Skip to main content
Erschienen in: Inflammation 6/2023

02.08.2023 | RESEARCH

Runx1 Deficiency Promotes M2 Macrophage Polarization Through Enhancing STAT6 Phosphorylation

verfasst von: Siyuan Zhou, Ting Zhao, Xuqiong Chen, Wuwen Zhang, Xiaoyi Zou, Yi Yang, Qinshi Wang, Ping Zhang, Tong Zhou, Tongbao Feng

Erschienen in: Inflammation | Ausgabe 6/2023

Einloggen, um Zugang zu erhalten

Abstract

Our previous study had demonstrated that Runx1 promoted LPS-induced macrophage inflammatory response, however, the role of Runx1 in M2 macrophage polarization still remains largely unknown. This study was conducted to investigate the role of Runx1 in IL-4/IL-13-induced M2 macrophage polarization and its potential regulatory mechanism. We found that exposure of macrophages to IL-4/IL-13 induced a remarkable increasement in Runx1 expression level. Specifically, we established genetically modified mice lacking Runx1 in myeloid cells, including macrophages. RNA-Seq was performed to identify differentially expressed genes (DEGs) between Runx1 knockout and WT control bone marrow-derived macrophages (BMDMs). We identified 686 DEGs, including many genes which were highly expressed in M2 macrophage. In addition, bioinformatics analysis indicated that these DEGs were significantly enriched in extracellular matrix-related processes. Moreover, RT-qPCR analysis showed that there was an obvious upregulation in the relative expression levels of M2 marker genes, including Arg1, Ym1, Fizz1, CD71, Mmp9, and Tgm2, in Runx1 knockout macrophages, as compared to WT controls. Consistently, similar results were obtained in the protein and enzymatic activity levels of Arg1. Finally, we found that the STAT6 phosphorylation level was significantly enhanced in Runx1 knockout macrophages, and the STAT6 inhibitor AS1517499 partly reduced the upregulated effect of Runx1 deficiency on the M2 macrophage polarization. Taken together, Runx1 deficiency facilitates IL-4/IL-13-induced M2 macrophage polarization through enhancing STAT6 phosphorylation.
Literatur
1.
Zurück zum Zitat Kolliniati, O., E. Leronymaki, E. Vergadi, et al. 2022. Metabolic regulation of macrophage activation. Journal of Innate Immunity 14: 51–68.PubMedCrossRef Kolliniati, O., E. Leronymaki, E. Vergadi, et al. 2022. Metabolic regulation of macrophage activation. Journal of Innate Immunity 14: 51–68.PubMedCrossRef
2.
Zurück zum Zitat Russell, D.G., L. Huang, and B.C. VanderVen. 2019. Immunometabolism at the interface between macrophages and pathogens. Nature Reviews Immunology 19: 291–304.PubMedPubMedCentralCrossRef Russell, D.G., L. Huang, and B.C. VanderVen. 2019. Immunometabolism at the interface between macrophages and pathogens. Nature Reviews Immunology 19: 291–304.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Mosser, D.M., K. Hamidzadeh, and R. Goncalves. 2021. Macrophages and the maintenance of homeostasis. Cellular & Molecular Immunology 18: 579–587.CrossRef Mosser, D.M., K. Hamidzadeh, and R. Goncalves. 2021. Macrophages and the maintenance of homeostasis. Cellular & Molecular Immunology 18: 579–587.CrossRef
4.
Zurück zum Zitat Ganesh, G.V., and K.M. Ramkumar. 2020. Macrophage mediation in normal and diabetic wound healing responses. Infammation Research 69: 347–363.CrossRef Ganesh, G.V., and K.M. Ramkumar. 2020. Macrophage mediation in normal and diabetic wound healing responses. Infammation Research 69: 347–363.CrossRef
5.
6.
Zurück zum Zitat Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: Mechanism and functions. Immunity 32: 593–604.PubMedCrossRef Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: Mechanism and functions. Immunity 32: 593–604.PubMedCrossRef
7.
Zurück zum Zitat Lawrence, T., and G. Natoli. 2011. Transcriptional regulation of macrophage polarization: Enabling diversity with identity. Nature Reviews Immunology 11: 750–761.PubMedCrossRef Lawrence, T., and G. Natoli. 2011. Transcriptional regulation of macrophage polarization: Enabling diversity with identity. Nature Reviews Immunology 11: 750–761.PubMedCrossRef
8.
Zurück zum Zitat Li, L., D.S. Ng, W.C. Mah, et al. 2015. A unique role for p53 in the regulation of M2 macrophage polarization. Cell Death & Differentiation 22: 1081–1093.CrossRef Li, L., D.S. Ng, W.C. Mah, et al. 2015. A unique role for p53 in the regulation of M2 macrophage polarization. Cell Death & Differentiation 22: 1081–1093.CrossRef
