Schmidlin, V. Tondereau, R. Garcia-Villar, C. Salvador-Cartier, M. Chovet, C. Bertrand, and L. Bueno. 2005. LPS-induced lung inflammation is linked to increased epithelial permeability: Role of MLCK. The European Respiratory Journal 25 (5): 789–796.PubMedCrossRef
49.
Zurück zum Zitat Petecchia, L., F. Sabatini, C. Usai, E. Caci, L. Varesio, and G.A. Rossi. 2012. Cytokines induce tight junction disassembly in airway cells via an EGFR-dependent MAPK/ERK1/2-pathway. Laboratory Investigation; a Journal of Technical Methods and Pathology 92 (8): 1140–1148. Petecchia, L., F. Sabatini, C. Usai, E. Caci, L. Varesio, and G.A. Rossi. 2012. Cytokines induce tight junction disassembly in airway cells via an EGFR-dependent MAPK/ERK1/2-pathway. Laboratory Investigation; a Journal of Technical Methods and Pathology 92 (8): 1140–1148.
50.
Zurück zum Zitat Hu, Y., J. Lou, Y.Y. Mao, T.W. Lai, L.Y. Liu, C. Zhu, C. Zhang, J. Liu, Y.Y. Li, F. Zhang, W. Li, S.M. Ying, Z.H. Chen, and H.H. Shen. 2016. Activation of MTOR in pulmonary epithelium promotes LPS-induced acute lung injury. Autophagy 12 (12): 2286–2299.PubMedCentralPubMedCrossRef Hu, Y., J. Lou, Y.Y. Mao, T.W. Lai, L.Y. Liu, C. Zhu, C. Zhang, J. Liu, Y.Y. Li, F. Zhang, W. Li, S.M. Ying, Z.H. Chen, and H.H. Shen. 2016. Activation of MTOR in pulmonary epithelium promotes LPS-induced acute lung injury. Autophagy 12 (12): 2286–2299.PubMedCentralPubMedCrossRef
51.
Zurück zum Zitat Liu, M., C. Gu, and Y. Wang. 2014. Upregulation of the tight junction protein occludin: Effects on ventilation-induced lung injury and mechanisms of action. BMC Pulmonary Medicine 14: 94.PubMedCentralPubMedCrossRef Liu, M., C. Gu, and Y. Wang. 2014. Upregulation of the tight junction protein occludin: Effects on ventilation-induced lung injury and mechanisms of action. BMC Pulmonary Medicine 14: 94.PubMedCentralPubMedCrossRef
52.
Zurück zum Zitat Xu, S., X. Xue, K. You, and J. Fu. 2016. Caveolin-1 regulates the expression of tight junction proteins during hyperoxia-induced pulmonary epithelial barrier breakdown. Respiratory Research 17 (1): 50.PubMedCentralPubMedCrossRef Xu, S., X. Xue, K. You, and J. Fu. 2016. Caveolin-1 regulates the expression of tight junction proteins during hyperoxia-induced pulmonary epithelial barrier breakdown. Respiratory Research 17 (1): 50.PubMedCentralPubMedCrossRef
53.
Zurück zum Zitat Birukova, A.A., F. Meng, Y. Tian, A. Meliton, N. Sarich, L.A. Quilliam, and K.G. Birukov. 2015. Prostacyclin post-treatment improves LPS-induced acute lung injury and endothelial barrier recovery via Rap1. Biochimica et Biophysica Acta 1852 (5): 778–791.PubMedCrossRef Birukova, A.A., F. Meng, Y. Tian, A. Meliton, N. Sarich, L.A. Quilliam, and K.G. Birukov. 2015. Prostacyclin post-treatment improves LPS-induced acute lung injury and endothelial barrier recovery via Rap1. Biochimica et Biophysica Acta 1852 (5): 778–791.PubMedCrossRef
54.
Zurück zum Zitat Cavanaugh, K.J., Jr., J. Oswari, and S.S. Margulies. 2001. Role of stretch on tight junction structure in alveolar epithelial cells. American Journal of Respiratory Cell and Molecular Biology 25 (5): 584–591.PubMedCrossRef Cavanaugh, K.J., Jr., J. Oswari, and S.S. Margulies. 2001. Role of stretch on tight junction structure in alveolar epithelial cells. American Journal of Respiratory Cell and Molecular Biology 25 (5): 584–591.PubMedCrossRef
55.
Zurück zum Zitat Kast, J.I., A.J. McFarlane, A. Globinska, M. Sokolowska, P. Wawrzyniak, M. Sanak, J. Schwarze, C.A. Akdis, and K. Wanke. 2017. Respiratory syncytial virus infection influences tight junction integrity. Clinical and Experimental Immunology 190 (3): 351–359.PubMedCentralPubMedCrossRef Kast, J.I., A.J. McFarlane, A. Globinska, M. Sokolowska, P. Wawrzyniak, M. Sanak, J. Schwarze, C.A. Akdis, and K. Wanke. 2017. Respiratory syncytial virus infection influences tight junction integrity. Clinical and Experimental Immunology 190 (3): 351–359.PubMedCentralPubMedCrossRef
56.
Zurück zum Zitat Kalsi, K.K., J.P. Garnett, W. Patkee, A. Weekes, M.E. Dockrell, E.H. Baker, and D.L. Baines. 2019. Metformin attenuates the effect of Staphylococcus aureus on airway tight junctions by increasing PKCzeta-mediated phosphorylation of occludin. Journal of Cellular and Molecular Medicine 23 (1): 317–327.PubMedCrossRef Kalsi, K.K., J.P. Garnett, W. Patkee, A. Weekes, M.E. Dockrell, E.H. Baker, and D.L. Baines. 2019. Metformin attenuates the effect of Staphylococcus aureus on airway tight junctions by increasing PKCzeta-mediated phosphorylation of occludin. Journal of Cellular and Molecular Medicine 23 (1): 317–327.PubMedCrossRef
57.
Zurück zum Zitat Shepley-McTaggart, A., C.A. Sagum, I. Oliva, E. Rybakovsky, K. DiGuilio, J. Liang, M.T. Bedford, J. Cassel, M. Sudol, J.M. Mullin, and R.N. Harty. 2021. SARS-CoV-2 envelope (E) protein interacts with PDZ-domain-2 of host tight junction protein ZO1. PLoS One 16 (6): e0251955.PubMedCentralPubMedCrossRef Shepley-McTaggart, A., C.A. Sagum, I. Oliva, E. Rybakovsky, K. DiGuilio, J. Liang, M.T. Bedford, J. Cassel, M. Sudol, J.M. Mullin, and R.N. Harty. 2021. SARS-CoV-2 envelope (E) protein interacts with PDZ-domain-2 of host tight junction protein ZO1. PLoS One 16 (6): e0251955.PubMedCentralPubMedCrossRef
58.
Zurück zum Zitat Sajjan, U., Q. Wang, Y. Zhao, D.C. Gruenert, and M.B. Hershenson. 2008. Rhinovirus disrupts the barrier function of polarized airway epithelial cells. American Journal of Respiratory and Critical Care Medicine 178 (12): 1271–1281.PubMedCentralPubMedCrossRef Sajjan, U., Q. Wang, Y. Zhao, D.C. Gruenert, and M.B. Hershenson. 2008. Rhinovirus disrupts the barrier function of polarized airway epithelial cells. American Journal of Respiratory and Critical Care Medicine 178 (12): 1271–1281.PubMedCentralPubMedCrossRef
59.
Zurück zum Zitat Capaldo, C.T., and A. Nusrat. 2009. Cytokine regulation of tight junctions. Biochimica et Biophysica Acta 1788 (4): 864–871.PubMedCrossRef Capaldo, C.T., and A. Nusrat. 2009. Cytokine regulation of tight junctions. Biochimica et Biophysica Acta 1788 (4): 864–871.PubMedCrossRef
61.
Zurück zum Zitat Dolinay, T., B.E. Himes, M. Shumyatcher, G.G. Lawrence, and S.S. Margulies. 2017. Integrated stress response mediates epithelial injury in mechanical ventilation. American Journal of Respiratory Cell and Molecular Biology 57 (2): 193–203.PubMedCentralPubMedCrossRef Dolinay, T., B.E. Himes, M. Shumyatcher, G.G. Lawrence, and S.S. Margulies. 2017. Integrated stress response mediates epithelial injury in mechanical ventilation. American Journal of Respiratory Cell and Molecular Biology 57 (2): 193–203.PubMedCentralPubMedCrossRef
62.
Zurück zum Zitat Gu, C., M. Liu, T. Zhao, D. Wang, and Y. Wang. 2015. Protective role of p120-catenin in maintaining the integrity of adherens and tight junctions in ventilator-induced lung injury. Respiratory Research 16 (1): 58.PubMedCentralPubMedCrossRef Gu, C., M. Liu, T. Zhao, D. Wang, and Y. Wang. 2015. Protective role of p120-catenin in maintaining the integrity of adherens and tight junctions in ventilator-induced lung injury. Respiratory Research 16 (1): 58.PubMedCentralPubMedCrossRef
63.
Zurück zum Zitat Dipaolo, B.C., N. Davidovich, M.G. Kazanietz, and S.S. Margulies. 2013. Rac1 pathway mediates stretch response in pulmonary alveolar epithelial cells. American Journal of Physiology. Lung Cellular and Molecular Physiology 305 (2): L141-153.PubMedCentralPubMedCrossRef Dipaolo, B.C., N. Davidovich, M.G. Kazanietz, and S.S. Margulies. 2013. Rac1 pathway mediates stretch response in pulmonary alveolar epithelial cells. American Journal of Physiology. Lung Cellular and Molecular Physiology 305 (2): L141-153.PubMedCentralPubMedCrossRef
64.
Zurück zum Zitat Ferreira, A.S., I.N. Silva, F. Fernandes, R. Pilkington, M. Callaghan, S. McClean, and L.M. Moreira. 2015. The tyrosine kinase BceF and the phosphotyrosine phosphatase BceD of Burkholderia contaminans are required for efficient invasion and epithelial disruption of a cystic fibrosis lung epithelial cell line. Infection and Immunity 83 (2): 812–821.PubMedCentralPubMedCrossRef Ferreira, A.S., I.N. Silva, F. Fernandes, R. Pilkington, M. Callaghan, S. McClean, and L.M. Moreira. 2015. The tyrosine kinase BceF and the phosphotyrosine phosphatase BceD of Burkholderia contaminans are required for efficient invasion and epithelial disruption of a cystic fibrosis lung epithelial cell line. Infection and Immunity 83 (2): 812–821.PubMedCentralPubMedCrossRef
65.
Zurück zum Zitat Patkee, W.R., G. Carr, E.H. Baker, D.L. Baines, and J.P. Garnett. 2016. Metformin prevents the effects of Pseudomonas aeruginosa on airway epithelial tight junctions and restricts hyperglycaemia-induced bacterial growth. Journal of Cellular and Molecular Medicine 20 (4): 758–764.PubMedCentralPubMedCrossRef Patkee, W.R., G. Carr, E.H. Baker, D.L. Baines, and J.P. Garnett. 2016. Metformin prevents the effects of Pseudomonas aeruginosa on airway epithelial tight junctions and restricts hyperglycaemia-induced bacterial growth. Journal of Cellular and Molecular Medicine 20 (4): 758–764.PubMedCentralPubMedCrossRef
66.
Zurück zum Zitat Azghani, A.O., E.J. Miller, and B.T. Peterson. 2000. Virulence factors from Pseudomonas aeruginosa increase lung epithelial permeability. Lung 178 (5): 261–269.PubMedCrossRef Azghani, A.O., E.J. Miller, and B.T. Peterson. 2000. Virulence factors from Pseudomonas aeruginosa increase lung epithelial permeability. Lung 178 (5): 261–269.PubMedCrossRef
67.
Zurück zum Zitat Azghani, A.O. 1996. Pseudomonas aeruginosa and epithelial permeability: Role of virulence factors elastase and exotoxin A. American Journal of Respiratory Cell and Molecular Biology 15 (1): 132–140.PubMedCrossRef Azghani, A.O. 1996. Pseudomonas aeruginosa and epithelial permeability: Role of virulence factors elastase and exotoxin A. American Journal of Respiratory Cell and Molecular Biology 15 (1): 132–140.PubMedCrossRef
68.
Zurück zum Zitat Langer, M., E.S. Duggan, J.L. Booth, V.I. Patel, R.A. Zander, R. Silasi-Mansat, V. Ramani, T.Z. Veres, F. Prenzler, K. Sewald, D.M. Williams, K.M. Coggeshall, S. Awasthi, F. Lupu, D. Burian, J.D. Ballard, A. Braun, and J.P. Metcalf. 2012. Bacillus anthracis lethal toxin reduces human alveolar epithelial barrier function. Infection and Immunity 80 (12): 4374–4387.PubMedCentralPubMedCrossRef Langer, M., E.S. Duggan, J.L. Booth, V.I. Patel, R.A. Zander, R. Silasi-Mansat, V. Ramani, T.Z. Veres, F. Prenzler, K. Sewald, D.M. Williams, K.M. Coggeshall, S. Awasthi, F. Lupu, D. Burian, J.D. Ballard, A. Braun, and J.P. Metcalf. 2012. Bacillus anthracis lethal toxin reduces human alveolar epithelial barrier function. Infection and Immunity 80 (12): 4374–4387.PubMedCentralPubMedCrossRef
69.
Zurück zum Zitat Linfield, D.T., A. Raduka, M. Aghapour, and F. Rezaee. 2021. Airway tight junctions as targets of viral infections. Tissue Barriers. 9 (2): 1883965.PubMedCentralPubMedCrossRef Linfield, D.T., A. Raduka, M. Aghapour, and F. Rezaee. 2021. Airway tight junctions as targets of viral infections. Tissue Barriers. 9 (2): 1883965.PubMedCentralPubMedCrossRef
70.
Zurück zum Zitat Teoh, K.T., Y.L. Siu, W.L. Chan, M.A. Schluter, C.J. Liu, J.S. Peiris, R. Bruzzone, B. Margolis, and B. Nal. 2010. The SARS coronavirus E protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis. Molecular Biology of the Cell 21 (22): 3838–3852.PubMedCentralPubMedCrossRef Teoh, K.T., Y.L. Siu, W.L. Chan, M.A. Schluter, C.J. Liu, J.S. Peiris, R. Bruzzone, B. Margolis, and B. Nal. 2010. The SARS coronavirus E protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis. Molecular Biology of the Cell 21 (22): 3838–3852.PubMedCentralPubMedCrossRef
71.
Zurück zum Zitat Excoffon, K.J., N.D. Gansemer, M.E. Mobily, P.H. Karp, K.R. Parekh, and J. Zabner. 2010. Isoform-specific regulation and localization of the coxsackie and adenovirus receptor in human airway epithelia. PLoS One 5 (3): e9909.PubMedCentralPubMedCrossRef Excoffon, K.J., N.D. Gansemer, M.E. Mobily, P.H. Karp, K.R. Parekh, and J. Zabner. 2010. Isoform-specific regulation and localization of the coxsackie and adenovirus receptor in human airway epithelia. PLoS One 5 (3): e9909.PubMedCentralPubMedCrossRef
72.
Zurück zum Zitat Gonzalez-Juarbe, N., K.M. Bradley, A.T. Shenoy, R.P. Gilley, L.F. Reyes, C.A. Hinojosa, M.I. Restrepo, P.H. Dube, M.A. Bergman, and C.J. Orihuela. 2017. Pore-forming toxin-mediated ion dysregulation leads to death receptor-independent necroptosis of lung epithelial cells during bacterial pneumonia. Cell Death and Differentiation 24 (5): 917–928.PubMedCentralPubMedCrossRef Gonzalez-Juarbe, N., K.M. Bradley, A.T. Shenoy, R.P. Gilley, L.F. Reyes, C.A. Hinojosa, M.I. Restrepo, P.H. Dube, M.A. Bergman, and C.J. Orihuela. 2017. Pore-forming toxin-mediated ion dysregulation leads to death receptor-independent necroptosis of lung epithelial cells during bacterial pneumonia. Cell Death and Differentiation 24 (5): 917–928.PubMedCentralPubMedCrossRef
73.
Zurück zum Zitat Wynne, B.M., L. Zou, V. Linck, R.S. Hoover, H.P. Ma, and D.C. Eaton. 2017. Regulation of lung epithelial sodium channels by cytokines and chemokines. Frontiers in Immunology 8: 766.PubMedCentralPubMedCrossRef Wynne, B.M., L. Zou, V. Linck, R.S. Hoover, H.P. Ma, and D.C. Eaton. 2017. Regulation of lung epithelial sodium channels by cytokines and chemokines. Frontiers in Immunology 8: 766.PubMedCentralPubMedCrossRef
74.
Zurück zum Zitat Chambers, R.C., and P.F. Mercer. 2015. Mechanisms of alveolar epithelial injury, repair, and fibrosis. Annals of the American Thoracic Society 12 (Suppl 1): S16-20.PubMedCentralPubMedCrossRef Chambers, R.C., and P.F. Mercer. 2015. Mechanisms of alveolar epithelial injury, repair, and fibrosis. Annals of the American Thoracic Society 12 (Suppl 1): S16-20.PubMedCentralPubMedCrossRef
75.
Zurück zum Zitat Pugin, J., B. Ricou, K.P. Steinberg, P.M. Suter, and T.R. Martin. 1996. Proinflammatory activity in bronchoalveolar lavage fluids from patients with ARDS, a prominent role for interleukin-1. American Journal of Respiratory and Critical Care Medicine 153 (6 Pt 1): 1850–1856.PubMedCrossRef Pugin, J., B. Ricou, K.P. Steinberg, P.M. Suter, and T.R. Martin. 1996. Proinflammatory activity in bronchoalveolar lavage fluids from patients with ARDS, a prominent role for interleukin-1. American Journal of Respiratory and Critical Care Medicine 153 (6 Pt 1): 1850–1856.PubMedCrossRef
76.