9.
Zurück zum Zitat Zhou, X., W. Li, S. Wang, et al. 2019. YAP aggravates inflammatory bowel disease by regulating M1/M2 macrophage polarization and gut microbial homeostasis. Cell Reports 27: 1176–1189.PubMedCrossRef Zhou, X., W. Li, S. Wang, et al. 2019. YAP aggravates inflammatory bowel disease by regulating M1/M2 macrophage polarization and gut microbial homeostasis. Cell Reports 27: 1176–1189.PubMedCrossRef
11.
Zurück zum Zitat de Bruijn, M., and E. Dzierzak. 2017. Runx transcription factors in the development and function of the definitive hematopoietic system. Blood 129: 2061–2069.PubMedCrossRef de Bruijn, M., and E. Dzierzak. 2017. Runx transcription factors in the development and function of the definitive hematopoietic system. Blood 129: 2061–2069.PubMedCrossRef
12.
Zurück zum Zitat Ono, M., H. Yaguchi, N. Ohkura, et al. 2007. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446: 685–689.PubMedCrossRef Ono, M., H. Yaguchi, N. Ohkura, et al. 2007. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446: 685–689.PubMedCrossRef
13.
Zurück zum Zitat Zhang, F., G. Meng, and W. Strober. 2008. Interactions among the transcription factors Runx1, RORγt and Foxp3 regulate the differentiation of interleukin17-producing T cells. Nature Immunology 9: 1297–1306.PubMedPubMedCentralCrossRef Zhang, F., G. Meng, and W. Strober. 2008. Interactions among the transcription factors Runx1, RORγt and Foxp3 regulate the differentiation of interleukin17-producing T cells. Nature Immunology 9: 1297–1306.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Prokunina, L., C. Castillejo-Lopez, F. Oberg, et al. 2002. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nature Genetics 32: 666–669.PubMedCrossRef Prokunina, L., C. Castillejo-Lopez, F. Oberg, et al. 2002. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nature Genetics 32: 666–669.PubMedCrossRef
15.
Zurück zum Zitat Tokuhiro, S., R. Yamada, X. Chang, et al. 2003. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nature Genetics 35: 341–348.PubMedCrossRef Tokuhiro, S., R. Yamada, X. Chang, et al. 2003. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nature Genetics 35: 341–348.PubMedCrossRef
16.
Zurück zum Zitat Lin, T.C. 2022. RUNX1 and cancer. Biochimica et biophysica acta (BBA)-reviews on cancer 1877: 188715. Lin, T.C. 2022. RUNX1 and cancer. Biochimica et biophysica acta (BBA)-reviews on cancer 1877: 188715.
17.
Zurück zum Zitat Zheng, L.L., L. Cai, X.Q. Zhang, et al. 2022. Dysregulated RUNX1 predicts poor prognosis by mediating epithelialmesenchymal transition in cervical cancer. Current Medical Science 42: 1285–1296.PubMedCrossRef Zheng, L.L., L. Cai, X.Q. Zhang, et al. 2022. Dysregulated RUNX1 predicts poor prognosis by mediating epithelialmesenchymal transition in cervical cancer. Current Medical Science 42: 1285–1296.PubMedCrossRef
18.
Zurück zum Zitat Li, Q., Q. Lai, C. He, et al. 2019. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. Journal of Experimental & Clinical Cancer Research 38: 334.CrossRef Li, Q., Q. Lai, C. He, et al. 2019. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. Journal of Experimental & Clinical Cancer Research 38: 334.CrossRef
19.
Zurück zum Zitat Hong, M., J. He, D. Li, et al. 2020. Runt-related transcription factor 1 promotes apoptosis and inhibits neuroblastoma progression in vitro and in vivo. Journal of Experimental & Clinical Cancer Research 39: 52.CrossRef Hong, M., J. He, D. Li, et al. 2020. Runt-related transcription factor 1 promotes apoptosis and inhibits neuroblastoma progression in vitro and in vivo. Journal of Experimental & Clinical Cancer Research 39: 52.CrossRef
20.
Zurück zum Zitat Luo, M.C., S.Y. Zhou, D.Y. Feng, et al. 2016. Runt-related transcription factor 1 (RUNX1) Binds to p50 in macrophages and enhances TLR4-triggered inflammation and septic shock. Journal of Biological Chemistry 291: 22011–22020.PubMedPubMedCentralCrossRef Luo, M.C., S.Y. Zhou, D.Y. Feng, et al. 2016. Runt-related transcription factor 1 (RUNX1) Binds to p50 in macrophages and enhances TLR4-triggered inflammation and septic shock. Journal of Biological Chemistry 291: 22011–22020.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Ray, A., and B.N. Dittel. 2010. Isolation of mouse peritoneal cavity cells. Journal of Visualized Experiments 35: 1488. Ray, A., and B.N. Dittel. 2010. Isolation of mouse peritoneal cavity cells. Journal of Visualized Experiments 35: 1488.