Zurück zum Zitat Souza-Fernandes, A.B., P. Pelosi, and P.R. Rocco. 2006. Bench-to-bedside review: The role of glycosaminoglycans in respiratory disease. Critical Care 10 (6): 237.PubMedCentralPubMedCrossRef Souza-Fernandes, A.B., P. Pelosi, and P.R. Rocco. 2006. Bench-to-bedside review: The role of glycosaminoglycans in respiratory disease. Critical Care 10 (6): 237.PubMedCentralPubMedCrossRef
77.
Zurück zum Zitat Mazzon, E., and S. Cuzzocrea. 2007. Role of TNF-alpha in lung tight junction alteration in mouse model of acute lung inflammation. Respiratory Research 8 (1): 75.PubMedCentralPubMedCrossRef Mazzon, E., and S. Cuzzocrea. 2007. Role of TNF-alpha in lung tight junction alteration in mouse model of acute lung inflammation. Respiratory Research 8 (1): 75.PubMedCentralPubMedCrossRef
78.
Zurück zum Zitat Marcos-Ramiro, B., D. Garcia-Weber, and J. Millan. 2014. TNF-induced endothelial barrier disruption: Beyond actin and Rho. Thrombosis and Haemostasis 112 (6): 1088–1102.PubMed Marcos-Ramiro, B., D. Garcia-Weber, and J. Millan. 2014. TNF-induced endothelial barrier disruption: Beyond actin and Rho. Thrombosis and Haemostasis 112 (6): 1088–1102.PubMed
79.
Zurück zum Zitat Herrero, R., L. Prados, A. Ferruelo, F. Puig, R. Pandolfi, R. Guillamat-Prats, L. Moreno, G. Matute-Bello, A. Artigas, A. Esteban, and J. Lorente. 2019. Fas activation alters tight junction proteins in acute lung injury. Thorax 74 (1): 69–82.PubMedCrossRef Herrero, R., L. Prados, A. Ferruelo, F. Puig, R. Pandolfi, R. Guillamat-Prats, L. Moreno, G. Matute-Bello, A. Artigas, A. Esteban, and J. Lorente. 2019. Fas activation alters tight junction proteins in acute lung injury. Thorax 74 (1): 69–82.PubMedCrossRef
80.
Zurück zum Zitat Wang, L., and S.M. Dudek. 2009. Regulation of vascular permeability by sphingosine 1-phosphate. Microvascular Research 77 (1): 39–45.PubMedCrossRef Wang, L., and S.M. Dudek. 2009. Regulation of vascular permeability by sphingosine 1-phosphate. Microvascular Research 77 (1): 39–45.PubMedCrossRef
81.
Zurück zum Zitat Yang, J., Y. Wang, H. Liu, J. Bi, and Y. Lu. 2017. C2-ceramide influences alveolar epithelial barrier function by downregulating Zo-1, occludin and claudin-4 expression. Toxicology Mechanisms and Methods 27 (4): 293–297.PubMedCrossRef Yang, J., Y. Wang, H. Liu, J. Bi, and Y. Lu. 2017. C2-ceramide influences alveolar epithelial barrier function by downregulating Zo-1, occludin and claudin-4 expression. Toxicology Mechanisms and Methods 27 (4): 293–297.PubMedCrossRef
82.
Zurück zum Zitat Vivekananda, J., D. Smith, and R.J. King. 2001. Sphingomyelin metabolites inhibit sphingomyelin synthase and CTP:Phosphocholine cytidylyltransferase. American Journal of Physiology. Lung Cellular and Molecular Physiology 281 (1): L98–L107.PubMedCrossRef Vivekananda, J., D. Smith, and R.J. King. 2001. Sphingomyelin metabolites inhibit sphingomyelin synthase and CTP:Phosphocholine cytidylyltransferase. American Journal of Physiology. Lung Cellular and Molecular Physiology 281 (1): L98–L107.PubMedCrossRef
83.
Zurück zum Zitat Awasthi, S., J. Vivekananda, V. Awasthi, D. Smith, and R.J. King. 2001. CTP:Phosphocholine cytidylyltransferase inhibition by ceramide via PKC-alpha, p38 MAPK, cPLA2, and 5-lipoxygenase. American Journal of Physiology. Lung Cellular and Molecular Physiology 281 (1): L108-118.PubMedCrossRef Awasthi, S., J. Vivekananda, V. Awasthi, D. Smith, and R.J. King. 2001. CTP:Phosphocholine cytidylyltransferase inhibition by ceramide via PKC-alpha, p38 MAPK, cPLA2, and 5-lipoxygenase. American Journal of Physiology. Lung Cellular and Molecular Physiology 281 (1): L108-118.PubMedCrossRef
84.
Zurück zum Zitat Wittekindt, O.H. 2017. Tight junctions in pulmonary epithelia during lung inflammation. Pflugers Archiv. European Journal of Physiology 469 (1): 135–147.PubMedCrossRef Wittekindt, O.H. 2017. Tight junctions in pulmonary epithelia during lung inflammation. Pflugers Archiv. European Journal of Physiology 469 (1): 135–147.PubMedCrossRef
85.
Zurück zum Zitat Türkeli, A., Ö. Yilmaz, M. Karaman, E.T. Kanik, F. Firinci, S. İnan, and H. Yüksel. 2021. Anti-VEGF treatment suppresses remodeling factors and restores epithelial barrier function through the E-cadherin/β-catenin signaling axis in experimental asthma models. Experimental and Therapeutic Medicine 22 (1): 689.PubMedCentralPubMedCrossRef Türkeli, A., Ö. Yilmaz, M. Karaman, E.T. Kanik, F. Firinci, S. İnan, and H. Yüksel. 2021. Anti-VEGF treatment suppresses remodeling factors and restores epithelial barrier function through the E-cadherin/β-catenin signaling axis in experimental asthma models. Experimental and Therapeutic Medicine 22 (1): 689.PubMedCentralPubMedCrossRef
86.
Zurück zum Zitat Ganter, M.T., J. Roux, B. Miyazawa, M. Howard, J.A. Frank, G. Su, D. Sheppard, S.M. Violette, P.H. Weinreb, G.S. Horan, M.A. Matthay, and J.F. Pittet. 2008. Interleukin-1beta causes acute lung injury via alphavbeta5 and alphavbeta6 integrin-dependent mechanisms. Circulation Research 102 (7): 804–812.PubMedCentralPubMedCrossRef Ganter, M.T., J. Roux, B. Miyazawa, M. Howard, J.A. Frank, G. Su, D. Sheppard, S.M. Violette, P.H. Weinreb, G.S. Horan, M.A. Matthay, and J.F. Pittet. 2008. Interleukin-1beta causes acute lung injury via alphavbeta5 and alphavbeta6 integrin-dependent mechanisms. Circulation Research 102 (7): 804–812.PubMedCentralPubMedCrossRef
87.
Zurück zum Zitat Ahdieh, M., T. Vandenbos, and A. Youakim. 2001. Lung epithelial barrier function and wound healing are decreased by IL-4 and IL-13 and enhanced by IFN-gamma. American Journal of Physiology. Cell Physiology 281 (6): C2029-2038.PubMedCrossRef Ahdieh, M., T. Vandenbos, and A. Youakim. 2001. Lung epithelial barrier function and wound healing are decreased by IL-4 and IL-13 and enhanced by IFN-gamma. American Journal of Physiology. Cell Physiology 281 (6): C2029-2038.PubMedCrossRef
88.
Zurück zum Zitat Su, K.C., Y.C. Wu, C.S. Chen, M.H. Hung, Y.H. Hsiao, C.M. Tseng, S.C. Chang, Y.C. Lee, and D.W. Perng. 2013. Bile acids increase alveolar epithelial permeability via mitogen-activated protein kinase, cytosolic phospholipase A2, cyclooxygenase-2, prostaglandin E2 and junctional proteins. Respirology 18 (5): 848–856.PubMedCrossRef Su, K.C., Y.C. Wu, C.S. Chen, M.H. Hung, Y.H. Hsiao, C.M. Tseng, S.C. Chang, Y.C. Lee, and D.W. Perng. 2013. Bile acids increase alveolar epithelial permeability via mitogen-activated protein kinase, cytosolic phospholipase A2, cyclooxygenase-2, prostaglandin E2 and junctional proteins. Respirology 18 (5): 848–856.PubMedCrossRef
89.
Zurück zum Zitat Di, A., D. Mehta, and A.B. Malik. 2016. ROS-activated calcium signaling mechanisms regulating endothelial barrier function. Cell Calcium 60 (3): 163–171.PubMedCentralPubMedCrossRef Di, A., D. Mehta, and A.B. Malik. 2016. ROS-activated calcium signaling mechanisms regulating endothelial barrier function. Cell Calcium 60 (3): 163–171.PubMedCentralPubMedCrossRef
90.
Zurück zum Zitat Mambetsariev, N., T. Mirzapoiazova, B. Mambetsariev, S. Sammani, F.E. Lennon, J.G. Garcia, and P.A. Singleton. 2010. Hyaluronic acid binding protein 2 is a novel regulator of vascular integrity. Arteriosclerosis, Thrombosis, and Vascular Biology 30 (3): 483–490.PubMedCrossRef Mambetsariev, N., T. Mirzapoiazova, B. Mambetsariev, S. Sammani, F.E. Lennon, J.G. Garcia, and P.A. Singleton. 2010. Hyaluronic acid binding protein 2 is a novel regulator of vascular integrity. Arteriosclerosis, Thrombosis, and Vascular Biology 30 (3): 483–490.PubMedCrossRef
91.
Zurück zum Zitat Sun, S., T. Sursal, Y. Adibnia, C. Zhao, Y. Zheng, H. Li, L.E. Otterbein, C.J. Hauser, and K. Itagaki. 2013. Mitochondrial DAMPs increase endothelial permeability through neutrophil dependent and independent pathways. PLoS One 8 (3): e59989.PubMedCentralPubMedCrossRef Sun, S., T. Sursal, Y. Adibnia, C. Zhao, Y. Zheng, H. Li, L.E. Otterbein, C.J. Hauser, and K. Itagaki. 2013. Mitochondrial DAMPs increase endothelial permeability through neutrophil dependent and independent pathways. PLoS One 8 (3): e59989.PubMedCentralPubMedCrossRef
92.
Zurück zum Zitat Ward, C., B. Schlingmann, A.A. Stecenko, D.M. Guidot, and M. Koval. 2015. NF-κB inhibitors impair lung epithelial tight junctions in the absence of inflammation. Tissue Barriers. 3 (1–2): e982424.PubMedCentralPubMedCrossRef Ward, C., B. Schlingmann, A.A. Stecenko, D.M. Guidot, and M. Koval. 2015. NF-κB inhibitors impair lung epithelial tight junctions in the absence of inflammation. Tissue Barriers. 3 (1–2): e982424.PubMedCentralPubMedCrossRef
93.
Zurück zum Zitat Coyne, C.B., M.K. Vanhook, T.M. Gambling, J.L. Carson, R.C. Boucher, and L.G. Johnson. 2002. Regulation of airway tight junctions by proinflammatory cytokines. Molecular Biology of the Cell 13 (9): 3218–3234.PubMedCentralPubMedCrossRef Coyne, C.B., M.K. Vanhook, T.M. Gambling, J.L. Carson, R.C. Boucher, and L.G. Johnson. 2002. Regulation of airway tight junctions by proinflammatory cytokines. Molecular Biology of the Cell 13 (9): 3218–3234.PubMedCentralPubMedCrossRef
94.
Zurück zum Zitat Hardyman, M.A., E. Wilkinson, E. Martin, N.P. Jayasekera, C. Blume, E.J. Swindle, N. Gozzard, S.T. Holgate, P.H. Howarth, D.E. Davies, and J.E. Collins. 2013. TNF-alpha-mediated bronchial barrier disruption and regulation by src-family kinase activation. The Journal of Allergy and Clinical Immunology 132(3): 665–675 e668. Hardyman, M.A., E. Wilkinson, E. Martin, N.P. Jayasekera, C. Blume, E.J. Swindle, N. Gozzard, S.T. Holgate, P.H. Howarth, D.E. Davies, and J.E. Collins. 2013. TNF-alpha-mediated bronchial barrier disruption and regulation by src-family kinase activation. The Journal of Allergy and Clinical Immunology 132(3): 665–675 e668.
95.
Zurück zum Zitat Shen, L., C.R. Weber, D.R. Raleigh, D. Yu, and J.R. Turner. 2011. Tight junction pore and leak pathways: A dynamic duo. Annual Review of Physiology 73: 283–309.PubMedCentralPubMedCrossRef Shen, L., C.R. Weber, D.R. Raleigh, D. Yu, and J.R. Turner. 2011. Tight junction pore and leak pathways: A dynamic duo. Annual Review of Physiology 73: 283–309.PubMedCentralPubMedCrossRef
96.
97.
Zurück zum Zitat Schlingmann, B., S.A. Molina, and M. Koval. 2015. Claudins: Gatekeepers of lung epithelial function. Seminars in Cell & Developmental Biology 42: 47–57.CrossRef Schlingmann, B., S.A. Molina, and M. Koval. 2015. Claudins: Gatekeepers of lung epithelial function. Seminars in Cell & Developmental Biology 42: 47–57.CrossRef
98.
Zurück zum Zitat Birukova, A.A., E. Alekseeva, A. Mikaelyan, and K.G. Birukov. 2007. HGF attenuates thrombin-induced endothelial permeability by Tiam1-mediated activation of the Rac pathway and by Tiam1/Rac-dependent inhibition of the Rho pathway. The FASEB Journal 21 (11): 2776–2786.PubMedCrossRef Birukova, A.A., E. Alekseeva, A. Mikaelyan, and K.G. Birukov. 2007. HGF attenuates thrombin-induced endothelial permeability by Tiam1-mediated activation of the Rac pathway and by Tiam1/Rac-dependent inhibition of the Rho pathway. The FASEB Journal 21 (11): 2776–2786.PubMedCrossRef
99.
Zurück zum Zitat Birukova, A.A., N. Moldobaeva, J. Xing, and K.G. Birukov. 2008. Magnitude-dependent effects of cyclic stretch on HGF- and VEGF-induced pulmonary endothelial remodeling and barrier regulation. American Journal of Physiology. Lung Cellular and Molecular Physiology 295 (4): L612-623.PubMedCentralPubMedCrossRef Birukova, A.A., N. Moldobaeva, J. Xing, and K.G. Birukov. 2008. Magnitude-dependent effects of cyclic stretch on HGF- and VEGF-induced pulmonary endothelial remodeling and barrier regulation. American Journal of Physiology. Lung Cellular and Molecular Physiology 295 (4): L612-623.PubMedCentralPubMedCrossRef
100.
Zurück zum Zitat Vivekananda, J., V. Awasthi, S. Awasthi, D.B. Smith, and R.J. King. 2000. Hepatocyte growth factor is elevated in chronic lung injury and inhibits surfactant metabolism. American Journal of Physiology. Lung Cellular and Molecular Physiology 278 (2): L382-392.PubMedCrossRef Vivekananda, J., V. Awasthi, S. Awasthi, D.B. Smith, and R.J. King. 2000. Hepatocyte growth factor is elevated in chronic lung injury and inhibits surfactant metabolism. American Journal of Physiology. Lung Cellular and Molecular Physiology 278 (2): L382-392.PubMedCrossRef
101.
Zurück zum Zitat Hadden, H., S.J. Soldin, and D. Massaro. 2012. Circadian disruption alters mouse lung clock gene expression and lung mechanics. Journal of Applied Physiology 113(3): 385–392. Hadden, H., S.J. Soldin, and D. Massaro. 2012. Circadian disruption alters mouse lung clock gene expression and lung mechanics. Journal of Applied Physiology 113(3): 385–392.
102.
Zurück zum Zitat Mortola, J.P., and E.L. Seifert. 2002. Circadian patterns of breathing. Respiratory Physiology & Neurobiology 131 (1–2): 91–100.CrossRef Mortola, J.P., and E.L. Seifert. 2002. Circadian patterns of breathing. Respiratory Physiology & Neurobiology 131 (1–2): 91–100.CrossRef
103.
Zurück zum Zitat Spengler, C.M., and S.A. Shea. 2000. Endogenous circadian rhythm of pulmonary function in healthy humans. American Journal of Respiratory and Critical Care Medicine 162 (3 Pt 1): 1038–1046.PubMedCrossRef Spengler, C.M., and S.A. Shea. 2000. Endogenous circadian rhythm of pulmonary function in healthy humans. American Journal of Respiratory and Critical Care Medicine 162 (3 Pt 1): 1038–1046.PubMedCrossRef
104.
Zurück zum Zitat Chinnapaiyan, S., R.K. Dutta, D. Devadoss, H.S. Chand, I. Rahman, and H.J. Unwalla. 2020. Role of non-coding RNAs in lung circadian clock related diseases. International Journal of Molecular Sciences 21 (8): 3013.PubMedCentralCrossRef Chinnapaiyan, S., R.K. Dutta, D. Devadoss, H.S. Chand, I. Rahman, and H.J. Unwalla. 2020. Role of non-coding RNAs in lung circadian clock related diseases. International Journal of Molecular Sciences 21 (8): 3013.PubMedCentralCrossRef
105.
Zurück zum Zitat Wu, X., I.S.T. Bos, T.M. Conlon, M. Ansari, V. Verschut, L. van der Koog, L.A. Verkleij, A. D'Ambrosi, A. Matveyenko, H.B. Schiller, H. Konigshoff, M. Schmidt, L.E.M. Kistemaker, A.O. Yildirim, and R. Gosens. 2022. A transcriptomics-guided drug target discovery strategy identifies receptor ligands for lung regeneration. Science Advances 8 (12): eabj9949. Wu, X., I.S.T. Bos, T.M. Conlon, M. Ansari, V. Verschut, L. van der Koog, L.A. Verkleij, A. D'Ambrosi, A. Matveyenko, H.B. Schiller, H. Konigshoff, M. Schmidt, L.E.M. Kistemaker, A.O. Yildirim, and R. Gosens. 2022. A transcriptomics-guided drug target discovery strategy identifies receptor ligands for lung regeneration. Science Advances 8 (12): eabj9949.
106.
Zurück zum Zitat Hwang, J.W., I.K. Sundar, H. Yao, M.T. Sellix, and I. Rahman. 2014. Circadian clock function is disrupted by environmental tobacco/cigarette smoke, leading to lung inflammation and injury via a SIRT1-BMAL1 pathway. The FASEB Journal 28 (1): 176–194.PubMedCentralPubMedCrossRef Hwang, J.W., I.K. Sundar, H. Yao, M.T. Sellix, and I. Rahman. 2014. Circadian clock function is disrupted by environmental tobacco/cigarette smoke, leading to lung inflammation and injury via a SIRT1-BMAL1 pathway. The FASEB Journal 28 (1): 176–194.PubMedCentralPubMedCrossRef
107.
Zurück zum Zitat Chen, H.C., Y.C. Chen, T.N. Wang, W.F. Fang, Y.C. Chang, Y.M. Chen, I.Y. Chen, M.C. Lin, and M.Y. Yang. 2021. Disrupted expression of circadian clock genes in patients with bronchial asthma. Journal of Asthma and Allergy 14: 371–380.PubMedCentralPubMedCrossRef Chen, H.C., Y.C. Chen, T.N. Wang, W.F. Fang, Y.C. Chang, Y.M. Chen, I.Y. Chen, M.C. Lin, and M.Y. Yang. 2021. Disrupted expression of circadian clock genes in patients with bronchial asthma. Journal of Asthma and Allergy 14: 371–380.PubMedCentralPubMedCrossRef
108.
109.
Zurück zum Zitat Lagishetty, V., P.T. Parthasarathy, O. Phillips, J. Fukumoto, Y. Cho, I. Fukumoto, H. Bao, R. Cox Jr., L. Galam, R.F. Lockey, and N. Kolliputi. 2014. Dysregulation of CLOCK gene expression in hyperoxia-induced lung injury. American Journal of Physiology. Cell Physiology 306 (11): C999–C1007.PubMedCentralPubMedCrossRef Lagishetty, V., P.T. Parthasarathy, O. Phillips, J. Fukumoto, Y. Cho, I. Fukumoto, H. Bao, R. Cox Jr., L. Galam, R.F. Lockey, and N. Kolliputi. 2014. Dysregulation of CLOCK gene expression in hyperoxia-induced lung injury. American Journal of Physiology. Cell Physiology 306 (11): C999–C1007.PubMedCentralPubMedCrossRef
110.
Zurück zum Zitat Oyama, Y., S.R. Shuff, N. Burns, C.U. Vohwinkel, and T. Eckle. 2022. Intense light-elicited alveolar type 2-specific circadian PER2 protects from bacterial lung injury via BPIFB1. American Journal of Physiology. Lung Cellular and Molecular Physiology 322 (5): L647–L661.PubMedCrossRef Oyama, Y., S.R. Shuff, N. Burns, C.U. Vohwinkel, and T. Eckle. 2022. Intense light-elicited alveolar type 2-specific circadian PER2 protects from bacterial lung injury via BPIFB1. American Journal of Physiology. Lung Cellular and Molecular Physiology 322 (5): L647–L661.PubMedCrossRef
111.
Zurück zum Zitat Zhuang, X., S. Tsukuda, F. Wrensch, P.A.C. Wing, M. Schilling, J.M. Harris, H. Borrmann, S.B. Morgan, J.L. Cane, L. Mailly, N. Thakur, C. Conceicao, H. Sanghani, L. Heydmann, C. Bach, A. Ashton, S. Walsh, T.K. Tan, L. Schimanski, K.A. Huang, C. Schuster, K. Watashi, T.S.C. Hinks, A. Jagannath, S.R. Vausdevan, D. Bailey, T.F. Baumert, and J.A. McKeating. 2021. The circadian clock component BMAL1 regulates SARS-CoV-2 entry and replication in lung epithelial cells. iScience 24 (10): 103144. Zhuang, X., S. Tsukuda, F. Wrensch, P.A.C. Wing, M. Schilling, J.M. Harris, H. Borrmann, S.B. Morgan, J.L. Cane, L. Mailly, N. Thakur, C. Conceicao, H. Sanghani, L. Heydmann, C. Bach, A. Ashton, S. Walsh, T.K. Tan, L. Schimanski, K.A. Huang, C. Schuster, K. Watashi, T.S.C. Hinks, A. Jagannath, S.R. Vausdevan, D. Bailey, T.F. Baumert, and J.A. McKeating. 2021. The circadian clock component BMAL1 regulates SARS-CoV-2 entry and replication in lung epithelial cells. iScience 24 (10): 103144.
112.
Zurück zum Zitat Meira, E.C.M., M. Miyazawa, and D. Gozal. 2020. Putative contributions of circadian clock and sleep in the context of SARS-CoV-2 infection. The European Respiratory Journal 55 (6): 2001023.CrossRef Meira, E.C.M., M. Miyazawa, and D. Gozal. 2020. Putative contributions of circadian clock and sleep in the context of SARS-CoV-2 infection. The European Respiratory Journal 55 (6): 2001023.CrossRef
113.
Zurück zum Zitat Cunningham, P.S., P. Meijer, A. Nazgiewicz, S.G. Anderson, L.A. Borthwick, J. Bagnall, G.B. Kitchen, M. Lodyga, N. Begley, R.V. Venkateswaran, R. Shah, P.F. Mercer, H.J. Durrington, N.C. Henderson, K. Piper-Hanley, A.J. Fisher, R.C. Chambers, D.A. Bechtold, J.E. Gibbs, A.S. Loudon, M.K. Rutter, B. Hinz, D.W. Ray, and J.F. Blaikley. 2020. The circadian clock protein REVERBalpha inhibits pulmonary fibrosis development. Proceedings of the National Academy of Sciences of the United States of America 117 (2): 1139–1147.PubMedCrossRef Cunningham, P.S., P. Meijer, A. Nazgiewicz, S.G. Anderson, L.A. Borthwick, J. Bagnall, G.B. Kitchen, M. Lodyga, N. Begley, R.V. Venkateswaran, R. Shah, P.F. Mercer, H.J. Durrington, N.C. Henderson, K. Piper-Hanley, A.J. Fisher, R.C. Chambers, D.A. Bechtold, J.E. Gibbs, A.S. Loudon, M.K. Rutter, B. Hinz, D.W. Ray, and J.F. Blaikley. 2020. The circadian clock protein REVERBalpha inhibits pulmonary fibrosis development. Proceedings of the National Academy of Sciences of the United States of America 117 (2): 1139–1147.PubMedCrossRef
114.
Zurück zum Zitat Gibbs, J., L. Ince, L. Matthews, J. Mei, T. Bell, N. Yang, B. Saer, N. Begley, T. Poolman, M. Pariollaud, S. Farrow, F. DeMayo, T. Hussell, G.S. Worthen, D. Ray, and A. Loudon. 2014. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nature Medicine 20 (8): 919–926.PubMedCentralPubMedCrossRef Gibbs, J., L. Ince, L. Matthews, J. Mei, T. Bell, N. Yang, B. Saer, N. Begley, T. Poolman, M. Pariollaud, S. Farrow, F. DeMayo, T. Hussell, G.S. Worthen, D. Ray, and A. Loudon. 2014. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nature Medicine 20 (8): 919–926.PubMedCentralPubMedCrossRef
115.
Zurück zum Zitat Wang, Y., P. Pati, Y. Xu, F. Chen, D.W. Stepp, Y. Huo, R.D. Rudic, and D.J. Fulton. 2016. Endotoxin disrupts circadian rhythms in macrophages via reactive oxygen species. PLoS One 11 (5): e0155075.PubMedCentralPubMedCrossRef Wang, Y., P. Pati, Y. Xu, F. Chen, D.W. Stepp, Y. Huo, R.D. Rudic, and D.J. Fulton. 2016. Endotoxin disrupts circadian rhythms in macrophages via reactive oxygen species. PLoS One 11 (5): e0155075.PubMedCentralPubMedCrossRef
116.
Zurück zum Zitat Sundar, I.K., H. Yao, M.T. Sellix, and I. Rahman. 2015. Circadian molecular clock in lung pathophysiology. American Journal of Physiology. Lung Cellular and Molecular Physiology 309 (10): L1056-1075.PubMedCentralPubMedCrossRef Sundar, I.K., H. Yao, M.T. Sellix, and I. Rahman. 2015. Circadian molecular clock in lung pathophysiology. American Journal of Physiology. Lung Cellular and Molecular Physiology 309 (10): L1056-1075.PubMedCentralPubMedCrossRef
117.
Zurück zum Zitat Cheng, F.L., Y.F. An, J.M. Xue, Y.J. Wang, X.W. Ding, Y.T. Zhang, and C.Q. Zhao. 2022. Circadian rhythm disruption exacerbates Th2-like immune response in murine allergic airway inflammation. International Forum of Allergy and Rhinology 12 (5): 757–770.PubMedCrossRef Cheng, F.L., Y.F. An, J.M. Xue, Y.J. Wang, X.W. Ding, Y.T. Zhang, and C.Q. Zhao. 2022. Circadian rhythm disruption exacerbates Th2-like immune response in murine allergic airway inflammation. International Forum of Allergy and Rhinology 12 (5): 757–770.PubMedCrossRef
118.
Zurück zum Zitat Xing, C., Y. Zhou, H. Xu, M. Ding, Y. Zhang, M. Zhang, M. Hu, X. Huang, and L. Song. 2021. Sleep disturbance induces depressive behaviors and neuroinflammation by altering the circadian oscillations of clock genes in rats. Neuroscience Research 171: 124–132.PubMedCrossRef Xing, C., Y. Zhou, H. Xu, M. Ding, Y. Zhang, M. Zhang, M. Hu, X. Huang, and L. Song. 2021. Sleep disturbance induces depressive behaviors and neuroinflammation by altering the circadian oscillations of clock genes in rats. Neuroscience Research 171: 124–132.PubMedCrossRef
119.
Zurück zum Zitat Kyoko, O.O., H. Kono, K. Ishimaru, K. Miyake, T. Kubota, H. Ogawa, K. Okumura, S. Shibata, and A. Nakao. 2014. Expressions of tight junction proteins occludin and claudin-1 are under the circadian control in the mouse large intestine: Implications in intestinal permeability and susceptibility to colitis. PLoS One 9 (5): e98016.PubMedCrossRef Kyoko, O.O., H. Kono, K. Ishimaru, K. Miyake, T. Kubota, H. Ogawa, K. Okumura, S. Shibata, and A. Nakao. 2014. Expressions of tight junction proteins occludin and claudin-1 are under the circadian control in the mouse large intestine: Implications in intestinal permeability and susceptibility to colitis. PLoS One 9 (5): e98016.PubMedCrossRef
120.
Zurück zum Zitat Yamato, M., T. Ito, H. Iwatani, M. Yamato, E. Imai, and H. Rakugi. 2010. E-cadherin and claudin-4 expression has circadian rhythm in adult rat kidney. Journal of Nephrology 23 (1): 102–110.PubMed Yamato, M., T. Ito, H. Iwatani, M. Yamato, E. Imai, and H. Rakugi. 2010. E-cadherin and claudin-4 expression has circadian rhythm in adult rat kidney. Journal of Nephrology 23 (1): 102–110.PubMed
121.
Zurück zum Zitat Hudson, N., L. Celkova, A. Hopkins, C. Greene, F. Storti, E. Ozaki, E. Fahey, S. Theodoropoulou, P.F. Kenna, M.M. Humphries, A.M. Curtis, E. Demmons, A. Browne, S. Liddie, M.S. Lawrence, C. Grimm, M.T. Cahill, P. Humphries, S.L. Doyle, and M. Campbell. 2019. Dysregulated claudin-5 cycling in the inner retina causes retinal pigment epithelial cell atrophy. JCI Insight 4 (15): e130273.PubMedCentralCrossRef Hudson, N., L. Celkova, A. Hopkins, C. Greene, F. Storti, E. Ozaki, E. Fahey, S. Theodoropoulou, P.F. Kenna, M.M. Humphries, A.M. Curtis, E. Demmons, A. Browne, S. Liddie, M.S. Lawrence, C. Grimm, M.T. Cahill, P. Humphries, S.L. Doyle, and M. Campbell. 2019. Dysregulated claudin-5 cycling in the inner retina causes retinal pigment epithelial cell atrophy. JCI Insight 4 (15): e130273.PubMedCentralCrossRef
122.
Zurück zum Zitat Kleeberger, S.R., S. Reddy, L.Y. Zhang, and A.E. Jedlicka. 2000. Genetic susceptibility to ozone-induced lung hyperpermeability: Role of toll-like receptor 4. American Journal of Respiratory Cell and Molecular Biology 22 (5): 620–627.PubMedCrossRef Kleeberger, S.R., S. Reddy, L.Y. Zhang, and A.E. Jedlicka. 2000. Genetic susceptibility to ozone-induced lung hyperpermeability: Role of toll-like receptor 4. American Journal of Respiratory Cell and Molecular Biology 22 (5): 620–627.PubMedCrossRef
123.
Zurück zum Zitat Kleeberger, S.R., S.P. Reddy, L.Y. Zhang, H.Y. Cho, and A.E. Jedlicka. 2001. Toll-like receptor 4 mediates ozone-induced murine lung hyperpermeability via inducible nitric oxide synthase. American Journal of Physiology. Lung Cellular and Molecular Physiology 280 (2): L326-333.PubMedCrossRef Kleeberger, S.R., S.P. Reddy, L.Y. Zhang, H.Y. Cho, and A.E. Jedlicka. 2001. Toll-like receptor 4 mediates ozone-induced murine lung hyperpermeability via inducible nitric oxide synthase. American Journal of Physiology. Lung Cellular and Molecular Physiology 280 (2): L326-333.PubMedCrossRef
124.
125.
Zurück zum Zitat Hussain, S., C.G. Johnson, J. Sciurba, X. Meng, V.P. Stober, C. Liu, J.M. Cyphert-Daly, K. Bulek, W. Qian, A. Solis, Y. Sakamachi, C.S. Trempus, J.J. Aloor, K.M. Gowdy, W.M. Foster, J.W. Hollingsworth, R.M. Tighe, X. Li, M.B. Fessler, and S. Garantziotis. 2020. TLR5 participates in the TLR4 receptor complex and promotes MyD88-dependent signaling in environmental lung injury. eLife 9: e50458.PubMedCentralPubMedCrossRef Hussain, S., C.G. Johnson, J. Sciurba, X. Meng, V.P. Stober, C. Liu, J.M. Cyphert-Daly, K. Bulek, W. Qian, A. Solis, Y. Sakamachi, C.S. Trempus, J.J. Aloor, K.M. Gowdy, W.M. Foster, J.W. Hollingsworth, R.M. Tighe, X. Li, M.B. Fessler, and S. Garantziotis. 2020. TLR5 participates in the TLR4 receptor complex and promotes MyD88-dependent signaling in environmental lung injury. eLife 9: e50458.PubMedCentralPubMedCrossRef
126.
Zurück zum Zitat Gilmour, P.S., M.C. Schladweiler, J.H. Richards, A.D. Ledbetter, and U.P. Kodavanti. 2004. Hypertensive rats are susceptible to TLR4-mediated signaling following exposure to combustion source particulate matter. Inhalation Toxicology 16 (Suppl 1): 5–18.PubMedCrossRef Gilmour, P.S., M.C. Schladweiler, J.H. Richards, A.D. Ledbetter, and U.P. Kodavanti. 2004. Hypertensive rats are susceptible to TLR4-mediated signaling following exposure to combustion source particulate matter. Inhalation Toxicology 16 (Suppl 1): 5–18.PubMedCrossRef
127.
Zurück zum Zitat Chun, C.D., W.C. Liles, C.W. Frevert, R.W. Glenny, and W.A. Altemeier. 2010. Mechanical ventilation modulates toll-like receptor-3-induced lung inflammation via a MyD88-dependent, TLR4-independent pathway: A controlled animal study. BMC Pulmonary Medicine 10: 57.PubMedCentralPubMedCrossRef Chun, C.D., W.C. Liles, C.W. Frevert, R.W. Glenny, and W.A. Altemeier. 2010. Mechanical ventilation modulates toll-like receptor-3-induced lung inflammation via a MyD88-dependent, TLR4-independent pathway: A controlled animal study. BMC Pulmonary Medicine 10: 57.PubMedCentralPubMedCrossRef
128.
Zurück zum Zitat Armstrong, L., A.R. Medford, K.M. Uppington, J. Robertson, I.R. Witherden, T.D. Tetley, and A.B. Millar. 2004. Expression of functional toll-like receptor-2 and -4 on alveolar epithelial cells. American Journal of Respiratory Cell and Molecular Biology 31 (2): 241–245.PubMedCrossRef Armstrong, L., A.R. Medford, K.M. Uppington, J. Robertson, I.R. Witherden, T.D. Tetley, and A.B. Millar. 2004. Expression of functional toll-like receptor-2 and -4 on alveolar epithelial cells. American Journal of Respiratory Cell and Molecular Biology 31 (2): 241–245.PubMedCrossRef
129.