22.
Zurück zum Zitat Toda, G., T. Yamauchi, T. Kadowaki, et al. 2020. Preparation and culture of bone marrow-derived macrophages from mice for functional analysis. STAR Protocols 2: 100246.PubMedPubMedCentralCrossRef Toda, G., T. Yamauchi, T. Kadowaki, et al. 2020. Preparation and culture of bone marrow-derived macrophages from mice for functional analysis. STAR Protocols 2: 100246.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Shannon, P., A. Markiel, O. Ozier, et al. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research 13: 2498–2504.PubMedPubMedCentralCrossRef Shannon, P., A. Markiel, O. Ozier, et al. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research 13: 2498–2504.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Bader, G.D., and C.W. Hogue. 2003. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4: 2.PubMedPubMedCentralCrossRef Bader, G.D., and C.W. Hogue. 2003. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4: 2.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Chin, C.H., S.H. Chen, H.H. Wu, et al. 2014. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology 8 (Suppl 4): S11.PubMedPubMedCentralCrossRef Chin, C.H., S.H. Chen, H.H. Wu, et al. 2014. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology 8 (Suppl 4): S11.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Zhang, C., W. Li, X. Lei, et al. 2021. Targeting lysophospholipid acid receptor 1 and ROCK kinases promotes antiviral innate immunity. Science Advances 7: eabb5933. Zhang, C., W. Li, X. Lei, et al. 2021. Targeting lysophospholipid acid receptor 1 and ROCK kinases promotes antiviral innate immunity. Science Advances 7: eabb5933.
28.
Zurück zum Zitat Makita, N., Y. Hizukuri, K. Yamashiro, et al. 2015. IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration. International Immunology 27: 131–141.PubMedCrossRef Makita, N., Y. Hizukuri, K. Yamashiro, et al. 2015. IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration. International Immunology 27: 131–141.PubMedCrossRef
29.
Zurück zum Zitat Divakaruni, A.S., W.Y. Hsieh, L. Minarrieta, et al. 2018. Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis. Cell Metabolism 28: 490–503.PubMedPubMedCentralCrossRef Divakaruni, A.S., W.Y. Hsieh, L. Minarrieta, et al. 2018. Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis. Cell Metabolism 28: 490–503.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Luiz, J.P.M., J.E. Toller-Kawahisa, P.R. Viacava, et al. 2020. MEK5/ERK5 signaling mediates IL-4-induced M2 macrophage differentiation through regulation of c-Myc expression. Journal of Leukocyte Biology 108: 1215–1223.PubMedCrossRef Luiz, J.P.M., J.E. Toller-Kawahisa, P.R. Viacava, et al. 2020. MEK5/ERK5 signaling mediates IL-4-induced M2 macrophage differentiation through regulation of c-Myc expression. Journal of Leukocyte Biology 108: 1215–1223.PubMedCrossRef
31.
Zurück zum Zitat Martinez, F.O., L. Helming, R. Milde, et al. 2013. Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: Similarities and differences. Blood 121: e57–e69.PubMedCrossRef Martinez, F.O., L. Helming, R. Milde, et al. 2013. Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: Similarities and differences. Blood 121: e57–e69.PubMedCrossRef
32.
Zurück zum Zitat Satoh, T., O. Takeuchi, A. Vandenbon, et al. 2010. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nature Immunology 11: 936–944.PubMedCrossRef Satoh, T., O. Takeuchi, A. Vandenbon, et al. 2010. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nature Immunology 11: 936–944.PubMedCrossRef
33.