Zurück zum Zitat Sodhi, C.P., H. Jia, Y. Yamaguchi, P. Lu, M. Good, C. Egan, J. Ozolek, X. Zhu, T.R. Billiar, and D.J. Hackam. 2015. Intestinal epithelial TLR-4 activation is required for the development of acute lung injury after trauma/hemorrhagic shock via the release of HMGB1 from the gut. The Journal of Immunology 194 (10): 4931–4939.PubMedCrossRef Sodhi, C.P., H. Jia, Y. Yamaguchi, P. Lu, M. Good, C. Egan, J. Ozolek, X. Zhu, T.R. Billiar, and D.J. Hackam. 2015. Intestinal epithelial TLR-4 activation is required for the development of acute lung injury after trauma/hemorrhagic shock via the release of HMGB1 from the gut. The Journal of Immunology 194 (10): 4931–4939.PubMedCrossRef
130.
Zurück zum Zitat Chakraborty, D., S. Zenker, J. Rossaint, A. Holscher, M. Pohlen, A. Zarbock, J. Roth, and T. Vogl. 2017. Alarmin S100A8 activates alveolar epithelial cells in the context of acute lung injury in a TLR4-dependent manner. Frontiers in Immunology 8: 1493.PubMedCentralPubMedCrossRef Chakraborty, D., S. Zenker, J. Rossaint, A. Holscher, M. Pohlen, A. Zarbock, J. Roth, and T. Vogl. 2017. Alarmin S100A8 activates alveolar epithelial cells in the context of acute lung injury in a TLR4-dependent manner. Frontiers in Immunology 8: 1493.PubMedCentralPubMedCrossRef
131.
Zurück zum Zitat Chen, X.X., L. Tang, Z.H. Han, W.J. Wang, and J.G. Meng. 2019. Coculture with bone marrow-derived mesenchymal stem cells attenuates inflammation and apoptosis in lipopolysaccharide-stimulated alveolar epithelial cells via enhanced secretion of keratinocyte growth factor and angiopoietin-1 modulating the Toll-like receptor-4 signal pathway. Molecular Medicine Reports 19 (3): 1891–1902.PubMed Chen, X.X., L. Tang, Z.H. Han, W.J. Wang, and J.G. Meng. 2019. Coculture with bone marrow-derived mesenchymal stem cells attenuates inflammation and apoptosis in lipopolysaccharide-stimulated alveolar epithelial cells via enhanced secretion of keratinocyte growth factor and angiopoietin-1 modulating the Toll-like receptor-4 signal pathway. Molecular Medicine Reports 19 (3): 1891–1902.PubMed
132.
Zurück zum Zitat Pastor, C.M., J. Pugin, B. Kwak, M. Chanson, F. Mach, A. Hadengue, and J.L. Frossard. 2004. Role of toll-like receptor 4 on pancreatic and pulmonary injury in a mice model of acute pancreatitis associated with endotoxemia. Critical Care Medicine 32 (8): 1759–1763.PubMedCrossRef Pastor, C.M., J. Pugin, B. Kwak, M. Chanson, F. Mach, A. Hadengue, and J.L. Frossard. 2004. Role of toll-like receptor 4 on pancreatic and pulmonary injury in a mice model of acute pancreatitis associated with endotoxemia. Critical Care Medicine 32 (8): 1759–1763.PubMedCrossRef
133.
Zurück zum Zitat Zhang, Y.P., C.S. Pan, L. Yan, Y.Y. Liu, B.H. Hu, X. Chang, Q. Li, D.D. Huang, H.Y. Sun, G. Fu, K. Sun, J.Y. Fan, and J.Y. Han. 2016. Catalpol restores LPS-elicited rat microcirculation disorder by regulation of a network of signaling involving inhibition of TLR-4 and SRC. American Journal of Physiology. Gastrointestinal and Liver Physiology 311 (6): G1091-g1104.PubMedCrossRef Zhang, Y.P., C.S. Pan, L. Yan, Y.Y. Liu, B.H. Hu, X. Chang, Q. Li, D.D. Huang, H.Y. Sun, G. Fu, K. Sun, J.Y. Fan, and J.Y. Han. 2016. Catalpol restores LPS-elicited rat microcirculation disorder by regulation of a network of signaling involving inhibition of TLR-4 and SRC. American Journal of Physiology. Gastrointestinal and Liver Physiology 311 (6): G1091-g1104.PubMedCrossRef
134.
Zurück zum Zitat Peng, L.Y., M. Yuan, H.T. Shi, J.H. Li, K. Song, J.N. Huang, P.F. Yi, B.D. Fu, and H.Q. Shen. 2019. Protective effect of piceatannol against acute lung injury through protecting the integrity of air-blood barrier and modulating the TLR4/NF-κB signaling pathway activation. Frontiers in Pharmacology 10: 1613.PubMedCrossRef Peng, L.Y., M. Yuan, H.T. Shi, J.H. Li, K. Song, J.N. Huang, P.F. Yi, B.D. Fu, and H.Q. Shen. 2019. Protective effect of piceatannol against acute lung injury through protecting the integrity of air-blood barrier and modulating the TLR4/NF-κB signaling pathway activation. Frontiers in Pharmacology 10: 1613.PubMedCrossRef
135.
Zurück zum Zitat Li, X., R. Li, Q. Fang, M. Jamal, C. Wang, Y. Wang, Z. Zhang, X. Wu, and X. Song. 2021. Oxycodone attenuates vascular leak and lung inflammation in a clinically relevant two-hit rat model of acute lung injury. Cytokine 138: 155346.PubMedCrossRef Li, X., R. Li, Q. Fang, M. Jamal, C. Wang, Y. Wang, Z. Zhang, X. Wu, and X. Song. 2021. Oxycodone attenuates vascular leak and lung inflammation in a clinically relevant two-hit rat model of acute lung injury. Cytokine 138: 155346.PubMedCrossRef
136.
Zurück zum Zitat Peng, L.Y., H.T. Shi, M. Yuan, J.H. Li, K. Song, J.N. Huang, P.F. Yi, H.Q. Shen, and B.D. Fu. 2020. Madecassoside protects against LPS-induced acute lung injury via inhibiting TLR4/NF-κB activation and blood-air barrier permeability. Frontiers in Pharmacology 11: 807.PubMedCentralPubMedCrossRef Peng, L.Y., H.T. Shi, M. Yuan, J.H. Li, K. Song, J.N. Huang, P.F. Yi, H.Q. Shen, and B.D. Fu. 2020. Madecassoside protects against LPS-induced acute lung injury via inhibiting TLR4/NF-κB activation and blood-air barrier permeability. Frontiers in Pharmacology 11: 807.PubMedCentralPubMedCrossRef
137.
Zurück zum Zitat Zhu, H., X. Lu, L. Ling, H. Li, Y. Ou, X. Shi, Y. Lu, Y. Zhang, and D. Chen. 2018. Houttuynia cordata polysaccharides ameliorate pneumonia severity and intestinal injury in mice with influenza virus infection. Journal of Ethnopharmacology 218: 90–99.PubMedCrossRef Zhu, H., X. Lu, L. Ling, H. Li, Y. Ou, X. Shi, Y. Lu, Y. Zhang, and D. Chen. 2018. Houttuynia cordata polysaccharides ameliorate pneumonia severity and intestinal injury in mice with influenza virus infection. Journal of Ethnopharmacology 218: 90–99.PubMedCrossRef
138.
Zurück zum Zitat Sun, K., R. Huang, L. Yan, D.T. Li, Y.Y. Liu, X.H. Wei, Y.C. Cui, C.S. Pan, J.Y. Fan, X. Wang, and J.Y. Han. 2018. Schisandrin attenuates lipopolysaccharide-induced lung injury by regulating TLR-4 and Akt/FoxO1 signaling pathways. Frontiers in Physiology 9: 1104.PubMedCentralPubMedCrossRef Sun, K., R. Huang, L. Yan, D.T. Li, Y.Y. Liu, X.H. Wei, Y.C. Cui, C.S. Pan, J.Y. Fan, X. Wang, and J.Y. Han. 2018. Schisandrin attenuates lipopolysaccharide-induced lung injury by regulating TLR-4 and Akt/FoxO1 signaling pathways. Frontiers in Physiology 9: 1104.PubMedCentralPubMedCrossRef
139.
Zurück zum Zitat Ma, L.Q., C.S. Pan, N. Yang, Y.Y. Liu, L. Yan, K. Sun, X.H. Wei, K. He, M.M. Xiao, J.Y. Fan, and J.Y. Han. 2014. Posttreatment with Ma-Xing-Shi-Gan-Tang, a Chinese medicine formula, ameliorates lipopolysaccharide-induced lung microvessel hyperpermeability and inflammatory reaction in rat. Microcirculation 21 (7): 649–663.PubMedCrossRef Ma, L.Q., C.S. Pan, N. Yang, Y.Y. Liu, L. Yan, K. Sun, X.H. Wei, K. He, M.M. Xiao, J.Y. Fan, and J.Y. Han. 2014. Posttreatment with Ma-Xing-Shi-Gan-Tang, a Chinese medicine formula, ameliorates lipopolysaccharide-induced lung microvessel hyperpermeability and inflammatory reaction in rat. Microcirculation 21 (7): 649–663.PubMedCrossRef
140.
Zurück zum Zitat Liu, M.W., Y.H. Wang, C.Y. Qian, and H. Li. 2014. Xuebijing exerts protective effects on lung permeability leakage and lung injury by upregulating toll-interacting protein expression in rats with sepsis. International Journal of Molecular Medicine 34 (6): 1492–1504.PubMedCentralPubMedCrossRef Liu, M.W., Y.H. Wang, C.Y. Qian, and H. Li. 2014. Xuebijing exerts protective effects on lung permeability leakage and lung injury by upregulating toll-interacting protein expression in rats with sepsis. International Journal of Molecular Medicine 34 (6): 1492–1504.PubMedCentralPubMedCrossRef
141.
Zurück zum Zitat Herath, K., H.J. Kim, J.H. Lee, J.G. Je, H.S. Yu, Y.J. Jeon, H.J. Kim, and Y. Jee. 2021. Sargassum horneri (Turner) C. Agardh containing polyphenols attenuates particulate matter-induced inflammatory response by blocking TLR-mediated MYD88-dependent MAPK signaling pathway in MLE-12 cells. Journal of Ethnopharmacology 265: 113340. Herath, K., H.J. Kim, J.H. Lee, J.G. Je, H.S. Yu, Y.J. Jeon, H.J. Kim, and Y. Jee. 2021. Sargassum horneri (Turner) C. Agardh containing polyphenols attenuates particulate matter-induced inflammatory response by blocking TLR-mediated MYD88-dependent MAPK signaling pathway in MLE-12 cells. Journal of Ethnopharmacology 265: 113340.
142.
Zurück zum Zitat Zhang, G., X. Zhang, H. Huang, Y. Ji, D. Li, and W. Jiang. 2018. Saquinavir plus methylprednisolone ameliorates experimental acute lung injury. Brazilian Journal of Medical and Biological Research 51 (10): e7579.PubMedCentralPubMedCrossRef Zhang, G., X. Zhang, H. Huang, Y. Ji, D. Li, and W. Jiang. 2018. Saquinavir plus methylprednisolone ameliorates experimental acute lung injury. Brazilian Journal of Medical and Biological Research 51 (10): e7579.PubMedCentralPubMedCrossRef
143.
Zurück zum Zitat Zhao, L., M. Li, K. Sun, S. Su, T. Geng, and H. Sun. 2020. Hippophae rhamnoides polysaccharides protect IPEC-J2 cells from LPS-induced inflammation, apoptosis and barrier dysfunction in vitro via inhibiting TLR4/NF-kappaB signaling pathway. International Journal of Biological Macromolecules 155: 1202–1215.PubMedCrossRef Zhao, L., M. Li, K. Sun, S. Su, T. Geng, and H. Sun. 2020. Hippophae rhamnoides polysaccharides protect IPEC-J2 cells from LPS-induced inflammation, apoptosis and barrier dysfunction in vitro via inhibiting TLR4/NF-kappaB signaling pathway. International Journal of Biological Macromolecules 155: 1202–1215.PubMedCrossRef
144.
Zurück zum Zitat Yang, S., L. Li, L. Yu, L. Sun, K. Li, C. Tong, W. Xu, G. Cui, M. Long, and P. Li. 2020. Selenium-enriched yeast reduces caecal pathological injuries and intervenes changes of the diversity of caecal microbiota caused by ochratoxin-A in broilers. Food and Chemical Toxicology: an International Journal Published for the British Industrial Biological Research Association 137: 111139.PubMedCrossRef Yang, S., L. Li, L. Yu, L. Sun, K. Li, C. Tong, W. Xu, G. Cui, M. Long, and P. Li. 2020. Selenium-enriched yeast reduces caecal pathological injuries and intervenes changes of the diversity of caecal microbiota caused by ochratoxin-A in broilers. Food and Chemical Toxicology: an International Journal Published for the British Industrial Biological Research Association 137: 111139.PubMedCrossRef
145.
Zurück zum Zitat Meduri, G.U., E. Golden, A.X. Freire, E. Taylor, M. Zaman, S.J. Carson, M. Gibson, and R. Umberger. 2007. Methylprednisolone infusion in early severe ARDS: Results of a randomized controlled trial. Chest 131 (4): 954–963.PubMedCrossRef Meduri, G.U., E. Golden, A.X. Freire, E. Taylor, M. Zaman, S.J. Carson, M. Gibson, and R. Umberger. 2007. Methylprednisolone infusion in early severe ARDS: Results of a randomized controlled trial. Chest 131 (4): 954–963.PubMedCrossRef
146.
Zurück zum Zitat Jamaati, H., S.M. Hashemian, B. Farzanegan, M. Malekmohammad, P. Tabarsi, M. Marjani, A. Moniri, Z. Abtahian, S. Haseli, E. Mortaz, A. Dastan, A. Mohamadnia, A. Vahedi, F. Monjazebi, F. Yassari, L. Fadaeizadeh, A. Saffaei, and F. Dastan. 2021. No clinical benefit of high dose corticosteroid administration in patients with COVID-19: A preliminary report of a randomized clinical trial. European Journal of Pharmacology 897: 173947.PubMedCentralPubMedCrossRef Jamaati, H., S.M. Hashemian, B. Farzanegan, M. Malekmohammad, P. Tabarsi, M. Marjani, A. Moniri, Z. Abtahian, S. Haseli, E. Mortaz, A. Dastan, A. Mohamadnia, A. Vahedi, F. Monjazebi, F. Yassari, L. Fadaeizadeh, A. Saffaei, and F. Dastan. 2021. No clinical benefit of high dose corticosteroid administration in patients with COVID-19: A preliminary report of a randomized clinical trial. European Journal of Pharmacology 897: 173947.PubMedCentralPubMedCrossRef
147.
Zurück zum Zitat Steinberg, K.P., L.D. Hudson, R.B. Goodman, C.L. Hough, P.N. Lanken, R. Hyzy, B.T. Thompson, M. Ancukiewicz, and L. National Heart. 2006. Blood Institute Acute Respiratory Distress Syndrome Clinical Trials N. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. The New England Journal of Medicine 354(16): 1671–1684. Steinberg, K.P., L.D. Hudson, R.B. Goodman, C.L. Hough, P.N. Lanken, R. Hyzy, B.T. Thompson, M. Ancukiewicz, and L. National Heart. 2006. Blood Institute Acute Respiratory Distress Syndrome Clinical Trials N. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. The New England Journal of Medicine 354(16): 1671–1684.
148.
Zurück zum Zitat Tongyoo, S., C. Permpikul, W. Mongkolpun, V. Vattanavanit, S. Udompanturak, M. Kocak, and G.U. Meduri. 2016. Hydrocortisone treatment in early sepsis-associated acute respiratory distress syndrome: Results of a randomized controlled trial. Critical Care 20 (1): 329.PubMedCentralPubMedCrossRef Tongyoo, S., C. Permpikul, W. Mongkolpun, V. Vattanavanit, S. Udompanturak, M. Kocak, and G.U. Meduri. 2016. Hydrocortisone treatment in early sepsis-associated acute respiratory distress syndrome: Results of a randomized controlled trial. Critical Care 20 (1): 329.PubMedCentralPubMedCrossRef
149.
Zurück zum Zitat Annane, D., V. Sébille, and E. Bellissant. 2006. Effect of low doses of corticosteroids in septic shock patients with or without early acute respiratory distress syndrome. Critical Care Medicine 34 (1): 22–30.PubMedCrossRef Annane, D., V. Sébille, and E. Bellissant. 2006. Effect of low doses of corticosteroids in septic shock patients with or without early acute respiratory distress syndrome. Critical Care Medicine 34 (1): 22–30.PubMedCrossRef
150.
Zurück zum Zitat Meduri, G.U., E.A. Tolley, G.P. Chrousos, and F. Stentz. 2002. Prolonged methylprednisolone treatment suppresses systemic inflammation in patients with unresolving acute respiratory distress syndrome: Evidence for inadequate endogenous glucocorticoid secretion and inflammation-induced immune cell resistance to glucocorticoids. American Journal of Respiratory and Critical Care Medicine 165 (7): 983–991.PubMedCrossRef Meduri, G.U., E.A. Tolley, G.P. Chrousos, and F. Stentz. 2002. Prolonged methylprednisolone treatment suppresses systemic inflammation in patients with unresolving acute respiratory distress syndrome: Evidence for inadequate endogenous glucocorticoid secretion and inflammation-induced immune cell resistance to glucocorticoids. American Journal of Respiratory and Critical Care Medicine 165 (7): 983–991.PubMedCrossRef
151.
Zurück zum Zitat Schwartz, H.J., F.C. Lowell, and J.C. Melby. 1968. Steroid resistance in bronchial asthma. Annals of Internal Medicine 69 (3): 493–499.PubMedCrossRef Schwartz, H.J., F.C. Lowell, and J.C. Melby. 1968. Steroid resistance in bronchial asthma. Annals of Internal Medicine 69 (3): 493–499.PubMedCrossRef
152.