Zurück zum Zitat Liao, X., N. Sharma, F. Kapadia, et al. 2011. Krüppel-like factor 4 regulates macrophage polarization. Journal of Clinical Investigation 121: 2736–2749.PubMedPubMedCentralCrossRef Liao, X., N. Sharma, F. Kapadia, et al. 2011. Krüppel-like factor 4 regulates macrophage polarization. Journal of Clinical Investigation 121: 2736–2749.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Odegaard, J.I., R.R. Ricardo-Gonzalez, M.H. Goforth, et al. 2007. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447: 1116–1120.PubMedPubMedCentralCrossRef Odegaard, J.I., R.R. Ricardo-Gonzalez, M.H. Goforth, et al. 2007. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447: 1116–1120.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Ruffell, D., F. Mourkioti, A. Gambardella, et al. 2009. A CREB-C/EBPβ cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proceedings of the National Academy of Sciences of the United States of America 106: 17475–17480.PubMedPubMedCentralCrossRef Ruffell, D., F. Mourkioti, A. Gambardella, et al. 2009. A CREB-C/EBPβ cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proceedings of the National Academy of Sciences of the United States of America 106: 17475–17480.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Pello, O.M., M. De Pizzol, M. Mirolo, et al. 2012. Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology. Blood 119: 411–421.PubMedCrossRef Pello, O.M., M. De Pizzol, M. Mirolo, et al. 2012. Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology. Blood 119: 411–421.PubMedCrossRef
37.
Zurück zum Zitat Krausgruber, T., K. Blazek, T. Smallie, et al. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nature Immunology 12: 231–238.PubMedCrossRef Krausgruber, T., K. Blazek, T. Smallie, et al. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nature Immunology 12: 231–238.PubMedCrossRef
38.
Zurück zum Zitat Nepal, S., C. Tiruppathi, Y. Tsukasaki, et al. 2019. STAT6 induces expression of Gas6 in macrophages to clear apoptotic neutrophils and resolve inflammation. Proceedings of the National Academy of Sciences of the United States of America 116: 16513–16518.PubMedPubMedCentralCrossRef Nepal, S., C. Tiruppathi, Y. Tsukasaki, et al. 2019. STAT6 induces expression of Gas6 in macrophages to clear apoptotic neutrophils and resolve inflammation. Proceedings of the National Academy of Sciences of the United States of America 116: 16513–16518.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Chi, Y., Z. Huang, Q. Chen, et al. 2018. Loss of runx1 function results in B cell immunodeficiency but not T cell in adult zebrafish. Open Biology 8: 180043.PubMedPubMedCentralCrossRef Chi, Y., Z. Huang, Q. Chen, et al. 2018. Loss of runx1 function results in B cell immunodeficiency but not T cell in adult zebrafish. Open Biology 8: 180043.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Blyth, K., N. Slater, L. Hanlon, et al. 2009. Runx1 promotes B-cell survival and lymphoma development. Blood Cells, Molecules, and Diseases 43: 12–19.PubMedCrossRef Blyth, K., N. Slater, L. Hanlon, et al. 2009. Runx1 promotes B-cell survival and lymphoma development. Blood Cells, Molecules, and Diseases 43: 12–19.PubMedCrossRef
41.
Zurück zum Zitat Zhou, T., M. Luo, W. Cai, et al. 2018. Runt-related transcription factor 1 (RUNX1) promotes TGF-β-induced renal tubular epithelial-to-mesenchymal transition (EMT) and renal fibrosis through the PI3K subunit p110δ. eBioMedicine 31: 217–225.PubMedPubMedCentralCrossRef Zhou, T., M. Luo, W. Cai, et al. 2018. Runt-related transcription factor 1 (RUNX1) promotes TGF-β-induced renal tubular epithelial-to-mesenchymal transition (EMT) and renal fibrosis through the PI3K subunit p110δ. eBioMedicine 31: 217–225.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Wang, Q., T. Stacy, M. Binder, et al. 1996. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America 93: 3444–3449.PubMedPubMedCentralCrossRef Wang, Q., T. Stacy, M. Binder, et al. 1996. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America 93: 3444–3449.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Mollo, N., M. Aurilia, R. Scognamiglio, et al. 2022. Overexpression of the Hsa21 transcription factor RUNX1 modulates the extracellular matrix in trisomy 21 cells. Frontiers in Genetics 13: 824922.PubMedPubMedCentralCrossRef Mollo, N., M. Aurilia, R. Scognamiglio, et al. 2022. Overexpression of the Hsa21 transcription factor RUNX1 modulates the extracellular matrix in trisomy 21 cells. Frontiers in Genetics 13: 824922.