Zurück zum Zitat Steinberg, K.P., L.D. Hudson, R.B. Goodman, C.L. Hough, P.N. Lanken, R. Hyzy, B.T. Thompson, and M. Ancukiewicz. 2006. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. The New England Journal of Medicine 354 (16): 1671–1684.PubMedCrossRef Steinberg, K.P., L.D. Hudson, R.B. Goodman, C.L. Hough, P.N. Lanken, R. Hyzy, B.T. Thompson, and M. Ancukiewicz. 2006. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. The New England Journal of Medicine 354 (16): 1671–1684.PubMedCrossRef
153.
Zurück zum Zitat Zhang, Z., L. Chen, and H. Ni. 2015. The effectiveness of corticosteroids on mortality in patients with acute respiratory distress syndrome or acute lung injury: A secondary analysis. Scientific Reports 5: 17654.CrossRef Zhang, Z., L. Chen, and H. Ni. 2015. The effectiveness of corticosteroids on mortality in patients with acute respiratory distress syndrome or acute lung injury: A secondary analysis. Scientific Reports 5: 17654.CrossRef
154.
Zurück zum Zitat den Otter, J.J., C.P. van Schayck, H.T. Folgering, G. van den Boom, R.P. Akkermans, and C. van Weel. 2007. Early intervention with inhaled corticosteroids in subjects with rapid decline in lung function and signs of bronchial hyperresponsiveness: Results from the DIMCA programme. The European Journal of General Practice 13 (2): 89–91.CrossRef den Otter, J.J., C.P. van Schayck, H.T. Folgering, G. van den Boom, R.P. Akkermans, and C. van Weel. 2007. Early intervention with inhaled corticosteroids in subjects with rapid decline in lung function and signs of bronchial hyperresponsiveness: Results from the DIMCA programme. The European Journal of General Practice 13 (2): 89–91.CrossRef
155.
Zurück zum Zitat Grünberg, K., R.F. Sharon, J.K. Sont, J.C. In‘t Veen, W.A. Van Schadewijk, E.P. De Klerk, C.R. Dick, J.H. Van Krieken, and P.J. Sterk. 2001. Rhinovirus-induced airway inflammation in asthma: effect of treatment with inhaled corticosteroids before and during experimental infection. American Journal of Respiratory and Critical Care Medicine 164(10 Pt 1): 1816–1822. Grünberg, K., R.F. Sharon, J.K. Sont, J.C. In‘t Veen, W.A. Van Schadewijk, E.P. De Klerk, C.R. Dick, J.H. Van Krieken, and P.J. Sterk. 2001. Rhinovirus-induced airway inflammation in asthma: effect of treatment with inhaled corticosteroids before and during experimental infection. American Journal of Respiratory and Critical Care Medicine 164(10 Pt 1): 1816–1822.
156.
Zurück zum Zitat Vähätalo, I., P. Ilmarinen, L.E. Tuomisto, O. Niemelä, and H. Kankaanranta. 2018. Inhaled corticosteroids and asthma control in adult-onset asthma: 12-year follow-up study. Respiratory Medicine 137: 70–76.PubMedCrossRef Vähätalo, I., P. Ilmarinen, L.E. Tuomisto, O. Niemelä, and H. Kankaanranta. 2018. Inhaled corticosteroids and asthma control in adult-onset asthma: 12-year follow-up study. Respiratory Medicine 137: 70–76.PubMedCrossRef
157.
Zurück zum Zitat Stahn, C., M. Lowenberg, D.W. Hommes, and F. Buttgereit. 2007. Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists. Molecular and Cellular Endocrinology 275 (1–2): 71–78.PubMedCrossRef Stahn, C., M. Lowenberg, D.W. Hommes, and F. Buttgereit. 2007. Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists. Molecular and Cellular Endocrinology 275 (1–2): 71–78.PubMedCrossRef
158.
Zurück zum Zitat Buttgereit, F., K.G. Saag, M. Cutolo, J.A. da Silva, and J.W. Bijlsma. 2005. The molecular basis for the effectiveness, toxicity, and resistance to glucocorticoids: Focus on the treatment of rheumatoid arthritis. Scandinavian Journal of Rheumatology 34 (1): 14–21.PubMedCrossRef Buttgereit, F., K.G. Saag, M. Cutolo, J.A. da Silva, and J.W. Bijlsma. 2005. The molecular basis for the effectiveness, toxicity, and resistance to glucocorticoids: Focus on the treatment of rheumatoid arthritis. Scandinavian Journal of Rheumatology 34 (1): 14–21.PubMedCrossRef
159.
Zurück zum Zitat Ramamoorthy, S., and J.A. Cidlowski. 2016. Corticosteroids: mechanisms of action in health and disease. Rheumatic Diseases Clinics of North America 42(1): 15–31, vii. Ramamoorthy, S., and J.A. Cidlowski. 2016. Corticosteroids: mechanisms of action in health and disease. Rheumatic Diseases Clinics of North America 42(1): 15–31, vii.
160.
Zurück zum Zitat Kim, S.R., and Y.C. Lee. 2015. Endoplasmic reticulum stress and the related signaling networks in severe asthma. Allergy, Asthma & Immunology Research 7 (2): 106–117.CrossRef Kim, S.R., and Y.C. Lee. 2015. Endoplasmic reticulum stress and the related signaling networks in severe asthma. Allergy, Asthma & Immunology Research 7 (2): 106–117.CrossRef
161.
Zurück zum Zitat MacRedmond, R.E., C.M. Greene, D.R. Dorscheid, N.G. McElvaney, and S.J. O’Neill. 2007. Epithelial expression of TLR4 is modulated in COPD and by steroids, salmeterol and cigarette smoke. Respiratory Research 8 (1): 84.PubMedCentralPubMedCrossRef MacRedmond, R.E., C.M. Greene, D.R. Dorscheid, N.G. McElvaney, and S.J. O’Neill. 2007. Epithelial expression of TLR4 is modulated in COPD and by steroids, salmeterol and cigarette smoke. Respiratory Research 8 (1): 84.PubMedCentralPubMedCrossRef
162.
Zurück zum Zitat Kielgast, F., H. Schmidt, P. Braubach, V.E. Winkelmann, K.E. Thompson, M. Frick, P. Dietl, and O.H. Wittekindt. 2016. Glucocorticoids regulate tight junction permeability of lung epithelia by modulating Claudin 8. American Journal of Respiratory Cell and Molecular Biology 54 (5): 707–717.PubMedCrossRef Kielgast, F., H. Schmidt, P. Braubach, V.E. Winkelmann, K.E. Thompson, M. Frick, P. Dietl, and O.H. Wittekindt. 2016. Glucocorticoids regulate tight junction permeability of lung epithelia by modulating Claudin 8. American Journal of Respiratory Cell and Molecular Biology 54 (5): 707–717.PubMedCrossRef
163.
Zurück zum Zitat Barnes, P.J. 2006. Corticosteroids: The drugs to beat. European Journal of Pharmacology 533 (1–3): 2–14.PubMedCrossRef Barnes, P.J. 2006. Corticosteroids: The drugs to beat. European Journal of Pharmacology 533 (1–3): 2–14.PubMedCrossRef
164.
165.
Zurück zum Zitat Sousa, A.R., S.J. Lane, J.A. Cidlowski, D.Z. Staynov, and T.H. Lee. 2000. Glucocorticoid resistance in asthma is associated with elevated in vivo expression of the glucocorticoid receptor beta-isoform. The Journal of Allergy and Clinical Immunology 105 (5): 943–950.PubMedCrossRef Sousa, A.R., S.J. Lane, J.A. Cidlowski, D.Z. Staynov, and T.H. Lee. 2000. Glucocorticoid resistance in asthma is associated with elevated in vivo expression of the glucocorticoid receptor beta-isoform. The Journal of Allergy and Clinical Immunology 105 (5): 943–950.PubMedCrossRef
166.
Zurück zum Zitat Cho, Y.J., and K.E. Lee. 2003. Decreased glucocorticoid binding affinity to glucocorticoid receptor is important in the poor response to steroid therapy of older-aged patients with severe bronchial asthma. Allergy and Asthma Proceedings 24 (5): 353–358.PubMed Cho, Y.J., and K.E. Lee. 2003. Decreased glucocorticoid binding affinity to glucocorticoid receptor is important in the poor response to steroid therapy of older-aged patients with severe bronchial asthma. Allergy and Asthma Proceedings 24 (5): 353–358.PubMed
167.
Zurück zum Zitat Kim, R.Y., J.W. Pinkerton, P.G. Gibson, M.A. Cooper, J.C. Horvat, and P.M. Hansbro. 2015. Inflammasomes in COPD and neutrophilic asthma. Thorax 70 (12): 1199–1201.PubMedCrossRef Kim, R.Y., J.W. Pinkerton, P.G. Gibson, M.A. Cooper, J.C. Horvat, and P.M. Hansbro. 2015. Inflammasomes in COPD and neutrophilic asthma. Thorax 70 (12): 1199–1201.PubMedCrossRef
168.
Zurück zum Zitat Kim, R.Y., J.W. Pinkerton, A.T. Essilfie, A.A.B. Robertson, K.J. Baines, A.C. Brown, J.R. Mayall, M.K. Ali, M.R. Starkey, N.G. Hansbro, J.A. Hirota, L.G. Wood, J.L. Simpson, D.A. Knight, P.A. Wark, P.G. Gibson, L.A.J. O’Neill, M.A. Cooper, J.C. Horvat, and P.M. Hansbro. 2017. Role for NLRP3 Inflammasome-mediated, IL-1beta-dependent responses in severe, steroid-resistant asthma. American Journal of Respiratory and Critical Care Medicine 196 (3): 283–297.PubMedCrossRef Kim, R.Y., J.W. Pinkerton, A.T. Essilfie, A.A.B. Robertson, K.J. Baines, A.C. Brown, J.R. Mayall, M.K. Ali, M.R. Starkey, N.G. Hansbro, J.A. Hirota, L.G. Wood, J.L. Simpson, D.A. Knight, P.A. Wark, P.G. Gibson, L.A.J. O’Neill, M.A. Cooper, J.C. Horvat, and P.M. Hansbro. 2017. Role for NLRP3 Inflammasome-mediated, IL-1beta-dependent responses in severe, steroid-resistant asthma. American Journal of Respiratory and Critical Care Medicine 196 (3): 283–297.PubMedCrossRef
169.
Zurück zum Zitat Stolberg, V.R., A.L. McCubbrey, C.M. Freeman, J.P. Brown, S.W. Crudgington, S.H. Taitano, B.L. Saxton, P. Mancuso, and J.L. Curtis. 2015. Glucocorticoid-augmented efferocytosis inhibits pulmonary pneumococcal clearance in mice by reducing alveolar macrophage bactericidal function. The Journal of Immunology 195 (1): 174–184.PubMedCrossRef Stolberg, V.R., A.L. McCubbrey, C.M. Freeman, J.P. Brown, S.W. Crudgington, S.H. Taitano, B.L. Saxton, P. Mancuso, and J.L. Curtis. 2015. Glucocorticoid-augmented efferocytosis inhibits pulmonary pneumococcal clearance in mice by reducing alveolar macrophage bactericidal function. The Journal of Immunology 195 (1): 174–184.PubMedCrossRef
170.
Zurück zum Zitat Crim, C., P.M. Calverley, J.A. Anderson, B. Celli, G.T. Ferguson, C. Jenkins, P.W. Jones, L.R. Willits, J.C. Yates, and J. Vestbo. 2009. Pneumonia risk in COPD patients receiving inhaled corticosteroids alone or in combination: TORCH study results. The European Respiratory Journal 34 (3): 641–647.PubMedCrossRef Crim, C., P.M. Calverley, J.A. Anderson, B. Celli, G.T. Ferguson, C. Jenkins, P.W. Jones, L.R. Willits, J.C. Yates, and J. Vestbo. 2009. Pneumonia risk in COPD patients receiving inhaled corticosteroids alone or in combination: TORCH study results. The European Respiratory Journal 34 (3): 641–647.PubMedCrossRef
171.
Zurück zum Zitat Suissa, S., V. Patenaude, F. Lapi, and P. Ernst. 2013. Inhaled corticosteroids in COPD and the risk of serious pneumonia. Thorax 68 (11): 1029–1036.PubMedCrossRef Suissa, S., V. Patenaude, F. Lapi, and P. Ernst. 2013. Inhaled corticosteroids in COPD and the risk of serious pneumonia. Thorax 68 (11): 1029–1036.PubMedCrossRef
172.
Zurück zum Zitat Goleva, E., L.P. Jackson, J.K. Harris, C.E. Robertson, E.R. Sutherland, C.F. Hall, J.T. Good Jr., E.W. Gelfand, R.J. Martin, and D.Y. Leung. 2013. The effects of airway microbiome on corticosteroid responsiveness in asthma. American Journal of Respiratory and Critical Care Medicine 188 (10): 1193–1201.PubMedCentralPubMedCrossRef Goleva, E., L.P. Jackson, J.K. Harris, C.E. Robertson, E.R. Sutherland, C.F. Hall, J.T. Good Jr., E.W. Gelfand, R.J. Martin, and D.Y. Leung. 2013. The effects of airway microbiome on corticosteroid responsiveness in asthma. American Journal of Respiratory and Critical Care Medicine 188 (10): 1193–1201.PubMedCentralPubMedCrossRef
173.
Zurück zum Zitat Ueda, K., Y. Nishimoto, G. Kimura, T. Masuko, P.J. Barnes, K. Ito, and Y. Kizawa. 2016. Repeated lipopolysaccharide exposure causes corticosteroid insensitive airway inflammation via activation of phosphoinositide-3-kinase delta pathway. Biochemistry and Biophysics Reports 7: 367–373.PubMedCentralPubMed Ueda, K., Y. Nishimoto, G. Kimura, T. Masuko, P.J. Barnes, K. Ito, and Y. Kizawa. 2016. Repeated lipopolysaccharide exposure causes corticosteroid insensitive airway inflammation via activation of phosphoinositide-3-kinase delta pathway. Biochemistry and Biophysics Reports 7: 367–373.PubMedCentralPubMed
174.
Zurück zum Zitat Hadebe, S., F. Kirstein, K. Fierens, K. Chen, R.A. Drummond, S. Vautier, S. Sajaniemi, G. Murray, D.L. Williams, P. Redelinghuys, T.A. Reinhart, B.A. Junecko, J.K. Kolls, B.N. Lambrecht, F. Brombacher, and G.D. Brown. 2015. Correction: Microbial ligand costimulation drives neutrophilic steroid-refractory asthma. PLoS One 10 (9): e0137945.PubMedCentralPubMedCrossRef Hadebe, S., F. Kirstein, K. Fierens, K. Chen, R.A. Drummond, S. Vautier, S. Sajaniemi, G. Murray, D.L. Williams, P. Redelinghuys, T.A. Reinhart, B.A. Junecko, J.K. Kolls, B.N. Lambrecht, F. Brombacher, and G.D. Brown. 2015. Correction: Microbial ligand costimulation drives neutrophilic steroid-refractory asthma. PLoS One 10 (9): e0137945.PubMedCentralPubMedCrossRef
175.
Zurück zum Zitat Yang, M., R.K. Kumar, and P.S. Foster. 2009. Pathogenesis of steroid-resistant airway hyperresponsiveness: Interaction between IFN-gamma and TLR4/MyD88 pathways. The Journal of Immunology 182 (8): 5107–5115.PubMedCrossRef Yang, M., R.K. Kumar, and P.S. Foster. 2009. Pathogenesis of steroid-resistant airway hyperresponsiveness: Interaction between IFN-gamma and TLR4/MyD88 pathways. The Journal of Immunology 182 (8): 5107–5115.PubMedCrossRef
176.
Zurück zum Zitat Southworth, T., A. Metryka, S. Lea, S. Farrow, J. Plumb, and D. Singh. 2012. IFN-gamma synergistically enhances LPS signalling in alveolar macrophages from COPD patients and controls by corticosteroid-resistant STAT1 activation. British Journal of Pharmacology 166 (7): 2070–2083.PubMedCentralPubMedCrossRef Southworth, T., A. Metryka, S. Lea, S. Farrow, J. Plumb, and D. Singh. 2012. IFN-gamma synergistically enhances LPS signalling in alveolar macrophages from COPD patients and controls by corticosteroid-resistant STAT1 activation. British Journal of Pharmacology 166 (7): 2070–2083.PubMedCentralPubMedCrossRef
177.
Zurück zum Zitat Hart, L., S. Lim, I. Adcock, P.J. Barnes, and K.F. Chung. 2000. Effects of inhaled corticosteroid therapy on expression and DNA-binding activity of nuclear factor kappaB in asthma. American Journal of Respiratory and Critical Care Medicine 161 (1): 224–231.PubMedCrossRef Hart, L., S. Lim, I. Adcock, P.J. Barnes, and K.F. Chung. 2000. Effects of inhaled corticosteroid therapy on expression and DNA-binding activity of nuclear factor kappaB in asthma. American Journal of Respiratory and Critical Care Medicine 161 (1): 224–231.PubMedCrossRef
178.
Zurück zum Zitat Raleigh, D.R., A.M. Marchiando, Y. Zhang, L. Shen, H. Sasaki, Y. Wang, M. Long, and J.R. Turner. 2010. Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions. Molecular Biology of the Cell 21 (7): 1200–1213.PubMedCentralPubMedCrossRef Raleigh, D.R., A.M. Marchiando, Y. Zhang, L. Shen, H. Sasaki, Y. Wang, M. Long, and J.R. Turner. 2010. Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions. Molecular Biology of the Cell 21 (7): 1200–1213.PubMedCentralPubMedCrossRef
179.
Zurück zum Zitat Smyth, T., J. Veazey, S. Eliseeva, D. Chalupa, A. Elder, and S.N. Georas. 2020. Diesel exhaust particle exposure reduces expression of the epithelial tight junction protein tricellulin. Particle and Fibre Toxicology 17 (1): 52.PubMedCentralPubMedCrossRef Smyth, T., J. Veazey, S. Eliseeva, D. Chalupa, A. Elder, and S.N. Georas. 2020. Diesel exhaust particle exposure reduces expression of the epithelial tight junction protein tricellulin. Particle and Fibre Toxicology 17 (1): 52.PubMedCentralPubMedCrossRef
180.