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Liu, Y., Y. Zhang, Z. Ren, et al. 2023. RUNX1 upregulation causes mitochondrial dysfunction via regulating the PI3K-Akt pathway in iPSC from patients with down syndrome. Molecules and Cells 46: 219–230.PubMedPubMedCentralCrossRef Liu, Y., Y. Zhang, Z. Ren, et al. 2023. RUNX1 upregulation causes mitochondrial dysfunction via regulating the PI3K-Akt pathway in iPSC from patients with down syndrome. Molecules and Cells 46: 219–230.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Lin, W., X. Wan, A. Sun, et al. 2021. RUNX1/EGFR pathway contributes to STAT3 activation and tumor growth caused by hyperactivated mTORC1. Molecular Therapy: Oncolytics 23: 387–401.PubMed Lin, W., X. Wan, A. Sun, et al. 2021. RUNX1/EGFR pathway contributes to STAT3 activation and tumor growth caused by hyperactivated mTORC1. Molecular Therapy: Oncolytics 23: 387–401.PubMed
46.
Zurück zum Zitat Kawabata, H. 2019. Transferrin and transferrin receptors update. Free Radical Biology and Medicine 133: 46–54.PubMedCrossRef Kawabata, H. 2019. Transferrin and transferrin receptors update. Free Radical Biology and Medicine 133: 46–54.PubMedCrossRef
47.
Zurück zum Zitat Augoff, K., A. Hryniewicz-Jankowska, R. Tabola, et al. 2022. MMP9: A tough target for targeted therapy for cancer. Cancers (Basel) 14: 1847.PubMedCrossRef Augoff, K., A. Hryniewicz-Jankowska, R. Tabola, et al. 2022. MMP9: A tough target for targeted therapy for cancer. Cancers (Basel) 14: 1847.PubMedCrossRef
48.
Zurück zum Zitat Nelson, S.M., X. Lei, and K.S. Prabhu. 2011. Selenium levels affect the IL-4-induced expression of alternative activation markers in murine macrophages. Journal of Nutrition 141: 1754–1761.PubMedPubMedCentralCrossRef Nelson, S.M., X. Lei, and K.S. Prabhu. 2011. Selenium levels affect the IL-4-induced expression of alternative activation markers in murine macrophages. Journal of Nutrition 141: 1754–1761.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Odegaard, J.I., R.R. Ricardo-Gonzalez, A. Red Eagle, et al. 2008. Alternative M2 activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance. Cell Metabolism 7: 496–507.PubMedPubMedCentralCrossRef Odegaard, J.I., R.R. Ricardo-Gonzalez, A. Red Eagle, et al. 2008. Alternative M2 activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance. Cell Metabolism 7: 496–507.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Zhang, Y., T. Zuo, A. McVicar, et al. 2022. Runx1 is a key regulator of articular cartilage homeostasis by orchestrating YAP, TGFβ, and Wnt signaling in articular cartilage formation and osteoarthritis. Bone Research 10: 63.PubMedPubMedCentralCrossRef Zhang, Y., T. Zuo, A. McVicar, et al. 2022. Runx1 is a key regulator of articular cartilage homeostasis by orchestrating YAP, TGFβ, and Wnt signaling in articular cartilage formation and osteoarthritis. Bone Research 10: 63.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Luo, Y., Y. Zhang, G. Miao, et al. 2019. Runx1 regulates osteogenic differentiation of BMSCs by inhibiting adipogenesis through Wnt/β-catenin pathway. Archives of Oral Biology 97: 176–184.PubMedCrossRef Luo, Y., Y. Zhang, G. Miao, et al. 2019. Runx1 regulates osteogenic differentiation of BMSCs by inhibiting adipogenesis through Wnt/β-catenin pathway. Archives of Oral Biology 97: 176–184.PubMedCrossRef
52.
Zurück zum Zitat Yan, J., Z. Zhang, J. Yang, et al. 2015. JAK3/STAT6 stimulates bone marrow-derived fibroblast activation in renal fibrosis. Journal of the American Society of Nephrology 26: 3060–3071.PubMedPubMedCentralCrossRef Yan, J., Z. Zhang, J. Yang, et al. 2015. JAK3/STAT6 stimulates bone marrow-derived fibroblast activation in renal fibrosis. Journal of the American Society of Nephrology 26: 3060–3071.PubMedPubMedCentralCrossRef
Metadaten
Titel
Runx1 Deficiency Promotes M2 Macrophage Polarization Through Enhancing STAT6 Phosphorylation
verfasst von
Siyuan Zhou
Ting Zhao
Xuqiong Chen
Wuwen Zhang
Xiaoyi Zou
Yi Yang
Qinshi Wang
Ping Zhang
Tong Zhou
Tongbao Feng
Publikationsdatum
02.08.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01874-7

Weitere Artikel der Ausgabe 6/2023

Inflammation 6/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.