Zurück zum Zitat Riazuddin, S., Z.M. Ahmed, A.S. Fanning, A. Lagziel, S. Kitajiri, K. Ramzan, S.N. Khan, P. Chattaraj, P.L. Friedman, J.M. Anderson, I.A. Belyantseva, A. Forge, S. Riazuddin, and T.B. Friedman. 2006. Tricellulin is a tight-junction protein necessary for hearing. American Journal of Human Genetics 79 (6): 1040–1051.PubMedCentralPubMedCrossRef Riazuddin, S., Z.M. Ahmed, A.S. Fanning, A. Lagziel, S. Kitajiri, K. Ramzan, S.N. Khan, P. Chattaraj, P.L. Friedman, J.M. Anderson, I.A. Belyantseva, A. Forge, S. Riazuddin, and T.B. Friedman. 2006. Tricellulin is a tight-junction protein necessary for hearing. American Journal of Human Genetics 79 (6): 1040–1051.PubMedCentralPubMedCrossRef
181.
Zurück zum Zitat Kojima, T., Y. Shindo, T. Konno, Y. Kodera, W. Arai, M. Miyakawa, K. Ohwada, H. Tanaka, M. Tsujiwaki, Y. Sakuma, S. Kikuchi, T. Ohkuni, K. Takano, A. Watanabe, and T. Kohno. 2022. Dysfunction of epithelial permeability barrier induced by HMGB1 in 2.5D cultures of human epithelial cells. Tissue Barriers 10 (2): 1972760. Kojima, T., Y. Shindo, T. Konno, Y. Kodera, W. Arai, M. Miyakawa, K. Ohwada, H. Tanaka, M. Tsujiwaki, Y. Sakuma, S. Kikuchi, T. Ohkuni, K. Takano, A. Watanabe, and T. Kohno. 2022. Dysfunction of epithelial permeability barrier induced by HMGB1 in 2.5D cultures of human epithelial cells. Tissue Barriers 10 (2): 1972760.
182.
Zurück zum Zitat Zhang, Z.W., A.R. Ansari, L. Dong, X.Y. Niu, W.J. Yang, H.Z. Li, F.L. Xu, K.L. Yang, and H. Song. 2022. Alterations in the expression level of visfatin in the lungs of piglets infected with PRRSV and its effect on PRRSV replication. Microbial Pathogenesis 164: 105443.PubMedCrossRef Zhang, Z.W., A.R. Ansari, L. Dong, X.Y. Niu, W.J. Yang, H.Z. Li, F.L. Xu, K.L. Yang, and H. Song. 2022. Alterations in the expression level of visfatin in the lungs of piglets infected with PRRSV and its effect on PRRSV replication. Microbial Pathogenesis 164: 105443.PubMedCrossRef
183.
Zurück zum Zitat Tessema, M., C.M. Yingling, Y. Liu, C.S. Tellez, L. Van Neste, S.S. Baylin, and S.A. Belinsky. 2014. Genome-wide unmasking of epigenetically silenced genes in lung adenocarcinoma from smokers and never smokers. Carcinogenesis 35 (6): 1248–1257.PubMedCentralPubMedCrossRef Tessema, M., C.M. Yingling, Y. Liu, C.S. Tellez, L. Van Neste, S.S. Baylin, and S.A. Belinsky. 2014. Genome-wide unmasking of epigenetically silenced genes in lung adenocarcinoma from smokers and never smokers. Carcinogenesis 35 (6): 1248–1257.PubMedCentralPubMedCrossRef
184.
Zurück zum Zitat Kaarteenaho, R., H. Merikallio, S. Lehtonen, T. Harju, and Y. Soini. 2010. Divergent expression of claudin-1, -3, -4, -5 and -7 in developing human lung. Respiratory Research 11 (1): 59.PubMedCentralPubMedCrossRef Kaarteenaho, R., H. Merikallio, S. Lehtonen, T. Harju, and Y. Soini. 2010. Divergent expression of claudin-1, -3, -4, -5 and -7 in developing human lung. Respiratory Research 11 (1): 59.PubMedCentralPubMedCrossRef
185.
Zurück zum Zitat Kaarteenaho-Wiik, R., and Y. Soini. 2009. Claudin-1, -2, -3, -4, -5, and -7 in usual interstitial pneumonia and sarcoidosis. Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society 57 (3): 187–195.CrossRef Kaarteenaho-Wiik, R., and Y. Soini. 2009. Claudin-1, -2, -3, -4, -5, and -7 in usual interstitial pneumonia and sarcoidosis. Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society 57 (3): 187–195.CrossRef
186.
Zurück zum Zitat Kostrewa, D., M. Brockhaus, A. D’Arcy, G.E. Dale, P. Nelboeck, G. Schmid, F. Mueller, G. Bazzoni, E. Dejana, T. Bartfai, F.K. Winkler, and M. Hennig. 2001. X-ray structure of junctional adhesion molecule: Structural basis for homophilic adhesion via a novel dimerization motif. The EMBO Journal 20 (16): 4391–4398.PubMedCentralPubMedCrossRef Kostrewa, D., M. Brockhaus, A. D’Arcy, G.E. Dale, P. Nelboeck, G. Schmid, F. Mueller, G. Bazzoni, E. Dejana, T. Bartfai, F.K. Winkler, and M. Hennig. 2001. X-ray structure of junctional adhesion molecule: Structural basis for homophilic adhesion via a novel dimerization motif. The EMBO Journal 20 (16): 4391–4398.PubMedCentralPubMedCrossRef
187.
Zurück zum Zitat Weber, C., L. Fraemohs, and E. Dejana. 2007. The role of junctional adhesion molecules in vascular inflammation. Nature Reviews. Immunology 7 (6): 467–477.PubMedCrossRef Weber, C., L. Fraemohs, and E. Dejana. 2007. The role of junctional adhesion molecules in vascular inflammation. Nature Reviews. Immunology 7 (6): 467–477.PubMedCrossRef
189.
Zurück zum Zitat Bauer, H., J. Zweimueller-Mayer, P. Steinbacher, A. Lametschwandtner, and H.C. Bauer. 2010. The dual role of zonula occludens (ZO) proteins. Journal of Biomedicine & Biotechnology 2010: 402593.CrossRef Bauer, H., J. Zweimueller-Mayer, P. Steinbacher, A. Lametschwandtner, and H.C. Bauer. 2010. The dual role of zonula occludens (ZO) proteins. Journal of Biomedicine & Biotechnology 2010: 402593.CrossRef
190.
Zurück zum Zitat Balda, M.S., and K. Matter. 2000. The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression. The EMBO Journal 19 (9): 2024–2033.PubMedCentralPubMedCrossRef Balda, M.S., and K. Matter. 2000. The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression. The EMBO Journal 19 (9): 2024–2033.PubMedCentralPubMedCrossRef
191.
Zurück zum Zitat Betanzos, A., M. Huerta, E. Lopez-Bayghen, E. Azuara, J. Amerena, and L. Gonzalez-Mariscal. 2004. The tight junction protein ZO-2 associates with Jun, Fos and C/EBP transcription factors in epithelial cells. Experimental Cell Research 292 (1): 51–66.PubMedCrossRef Betanzos, A., M. Huerta, E. Lopez-Bayghen, E. Azuara, J. Amerena, and L. Gonzalez-Mariscal. 2004. The tight junction protein ZO-2 associates with Jun, Fos and C/EBP transcription factors in epithelial cells. Experimental Cell Research 292 (1): 51–66.PubMedCrossRef
192.
Zurück zum Zitat Traweger, A., R. Fuchs, I.A. Krizbai, T.M. Weiger, H.C. Bauer, and H. Bauer. 2003. The tight junction protein ZO-2 localizes to the nucleus and interacts with the heterogeneous nuclear ribonucleoprotein scaffold attachment factor-B. Journal of Biological Chemistry 278 (4): 2692–2700.PubMedCrossRef Traweger, A., R. Fuchs, I.A. Krizbai, T.M. Weiger, H.C. Bauer, and H. Bauer. 2003. The tight junction protein ZO-2 localizes to the nucleus and interacts with the heterogeneous nuclear ribonucleoprotein scaffold attachment factor-B. Journal of Biological Chemistry 278 (4): 2692–2700.PubMedCrossRef
193.
Zurück zum Zitat Xia, W., Z. Pan, H. Zhang, Q. Zhou, and Y. Liu. 2020. Inhibition of ERRalpha aggravates sepsis-induced acute lung injury in rats via provoking inflammation and oxidative stress. Oxidative Medicine and Cellular Longevity 2020: 2048632.PubMedCentralPubMedCrossRef Xia, W., Z. Pan, H. Zhang, Q. Zhou, and Y. Liu. 2020. Inhibition of ERRalpha aggravates sepsis-induced acute lung injury in rats via provoking inflammation and oxidative stress. Oxidative Medicine and Cellular Longevity 2020: 2048632.PubMedCentralPubMedCrossRef
194.
Zurück zum Zitat Chen, B., Z. Yang, C. Yang, W. Qin, J. Gu, C. Hu, A. Chen, K. Ning, B. Yi, and K. Lu. 2018. A self-organized actomyosin drives multiple intercellular junction disruption and directly promotes neutrophil recruitment in lipopolysaccharide-induced acute lung injury. The FASEB Journal fj201701506RR. Chen, B., Z. Yang, C. Yang, W. Qin, J. Gu, C. Hu, A. Chen, K. Ning, B. Yi, and K. Lu. 2018. A self-organized actomyosin drives multiple intercellular junction disruption and directly promotes neutrophil recruitment in lipopolysaccharide-induced acute lung injury. The FASEB Journal fj201701506RR.
195.
Zurück zum Zitat Gross, C.M., M. Kellner, T. Wang, Q. Lu, X. Sun, E.A. Zemskov, S. Noonepalle, A. Kangath, S. Kumar, M. Gonzalez-Garay, A.A. Desai, S. Aggarwal, B. Gorshkov, C. Klinger, A.D. Verin, J.D. Catravas, J.R. Jacobson, J.X. Yuan, R. Rafikov, J.G.N. Garcia, and S.M. Black. 2018. LPS-induced acute lung injury involves NF-kappaB-mediated downregulation of SOX18. American Journal of Respiratory Cell and Molecular Biology 58 (5): 614–624.PubMedCentralPubMedCrossRef Gross, C.M., M. Kellner, T. Wang, Q. Lu, X. Sun, E.A. Zemskov, S. Noonepalle, A. Kangath, S. Kumar, M. Gonzalez-Garay, A.A. Desai, S. Aggarwal, B. Gorshkov, C. Klinger, A.D. Verin, J.D. Catravas, J.R. Jacobson, J.X. Yuan, R. Rafikov, J.G.N. Garcia, and S.M. Black. 2018. LPS-induced acute lung injury involves NF-kappaB-mediated downregulation of SOX18. American Journal of Respiratory Cell and Molecular Biology 58 (5): 614–624.PubMedCentralPubMedCrossRef
196.
Zurück zum Zitat Kling, K.M., E. Lopez-Rodriguez, C. Pfarrer, C. Muhlfeld, and C. Brandenberger. 2017. Aging exacerbates acute lung injury-induced changes of the air-blood barrier, lung function, and inflammation in the mouse. American Journal of Physiology. Lung Cellular and Molecular Physiology 312 (1): L1–L12.PubMedCrossRef Kling, K.M., E. Lopez-Rodriguez, C. Pfarrer, C. Muhlfeld, and C. Brandenberger. 2017. Aging exacerbates acute lung injury-induced changes of the air-blood barrier, lung function, and inflammation in the mouse. American Journal of Physiology. Lung Cellular and Molecular Physiology 312 (1): L1–L12.PubMedCrossRef
197.
Zurück zum Zitat Feng, J., W. Pan, X. Yang, F. Long, J. Zhou, Y. Liao, and M. Wang. 2021. RBM3 increases cell survival but disrupts tight junction of microvascular endothelial cells in acute lung injury. The Journal of Surgical Research 261: 226–235.PubMedCrossRef Feng, J., W. Pan, X. Yang, F. Long, J. Zhou, Y. Liao, and M. Wang. 2021. RBM3 increases cell survival but disrupts tight junction of microvascular endothelial cells in acute lung injury. The Journal of Surgical Research 261: 226–235.PubMedCrossRef
198.
Zurück zum Zitat Zhang, Y.L., Q.Q. Li, W. Guo, Y. Huang, and J. Yang. 2007. Effects of chronic ethanol ingestion on tight junction proteins and barrier function of alveolar epithelium in the rat. Shock 28 (2): 245–252.PubMedCrossRef Zhang, Y.L., Q.Q. Li, W. Guo, Y. Huang, and J. Yang. 2007. Effects of chronic ethanol ingestion on tight junction proteins and barrier function of alveolar epithelium in the rat. Shock 28 (2): 245–252.PubMedCrossRef
199.
Zurück zum Zitat Tang, M., L. Chen, B. Li, Y. Wang, S. Li, A. Wen, S. Yao, and Y. Shang. 2016. BML-111 attenuates acute lung injury in endotoxemic mice. The Journal of Surgical Research 200 (2): 619–630.PubMedCrossRef Tang, M., L. Chen, B. Li, Y. Wang, S. Li, A. Wen, S. Yao, and Y. Shang. 2016. BML-111 attenuates acute lung injury in endotoxemic mice. The Journal of Surgical Research 200 (2): 619–630.PubMedCrossRef
200.
Zurück zum Zitat Zhao, X., C. Gu, and Y. Wang. 2020. PAD4 selective inhibitor TDFA protects lipopolysaccharide-induced acute lung injury by modulating nuclear p65 localization in epithelial cells. International Immunopharmacology 88: 106923.PubMedCrossRef Zhao, X., C. Gu, and Y. Wang. 2020. PAD4 selective inhibitor TDFA protects lipopolysaccharide-induced acute lung injury by modulating nuclear p65 localization in epithelial cells. International Immunopharmacology 88: 106923.PubMedCrossRef
201.
Zurück zum Zitat Fisher, B.J., D. Kraskauskas, E.J. Martin, D. Farkas, J.A. Wegelin, D. Brophy, K.R. Ward, N.F. Voelkel, A.A. Fowler 3rd., and R. Natarajan. 2012. Mechanisms of attenuation of abdominal sepsis induced acute lung injury by ascorbic acid. American Journal of Physiology. Lung Cellular and Molecular Physiology 303 (1): L20-32.PubMedCrossRef Fisher, B.J., D. Kraskauskas, E.J. Martin, D. Farkas, J.A. Wegelin, D. Brophy, K.R. Ward, N.F. Voelkel, A.A. Fowler 3rd., and R. Natarajan. 2012. Mechanisms of attenuation of abdominal sepsis induced acute lung injury by ascorbic acid. American Journal of Physiology. Lung Cellular and Molecular Physiology 303 (1): L20-32.PubMedCrossRef
202.
Zurück zum Zitat Liu, M.M., J. Zhou, D. Ji, J. Yang, Y.P. Huang, and Q. Wang. 2021. Diammonium glycyrrhizinate lipid ligand ameliorates lipopolysaccharide-induced acute lung injury by modulating vascular endothelial barrier function. Experimental and Therapeutic Medicine 21 (4): 303.PubMedCentralPubMedCrossRef Liu, M.M., J. Zhou, D. Ji, J. Yang, Y.P. Huang, and Q. Wang. 2021. Diammonium glycyrrhizinate lipid ligand ameliorates lipopolysaccharide-induced acute lung injury by modulating vascular endothelial barrier function. Experimental and Therapeutic Medicine 21 (4): 303.PubMedCentralPubMedCrossRef
203.
Zurück zum Zitat Yao, L., Y. Tang, J. Chen, J. Li, H. Wang, M. Lu, L. Gao, F. Liu, P. Chang, X. Liu, and H. Tang. 2021. Impaired airway epithelial barrier integrity was mediated by PI3Kdelta in a mouse model of lipopolysaccharide-induced acute lung injury. International Immunopharmacology 95: 107570.PubMedCrossRef Yao, L., Y. Tang, J. Chen, J. Li, H. Wang, M. Lu, L. Gao, F. Liu, P. Chang, X. Liu, and H. Tang. 2021. Impaired airway epithelial barrier integrity was mediated by PI3Kdelta in a mouse model of lipopolysaccharide-induced acute lung injury. International Immunopharmacology 95: 107570.PubMedCrossRef
204.
Zurück zum Zitat Yuan, Z.C., N. Zeng, L. Liu, T. Wang, L.Q. Dai, H. Wang, Z.J. Zeng, Y.F. Cao, Y.F. Zhou, D. Xu, Y.C. Shen, and F.Q. Wen. 2021. Mitochondrial damage-associated molecular patterns exacerbate lung fluid imbalance via the formyl peptide receptor-1 signaling pathway in acute lung injury. Critical Care Medicine 49 (1): e53–e62.PubMedCrossRef Yuan, Z.C., N. Zeng, L. Liu, T. Wang, L.Q. Dai, H. Wang, Z.J. Zeng, Y.F. Cao, Y.F. Zhou, D. Xu, Y.C. Shen, and F.Q. Wen. 2021. Mitochondrial damage-associated molecular patterns exacerbate lung fluid imbalance via the formyl peptide receptor-1 signaling pathway in acute lung injury. Critical Care Medicine 49 (1): e53–e62.PubMedCrossRef
205.
Zurück zum Zitat Shan, Y., A. Akram, H. Amatullah, D.Y. Zhou, P.L. Gali, T. Maron-Gutierrez, A. Gonzalez-Lopez, L. Zhou, P.R. Rocco, D. Hwang, G.M. Albaiceta, J.J. Haitsma, and C.C. dos Santos. 2015. ATF3 protects pulmonary resident cells from acute and ventilator-induced lung injury by preventing Nrf2 degradation. Antioxidants & Redox Signaling 22 (8): 651–668.CrossRef Shan, Y., A. Akram, H. Amatullah, D.Y. Zhou, P.L. Gali, T. Maron-Gutierrez, A. Gonzalez-Lopez, L. Zhou, P.R. Rocco, D. Hwang, G.M. Albaiceta, J.J. Haitsma, and C.C. dos Santos. 2015. ATF3 protects pulmonary resident cells from acute and ventilator-induced lung injury by preventing Nrf2 degradation. Antioxidants & Redox Signaling 22 (8): 651–668.CrossRef
206.
Zurück zum Zitat Meng, F., A. Meliton, N. Moldobaeva, G. Mutlu, Y. Kawasaki, T. Akiyama, and A.A. Birukova. 2015. Asef mediates HGF protective effects against LPS-induced lung injury and endothelial barrier dysfunction. American Journal of Physiology. Lung Cellular and Molecular Physiology 308 (5): L452-463.PubMedCrossRef Meng, F., A. Meliton, N. Moldobaeva, G. Mutlu, Y. Kawasaki, T. Akiyama, and A.A. Birukova. 2015. Asef mediates HGF protective effects against LPS-induced lung injury and endothelial barrier dysfunction. American Journal of Physiology. Lung Cellular and Molecular Physiology 308 (5): L452-463.PubMedCrossRef
207.
Zurück zum Zitat Zhou, Y., P. Li, A.J. Goodwin, J.A. Cook, P.V. Halushka, E. Chang, B. Zingarelli, and H. Fan. 2019. Exosomes from endothelial progenitor cells improve outcomes of the lipopolysaccharide-induced acute lung injury. Critical Care 23 (1): 44.PubMedCentralPubMedCrossRef Zhou, Y., P. Li, A.J. Goodwin, J.A. Cook, P.V. Halushka, E. Chang, B. Zingarelli, and H. Fan. 2019. Exosomes from endothelial progenitor cells improve outcomes of the lipopolysaccharide-induced acute lung injury. Critical Care 23 (1): 44.PubMedCentralPubMedCrossRef
208.
Zurück zum Zitat Liu, B., H. Zhao, Y. Wang, H. Zhang, and Y. Ma. 2020. Astragaloside IV attenuates lipopolysaccharides-induced pulmonary epithelial cell unjury through inhibiting autophagy. Pharmacology 105 (1–2): 90–101.PubMedCrossRef Liu, B., H. Zhao, Y. Wang, H. Zhang, and Y. Ma. 2020. Astragaloside IV attenuates lipopolysaccharides-induced pulmonary epithelial cell unjury through inhibiting autophagy. Pharmacology 105 (1–2): 90–101.PubMedCrossRef
209.
Zurück zum Zitat Meng, S.S., F.M. Guo, X.W. Zhang, W. Chang, F. Peng, H.B. Qiu, and Y. Yang. 2019. mTOR/STAT-3 pathway mediates mesenchymal stem cell-secreted hepatocyte growth factor protective effects against lipopolysaccharide-induced vascular endothelial barrier dysfunction and apoptosis. Journal of Cellular Biochemistry 120 (3): 3637–3650.PubMedCrossRef Meng, S.S., F.M. Guo, X.W. Zhang, W. Chang, F. Peng, H.B. Qiu, and Y. Yang. 2019. mTOR/STAT-3 pathway mediates mesenchymal stem cell-secreted hepatocyte growth factor protective effects against lipopolysaccharide-induced vascular endothelial barrier dysfunction and apoptosis. Journal of Cellular Biochemistry 120 (3): 3637–3650.PubMedCrossRef
210.
Zurück zum Zitat Li, J., K. Wang, B. Huang, R. Li, X. Wang, H. Zhang, H. Tang, and X. Chen. 2021. The receptor for advanced glycation end products mediates dysfunction of airway epithelial barrier in a lipopolysaccharides-induced murine acute lung injury model. International Immunopharmacology 93: 107419.PubMedCrossRef Li, J., K. Wang, B. Huang, R. Li, X. Wang, H. Zhang, H. Tang, and X. Chen. 2021. The receptor for advanced glycation end products mediates dysfunction of airway epithelial barrier in a lipopolysaccharides-induced murine acute lung injury model. International Immunopharmacology 93: 107419.PubMedCrossRef
211.
Zurück zum Zitat Etzrodt, V., T.O. Idowu, H. Schenk, B. Seeliger, A. Prasse, K. Thamm, T. Pape, J. Muller-Deile, M. van Meurs, T. Thum, A. Garg, R. Geffers, K. Stahl, S.M. Parikh, H. Haller, and S. David. 2021. Role of endothelial microRNA 155 on capillary leakage in systemic inflammation. Critical Care (London, England) 25 (1): 76.PubMedCentralPubMedCrossRef Etzrodt, V., T.O. Idowu, H. Schenk, B. Seeliger, A. Prasse, K. Thamm, T. Pape, J. Muller-Deile, M. van Meurs, T. Thum, A. Garg, R. Geffers, K. Stahl, S.M. Parikh, H. Haller, and S. David. 2021. Role of endothelial microRNA 155 on capillary leakage in systemic inflammation. Critical Care (London, England) 25 (1): 76.PubMedCentralPubMedCrossRef
212.
Zurück zum Zitat Song, M.J., N. Davidovich, G.G. Lawrence, and S.S. Margulies. 2016. Superoxide mediates tight junction complex dissociation in cyclically stretched lung slices. Journal of Biomechanics 49 (8): 1330–1335.PubMedCrossRef Song, M.J., N. Davidovich, G.G. Lawrence, and S.S. Margulies. 2016. Superoxide mediates tight junction complex dissociation in cyclically stretched lung slices. Journal of Biomechanics 49 (8): 1330–1335.PubMedCrossRef
213.
Zurück zum Zitat Shen, C.H., J.Y. Lin, C.Y. Lu, S.S. Yang, C.K. Peng, and K.L. Huang. 2021. SPAK-p38 MAPK signal pathway modulates claudin-18 and barrier function of alveolar epithelium after hyperoxic exposure. BMC Pulmonary Medicine 21 (1): 58.PubMedCentralPubMedCrossRef Shen, C.H., J.Y. Lin, C.Y. Lu, S.S. Yang, C.K. Peng, and K.L. Huang. 2021. SPAK-p38 MAPK signal pathway modulates claudin-18 and barrier function of alveolar epithelium after hyperoxic exposure. BMC Pulmonary Medicine 21 (1): 58.PubMedCentralPubMedCrossRef
214.
Zurück zum Zitat Wray, C., Y. Mao, J. Pan, A. Chandrasena, F. Piasta, and J.A. Frank. 2009. Claudin-4 augments alveolar epithelial barrier function and is induced in acute lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 297 (2): L219-227.PubMedCentralPubMedCrossRef Wray, C., Y. Mao, J. Pan, A. Chandrasena, F. Piasta, and J.A. Frank. 2009. Claudin-4 augments alveolar epithelial barrier function and is induced in acute lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 297 (2): L219-227.PubMedCentralPubMedCrossRef
215.
Zurück zum Zitat You, K., X. Xu, J. Fu, S. Xu, X. Yue, Z. Yu, and X. Xue. 2012. Hyperoxia disrupts pulmonary epithelial barrier in newborn rats via the deterioration of occludin and ZO-1. Respiratory Research 13 (1): 36.PubMedCentralPubMedCrossRef You, K., X. Xu, J. Fu, S. Xu, X. Yue, Z. Yu, and X. Xue. 2012. Hyperoxia disrupts pulmonary epithelial barrier in newborn rats via the deterioration of occludin and ZO-1. Respiratory Research 13 (1): 36.PubMedCentralPubMedCrossRef
216.
Zurück zum Zitat Vyas-Read, S., R.J. Vance, W. Wang, J. Colvocoresses-Dodds, L.A. Brown, and M. Koval. 2018. Hyperoxia induces paracellular leak and alters claudin expression by neonatal alveolar epithelial cells. Pediatric Pulmonology 53 (1): 17–27.PubMedCrossRef Vyas-Read, S., R.J. Vance, W. Wang, J. Colvocoresses-Dodds, L.A. Brown, and M. Koval. 2018. Hyperoxia induces paracellular leak and alters claudin expression by neonatal alveolar epithelial cells. Pediatric Pulmonology 53 (1): 17–27.PubMedCrossRef
217.
Zurück zum Zitat Ohta, H., S. Chiba, M. Ebina, M. Furuse, and T. Nukiwa. 2012. Altered expression of tight junction molecules in alveolar septa in lung injury and fibrosis. American Journal of Physiology. Lung Cellular and Molecular Physiology 302 (2): L193-205.PubMedCrossRef Ohta, H., S. Chiba, M. Ebina, M. Furuse, and T. Nukiwa. 2012. Altered expression of tight junction molecules in alveolar septa in lung injury and fibrosis. American Journal of Physiology. Lung Cellular and Molecular Physiology 302 (2): L193-205.PubMedCrossRef
218.
Zurück zum Zitat Wesslau, K.P., A. Stein, M. Kasper, and K. Barth. 2019. P2X7 receptor indirectly regulates the JAM-A protein content via modulation of GSK-3beta. International Journal of Molecular Sciences 20 (9): 2298. Wesslau, K.P., A. Stein, M. Kasper, and K. Barth. 2019. P2X7 receptor indirectly regulates the JAM-A protein content via modulation of GSK-3beta. International Journal of Molecular Sciences 20 (9): 2298.
219.
Zurück zum Zitat Weber, B., M.R. Mendler, I. Lackner, A. von Zelewski, S. Höfler, M. Baur, C.K. Braun, H. Hummler, S. Schwarz, J. Pressmar, and M. Kalbitz. 2019. Lung injury after asphyxia and hemorrhagic shock in newborn piglets: Analysis of structural and inflammatory changes. PLoS One 14 (7): e0219211.PubMedCentralPubMedCrossRef Weber, B., M.R. Mendler, I. Lackner, A. von Zelewski, S. Höfler, M. Baur, C.K. Braun, H. Hummler, S. Schwarz, J. Pressmar, and M. Kalbitz. 2019. Lung injury after asphyxia and hemorrhagic shock in newborn piglets: Analysis of structural and inflammatory changes. PLoS One 14 (7): e0219211.PubMedCentralPubMedCrossRef
220.
Zurück zum Zitat Liao, W.I., S.Y. Wu, S.H. Tsai, H.P. Pao, K.L. Huang, and S.J. Chu. 2021. 2-Methoxyestradiol protects against lung ischemia/reperfusion injury by upregulating annexin A1 protein expression. Frontiers in Immunology 12: 596376.PubMedCentralPubMedCrossRef Liao, W.I., S.Y. Wu, S.H. Tsai, H.P. Pao, K.L. Huang, and S.J. Chu. 2021. 2-Methoxyestradiol protects against lung ischemia/reperfusion injury by upregulating annexin A1 protein expression. Frontiers in Immunology 12: 596376.PubMedCentralPubMedCrossRef
221.
Zurück zum Zitat Haihua, C., W. Wei, H. Kun, L. Yuanli, and L. Fei. 2018. Cobra venom factor-induced complement depletion protects against lung ischemia reperfusion injury through alleviating blood-air barrier damage. Scientific Reports 8 (1): 10346.CrossRef Haihua, C., W. Wei, H. Kun, L. Yuanli, and L. Fei. 2018. Cobra venom factor-induced complement depletion protects against lung ischemia reperfusion injury through alleviating blood-air barrier damage. Scientific Reports 8 (1): 10346.CrossRef
222.
Zurück zum Zitat Xiao, M.M., C.S. Pan, Y.Y. Liu, L.Q. Ma, L. Yan, J.Y. Fan, C.S. Wang, R. Huang, and J.Y. Han. 2017. Post-treatment with Ma-Huang-Tang ameliorates cold-warm-cycles induced rat lung injury. Scientific Reports 7 (1): 312.CrossRef Xiao, M.M., C.S. Pan, Y.Y. Liu, L.Q. Ma, L. Yan, J.Y. Fan, C.S. Wang, R. Huang, and J.Y. Han. 2017. Post-treatment with Ma-Huang-Tang ameliorates cold-warm-cycles induced rat lung injury. Scientific Reports 7 (1): 312.CrossRef
223.
Zurück zum Zitat Imtiazul, I.M., R. Asma, J.H. Lee, N.J. Cho, S. Park, H.Y. Song, and H.W. Gil. 2019. Change of surfactant protein D and A after renal ischemia reperfusion injury. PLoS One 14 (12): e0227097.PubMedCentralPubMedCrossRef Imtiazul, I.M., R. Asma, J.H. Lee, N.J. Cho, S. Park, H.Y. Song, and H.W. Gil. 2019. Change of surfactant protein D and A after renal ischemia reperfusion injury. PLoS One 14 (12): e0227097.PubMedCentralPubMedCrossRef
224.
Zurück zum Zitat Zhou, J., H. Lian, G. Xu, and T. Zhao. 2020. MicroRNA-451 increases vascular permeability and suppresses angiogenesis in pulmonary burn injury in a rat model. Advances in Clinical Experimental Medicine: Official Organ Wroclaw Medical University 29 (11): 1241–1248.CrossRef Zhou, J., H. Lian, G. Xu, and T. Zhao. 2020. MicroRNA-451 increases vascular permeability and suppresses angiogenesis in pulmonary burn injury in a rat model. Advances in Clinical Experimental Medicine: Official Organ Wroclaw Medical University 29 (11): 1241–1248.CrossRef
225.
Zurück zum Zitat Liu, X., J. Yang, J. Li, C. Xu, and W. Jiang. 2021. Vanillin attenuates cadmium-induced lung injury through inhibition of inflammation and lung barrier dysfunction through activating AhR. Inflammation 44 (6): 2193–2202. Liu, X., J. Yang, J. Li, C. Xu, and W. Jiang. 2021. Vanillin attenuates cadmium-induced lung injury through inhibition of inflammation and lung barrier dysfunction through activating AhR. Inflammation 44 (6): 2193–2202.
226.
Zurück zum Zitat Xu, X., Q. Zhu, R. Zhang, Y. Wang, F. Niu, W. Wang, D. Sun, and A. Wang. 2017. ITRAQ-based proteomics analysis of acute lung injury induced by oleic acid in mice. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 44 (5): 1949–1964.CrossRef Xu, X., Q. Zhu, R. Zhang, Y. Wang, F. Niu, W. Wang, D. Sun, and A. Wang. 2017. ITRAQ-based proteomics analysis of acute lung injury induced by oleic acid in mice. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 44 (5): 1949–1964.CrossRef
227.
Zurück zum Zitat Geng, P., F. Yu, D. Tan, J. Xu, Y. Yang, M. Xu, H. Wang, and B. Ling. 2020. Involvement of claudin-5 in H2S-induced acute lung injury. The Journal of Toxicological Sciences 45 (5): 293–304.PubMedCrossRef Geng, P., F. Yu, D. Tan, J. Xu, Y. Yang, M. Xu, H. Wang, and B. Ling. 2020. Involvement of claudin-5 in H2S-induced acute lung injury. The Journal of Toxicological Sciences 45 (5): 293–304.PubMedCrossRef
228.
Zurück zum Zitat Filipczak, P.T., A.P. Senft, J. Seagrave, W. Weber, P.J. Kuehl, L.E. Fredenburgh, J.D. McDonald, and R.M. Baron. 2015. NOS-2 inhibition in phosgene-induced acute lung injury. Toxicological Sciences: an Official Journal of the Society of Toxicology 146 (1): 89–100.CrossRef Filipczak, P.T., A.P. Senft, J. Seagrave, W. Weber, P.J. Kuehl, L.E. Fredenburgh, J.D. McDonald, and R.M. Baron. 2015. NOS-2 inhibition in phosgene-induced acute lung injury. Toxicological Sciences: an Official Journal of the Society of Toxicology 146 (1): 89–100.CrossRef
229.
Zurück zum Zitat Liu, Y., J. Tang, J. Yuan, C. Yao, K. Hosoi, Y. Han, S. Yu, H. Wei, and G. Chen. 2020. Arsenite-induced downregulation of occludin in mouse lungs and BEAS-2B cells via the ROS/ERK/ELK1/MLCK and ROS/p38 MAPK signaling pathways. Toxicology Letters 332: 146–154.PubMedCrossRef Liu, Y., J. Tang, J. Yuan, C. Yao, K. Hosoi, Y. Han, S. Yu, H. Wei, and G. Chen. 2020. Arsenite-induced downregulation of occludin in mouse lungs and BEAS-2B cells via the ROS/ERK/ELK1/MLCK and ROS/p38 MAPK signaling pathways. Toxicology Letters 332: 146–154.PubMedCrossRef
230.
Zurück zum Zitat Wang, Y.F., Y.X. Fei, B. Zhao, Q.Y. Yin, J.P. Zhu, G.H. Ren, B.W. Wang, W.R. Fang, and Y.M. Li. 2020. Ma Xing Shi Gan decoction protects against PM2.5-induced lung injury through suppression of epithelial-to-mesenchymal transition (EMT) and epithelial barrier disruption. Evidence-based Complementary and Alternative Medicine 2020: 7176589. Wang, Y.F., Y.X. Fei, B. Zhao, Q.Y. Yin, J.P. Zhu, G.H. Ren, B.W. Wang, W.R. Fang, and Y.M. Li. 2020. Ma Xing Shi Gan decoction protects against PM2.5-induced lung injury through suppression of epithelial-to-mesenchymal transition (EMT) and epithelial barrier disruption. Evidence-based Complementary and Alternative Medicine 2020: 7176589.
231.
Zurück zum Zitat Zhang, Y., L. Zhang, W. Chen, Y. Zhang, X. Wang, Y. Dong, W. Zhang, and X. Lin. 2021. Shp2 regulates PM2.5-induced airway epithelial barrier dysfunction by modulating ERK1/2 signaling pathway. Toxicology Letters 350: 62–70. Zhang, Y., L. Zhang, W. Chen, Y. Zhang, X. Wang, Y. Dong, W. Zhang, and X. Lin. 2021. Shp2 regulates PM2.5-induced airway epithelial barrier dysfunction by modulating ERK1/2 signaling pathway. Toxicology Letters 350: 62–70.
232.
Zurück zum Zitat Kawkitinarong, K., L. Linz-McGillem, K.G. Birukov, and J.G. Garcia. 2004. Differential regulation of human lung epithelial and endothelial barrier function by thrombin. American Journal of Respiratory Cell and Molecular Biology 31 (5): 517–527.PubMedCrossRef Kawkitinarong, K., L. Linz-McGillem, K.G. Birukov, and J.G. Garcia. 2004. Differential regulation of human lung epithelial and endothelial barrier function by thrombin. American Journal of Respiratory Cell and Molecular Biology 31 (5): 517–527.PubMedCrossRef
233.
Zurück zum Zitat Joshi, P.C., A. Mehta, W.S. Jabber, X. Fan, and D.M. Guidot. 2009. Zinc deficiency mediates alcohol-induced alveolar epithelial and macrophage dysfunction in rats. American Journal of Respiratory Cell and Molecular Biology 41 (2): 207–216.PubMedCrossRef Joshi, P.C., A. Mehta, W.S. Jabber, X. Fan, and D.M. Guidot. 2009. Zinc deficiency mediates alcohol-induced alveolar epithelial and macrophage dysfunction in rats. American Journal of Respiratory Cell and Molecular Biology 41 (2): 207–216.PubMedCrossRef
234.
Zurück zum Zitat Michaudel, C., C. Mackowiak, I. Maillet, L. Fauconnier, C.A. Akdis, M. Sokolowska, A. Dreher, H.T. Tan, V.F. Quesniaux, B. Ryffel, and D. Togbe. 2018. Ozone exposure induces respiratory barrier biphasic injury and inflammation controlled by IL-33. The Journal of Allergy and Clinical Immunology 142 (3): 942–958.PubMedCrossRef Michaudel, C., C. Mackowiak, I. Maillet, L. Fauconnier, C.A. Akdis, M. Sokolowska, A. Dreher, H.T. Tan, V.F. Quesniaux, B. Ryffel, and D. Togbe. 2018. Ozone exposure induces respiratory barrier biphasic injury and inflammation controlled by IL-33. The Journal of Allergy and Clinical Immunology 142 (3): 942–958.PubMedCrossRef
235.
Zurück zum Zitat Kim, B.G., P.H. Lee, S.H. Lee, C.S. Park, and A.S. Jang. 2018. Impact of ozone on claudins and tight junctions in the lungs. Environmental Toxicology 33 (7): 798–806.PubMedCrossRef Kim, B.G., P.H. Lee, S.H. Lee, C.S. Park, and A.S. Jang. 2018. Impact of ozone on claudins and tight junctions in the lungs. Environmental Toxicology 33 (7): 798–806.PubMedCrossRef
236.
Zurück zum Zitat Tirpude, N.V., A. Sharma, R. Joshi, M. Kumari, and V. Acharya. 2021. Vitex negundo Linn. extract alleviates inflammatory aggravation and lung injury by modulating AMPK/PI3K/Akt/p38-NF-kappaB and TGF-beta/Smad/Bcl2/caspase/LC3 cascade and macrophages activation in murine model of OVA-LPS induced allergic asthma. Journal of Ethnopharmacology 271: 113894. Tirpude, N.V., A. Sharma, R. Joshi, M. Kumari, and V. Acharya. 2021. Vitex negundo Linn. extract alleviates inflammatory aggravation and lung injury by modulating AMPK/PI3K/Akt/p38-NF-kappaB and TGF-beta/Smad/Bcl2/caspase/LC3 cascade and macrophages activation in murine model of OVA-LPS induced allergic asthma. Journal of Ethnopharmacology 271: 113894.
237.
Zurück zum Zitat Schmit, T., S. Ghosh, R.K. Mathur, T. Barnhardt, G. Ambigapathy, M. Wu, C. Combs, and M.N. Khan. 2020. IL-6 deficiency exacerbates allergic asthma and abrogates the protective effect of allergic inflammation against Streptococcus pneumoniae pathogenesis. The Journal of Immunology 205 (2): 469–479.PubMedCentralPubMedCrossRef Schmit, T., S. Ghosh, R.K. Mathur, T. Barnhardt, G. Ambigapathy, M. Wu, C. Combs, and M.N. Khan. 2020. IL-6 deficiency exacerbates allergic asthma and abrogates the protective effect of allergic inflammation against Streptococcus pneumoniae pathogenesis. The Journal of Immunology 205 (2): 469–479.PubMedCentralPubMedCrossRef
238.
Zurück zum Zitat Armstrong, S.M., C. Wang, J. Tigdi, X. Si, C. Dumpit, S. Charles, A. Gamage, T.J. Moraes, and W.L. Lee. 2012. Influenza infects lung microvascular endothelium leading to microvascular leak: Role of apoptosis and claudin-5. PLoS One 7 (10): e47323.PubMedCentralPubMedCrossRef Armstrong, S.M., C. Wang, J. Tigdi, X. Si, C. Dumpit, S. Charles, A. Gamage, T.J. Moraes, and W.L. Lee. 2012. Influenza infects lung microvascular endothelium leading to microvascular leak: Role of apoptosis and claudin-5. PLoS One 7 (10): e47323.PubMedCentralPubMedCrossRef
239.
Zurück zum Zitat Yeh, C.L., L.H. Su, J.M. Wu, P.J. Yang, P.C. Lee, P.D. Chen, C.C. Huang, D.Y. Hsieh, H.J. Wang, S.L. Yeh, and M.T. Lin. 2020. Effects of the glutamine administration on T helper cell regulation and inflammatory response in obese mice complicated with polymicrobial sepsis. Mediators of Inflammation 2020: 8869017.PubMedCentralPubMedCrossRef Yeh, C.L., L.H. Su, J.M. Wu, P.J. Yang, P.C. Lee, P.D. Chen, C.C. Huang, D.Y. Hsieh, H.J. Wang, S.L. Yeh, and M.T. Lin. 2020. Effects of the glutamine administration on T helper cell regulation and inflammatory response in obese mice complicated with polymicrobial sepsis. Mediators of Inflammation 2020: 8869017.PubMedCentralPubMedCrossRef
240.
Zurück zum Zitat Smallcombe, C.C., D.T. Linfield, T.J. Harford, V. Bokun, A.I. Ivanov, G. Piedimonte, and F. Rezaee. 2019. Disruption of the airway epithelial barrier in a murine model of respiratory syncytial virus infection. American Journal of Physiology. Lung Cellular and Molecular Physiology 316 (2): L358–L368.PubMedCrossRef Smallcombe, C.C., D.T. Linfield, T.J. Harford, V. Bokun, A.I. Ivanov, G. Piedimonte, and F. Rezaee. 2019. Disruption of the airway epithelial barrier in a murine model of respiratory syncytial virus infection. American Journal of Physiology. Lung Cellular and Molecular Physiology 316 (2): L358–L368.PubMedCrossRef
241.
Zurück zum Zitat Wang, N., X. Yang, J. Sun, Z. Sun, Q. Ma, Z. Wang, Z. Chen, Z. Wang, F. Hu, H. Wang, L. Zhou, M. Zhang, and J. Xu. 2019. Neutrophil extracellular traps induced by VP1 contribute to pulmonary edema during EV71 infection. Cell Death Discovery 5: 111.PubMedCentralPubMedCrossRef Wang, N., X. Yang, J. Sun, Z. Sun, Q. Ma, Z. Wang, Z. Chen, Z. Wang, F. Hu, H. Wang, L. Zhou, M. Zhang, and J. Xu. 2019. Neutrophil extracellular traps induced by VP1 contribute to pulmonary edema during EV71 infection. Cell Death Discovery 5: 111.PubMedCentralPubMedCrossRef
242.
Zurück zum Zitat Li, H., S. Singh, R. Potula, Y. Persidsky, and G.D. Kanmogne. 2014. Dysregulation of claudin-5 in HIV-induced interstitial pneumonitis and lung vascular injury. Protective role of peroxisome proliferator-activated receptor-gamma. American Journal of Respiratory and Critical Care Medicine 190(1): 85–97. Li, H., S. Singh, R. Potula, Y. Persidsky, and G.D. Kanmogne. 2014. Dysregulation of claudin-5 in HIV-induced interstitial pneumonitis and lung vascular injury. Protective role of peroxisome proliferator-activated receptor-gamma. American Journal of Respiratory and Critical Care Medicine 190(1): 85–97.
243.
Zurück zum Zitat Rokkam, D., M.J. Lafemina, J.W. Lee, M.A. Matthay, and J.A. Frank. 2011. Claudin-4 levels are associated with intact alveolar fluid clearance in human lungs. American Journal of Pathology 179 (3): 1081–1087.PubMedCentralPubMedCrossRef Rokkam, D., M.J. Lafemina, J.W. Lee, M.A. Matthay, and J.A. Frank. 2011. Claudin-4 levels are associated with intact alveolar fluid clearance in human lungs. American Journal of Pathology 179 (3): 1081–1087.PubMedCentralPubMedCrossRef
244.
Zurück zum Zitat Wang, L., R. Bittman, J.G. Garcia, and S.M. Dudek. 2015. Junctional complex and focal adhesion rearrangement mediates pulmonary endothelial barrier enhancement by FTY720 S-phosphonate. Microvascular Research 99: 102–109.PubMedCentralPubMedCrossRef Wang, L., R. Bittman, J.G. Garcia, and S.M. Dudek. 2015. Junctional complex and focal adhesion rearrangement mediates pulmonary endothelial barrier enhancement by FTY720 S-phosphonate. Microvascular Research 99: 102–109.PubMedCentralPubMedCrossRef
245.
Zurück zum Zitat Ohmura, T., Y. Tian, N. Sarich, Y. Ke, A. Meliton, A.S. Shah, K. Andreasson, K.G. Birukov, and A.A. Birukova. 2017. Regulation of lung endothelial permeability and inflammatory responses by prostaglandin A2: Role of EP4 receptor. Molecular Biology of the Cell 28 (12): 1622–1635.PubMedCentralPubMedCrossRef Ohmura, T., Y. Tian, N. Sarich, Y. Ke, A. Meliton, A.S. Shah, K. Andreasson, K.G. Birukov, and A.A. Birukova. 2017. Regulation of lung endothelial permeability and inflammatory responses by prostaglandin A2: Role of EP4 receptor. Molecular Biology of the Cell 28 (12): 1622–1635.PubMedCentralPubMedCrossRef
246.
Zurück zum Zitat Tian, X., Y. Tian, G. Gawlak, F. Meng, Y. Kawasaki, T. Akiyama, and A.A. Birukova. 2015. Asef controls vascular endothelial permeability and barrier recovery in the lung. Molecular Biology of the Cell 26 (4): 636–650.PubMedCentralPubMedCrossRef Tian, X., Y. Tian, G. Gawlak, F. Meng, Y. Kawasaki, T. Akiyama, and A.A. Birukova. 2015. Asef controls vascular endothelial permeability and barrier recovery in the lung. Molecular Biology of the Cell 26 (4): 636–650.PubMedCentralPubMedCrossRef
247.
Zurück zum Zitat Sim, T.Y., H.H. Harith, C.L. Tham, N.F. Md Hashim, K. Shaari, M.R. Sulaiman, and D.A. Israf. 2018. The protective effects of a synthetic geranyl acetophenone in a cellular model of TNF-alpha-induced pulmonary epithelial barrier dysfunction. Molecules 23 (6): 1355. Sim, T.Y., H.H. Harith, C.L. Tham, N.F. Md Hashim, K. Shaari, M.R. Sulaiman, and D.A. Israf. 2018. The protective effects of a synthetic geranyl acetophenone in a cellular model of TNF-alpha-induced pulmonary epithelial barrier dysfunction. Molecules 23 (6): 1355.
248.
Zurück zum Zitat Gan, T., Y. Yang, F. Hu, X. Chen, J. Zhou, Y. Li, Y. Xu, H. Wang, Y. Chen, and M. Zhang. 2018. TLR3 regulated Poly I:C-induced neutrophil extracellular traps and acute lung injury partly through p38 MAP kinase. Frontiers in Microbiology 9: 3174.PubMedCentralPubMedCrossRef Gan, T., Y. Yang, F. Hu, X. Chen, J. Zhou, Y. Li, Y. Xu, H. Wang, Y. Chen, and M. Zhang. 2018. TLR3 regulated Poly I:C-induced neutrophil extracellular traps and acute lung injury partly through p38 MAP kinase. Frontiers in Microbiology 9: 3174.PubMedCentralPubMedCrossRef
249.
Zurück zum Zitat Hu, S., J. Park, A. Liu, J. Lee, X. Zhang, Q. Hao, and J.W. Lee. 2018. Mesenchymal stem cell microvesicles restore protein permeability across primary cultures of injured human lung microvascular endothelial cells. Stem Cells Translational Medicine 7 (8): 615–624.PubMedCentralPubMedCrossRef Hu, S., J. Park, A. Liu, J. Lee, X. Zhang, Q. Hao, and J.W. Lee. 2018. Mesenchymal stem cell microvesicles restore protein permeability across primary cultures of injured human lung microvascular endothelial cells. Stem Cells Translational Medicine 7 (8): 615–624.PubMedCentralPubMedCrossRef
250.
Zurück zum Zitat Overgaard, C.E., B. Schlingmann, S. Dorsainvil White, C. Ward, X. Fan, S. Swarnakar, L.A. Brown, D.M. Guidot, and M. Koval. 2015. The relative balance of GM-CSF and TGF-beta1 regulates lung epithelial barrier function. American Journal of Physiology. Lung Cellular and Molecular Physiology 308 (12): L1212-1223.PubMedCentralPubMedCrossRef Overgaard, C.E., B. Schlingmann, S. Dorsainvil White, C. Ward, X. Fan, S. Swarnakar, L.A. Brown, D.M. Guidot, and M. Koval. 2015. The relative balance of GM-CSF and TGF-beta1 regulates lung epithelial barrier function. American Journal of Physiology. Lung Cellular and Molecular Physiology 308 (12): L1212-1223.PubMedCentralPubMedCrossRef
251.
Zurück zum Zitat Hsiao, H.M., R. Fernandez, S. Tanaka, W. Li, J.H. Spahn, S. Chiu, M. Akbarpour, D. Ruiz-Perez, Q. Wu, C. Turam, D. Scozzi, T. Takahashi, H.P. Luehmann, V. Puri, G.R.S. Budinger, A.S. Krupnick, A.V. Misharin, K.J. Lavine, Y. Liu, A.E. Gelman, A. Bharat, and D. Kreisel. 2018. Spleen-derived classical monocytes mediate lung ischemia-reperfusion injury through IL-1beta. The Journal of Clinical Investigation 128 (7): 2833–2847.PubMedCentralPubMedCrossRef Hsiao, H.M., R. Fernandez, S. Tanaka, W. Li, J.H. Spahn, S. Chiu, M. Akbarpour, D. Ruiz-Perez, Q. Wu, C. Turam, D. Scozzi, T. Takahashi, H.P. Luehmann, V. Puri, G.R.S. Budinger, A.S. Krupnick, A.V. Misharin, K.J. Lavine, Y. Liu, A.E. Gelman, A. Bharat, and D. Kreisel. 2018. Spleen-derived classical monocytes mediate lung ischemia-reperfusion injury through IL-1beta. The Journal of Clinical Investigation 128 (7): 2833–2847.PubMedCentralPubMedCrossRef
252.
Zurück zum Zitat Xu, S., Q. Yang, J. Bai, T. Tao, L. Tang, Y. Chen, C.S. Chung, E.A. Fallon, and A. Ayala. 2020. Blockade of endothelial, but not epithelial, cell expression of PD-L1 following severe shock attenuates the development of indirect acute lung injury in mice. American Journal of Physiology. Lung Cellular and Molecular Physiology 318 (4): L801–L812.PubMedCentralPubMedCrossRef Xu, S., Q. Yang, J. Bai, T. Tao, L. Tang, Y. Chen, C.S. Chung, E.A. Fallon, and A. Ayala. 2020. Blockade of endothelial, but not epithelial, cell expression of PD-L1 following severe shock attenuates the development of indirect acute lung injury in mice. American Journal of Physiology. Lung Cellular and Molecular Physiology 318 (4): L801–L812.PubMedCentralPubMedCrossRef
253.
Zurück zum Zitat van der Heijden, M., G.P. van Nieuw Amerongen, J. van Bezu, M.A. Paul, A.B. Groeneveld, and V.W. van Hinsbergh. 2011. Opposing effects of the angiopoietins on the thrombin-induced permeability of human pulmonary microvascular endothelial cells. PLoS One 6 (8): e23448.PubMedCentralPubMedCrossRef van der Heijden, M., G.P. van Nieuw Amerongen, J. van Bezu, M.A. Paul, A.B. Groeneveld, and V.W. van Hinsbergh. 2011. Opposing effects of the angiopoietins on the thrombin-induced permeability of human pulmonary microvascular endothelial cells. PLoS One 6 (8): e23448.PubMedCentralPubMedCrossRef
Metadaten
Titel
Tight Junctions, the Epithelial Barrier, and Toll-like Receptor-4 During Lung Injury
verfasst von
Nachiket M. Godbole
Asif Alam Chowdhury
Neha Chataut
Shanjana Awasthi
Publikationsdatum
02.07.2022
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2022
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01708-y

Weitere Artikel der Ausgabe 6/2022

Inflammation 6/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.