Skip to main content
Erschienen in: European Journal of Epidemiology 8/2023

Open Access 22.03.2023 | CANCER

Risk of cancer after ST-segment-elevation myocardial infarction

verfasst von: Maarten J. G. Leening, Nathalie I. Bouwer, M. Arfan Ikram, Maryam Kavousi, Rikje Ruiter, Eric Boersma, Ewout-Jan van den Bos, Auke P. J. D. Weevers, Jaap W. Deckers, Mark-David Levin

Erschienen in: European Journal of Epidemiology | Ausgabe 8/2023

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Analyses from administrative databases have suggested an increased cancer incidence among individuals who experienced a myocardial infarction, especially within the first 6 months. It remains unclear to what extent this represents an underlying biological link, or can be explained by detection of pre-symptomatic cancers and shared risk factors. Cancer incidence among 1809 consecutive patients surviving hospitalization for thrombotic ST-segment-elevation myocardial infarction (STEMI; mean age 62.6 years; 26% women; 115 incident cancers) was compared to the cancer incidence among 10,052 individuals of the general population (Rotterdam Study; mean age 63.1 years; 57% women; 677 incident cancers). Pathology-confirmed cancer diagnoses were obtained through identical linkage of both cohorts with the Netherlands Cancer Registry. Cox models were used to obtain hazards ratios (HRs) adjusted for factors associated with both atherosclerosis and cancer. Over 5-year follow-up, there was no significant difference in the incidence of cancer between STEMI patients and the general population (HR 0.96, 95% CI 0.78–1.19). In the first 3 months after STEMI, cancer incidence was markedly higher among STEMI patients compared to the general population (HR 2.45, 95% CI 1.13–5.30), which gradually dissolved during follow-up (P-for-trend 0.004). Among STEMI patients, higher C-reactive protein, higher platelet counts, and lower hemoglobin were associated with cancer incidence during the first year after STEMI (HRs 2.93 for C-reactive protein > 10 mg/dL, 2.10 for platelet count > 300*109, and 3.92 for hemoglobin < 7.5 mmol/L). Although rare, thrombotic STEMI might be a paraneoplastic manifestation of yet to be diagnosed cancer, and is hallmarked by a pro-inflammatory status and anemia.
Trial registration Registered into the Netherlands National Trial Register and WHO International Clinical Trials Registry Platform under shared catalogue number NTR6831.
Hinweise
Maarten J. G. Leening and Nathalie I. Bouwer contributed equally.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Individuals diagnosed with cancer face increased short-term risks of cardiovascular events [1] which is often attributed to invasive procedures and chemotherapy. Conversely, analyses from large administrative databases have suggested an increased cancer incidence among individuals who experienced a myocardial infarction, especially during the first 6 months after hospital admission [24]. From these studies it remains unclear, however, to what extent this finding represents an underlying biological link, or can be explained by increased detection of pre-symptomatic cancers in a population receiving comprehensive clinical work-up (i.e. asymmetrical follow-up) and/or shared risk factors for both atherosclerosis and cancer (i.e. confounding) [26].
We aimed to study cancer incidence and its temporality among patients with thrombotic ST-segment-elevation myocardial infarction (STEMI). As a secondary objective, we sought to identify indicators of short-term cancer incidence among STEMI patients.

Methods

We reviewed all consecutive STEMI admissions between 2010 and 2017 at a single regional primary percutaneous coronary intervention center. Patients with rare non-thrombotic causes of STEMI and patients who died during the index hospitalization were excluded, resulting in 1809 patients for analysis. Cancer incidence in these patients was compared with that of an unselected prospective population-based cohort in a neighboring city (the Rotterdam Study; visits RS-I-3, RS-II-1, and RS-III-1; n = 10,052). The objectives and design of the Rotterdam Study have been described in detail previously [7]. For both the STEMI cohort and the Rotterdam Study cohort, individuals with active malignancy, malignancy diagnosed ≤ 5 years before baseline, or coronary intervention ≤ 90 days before baseline were excluded (Fig. 1) [8, 9].
Data on pathology-confirmed cancer diagnoses (not including non-melanoma skin cancers) were obtained through identical linkage of both cohorts with the Netherlands Cancer Registry of the of the Netherlands Comprehensive Cancer Organization [9]. Follow-up started at the date of STEMI hospitalization or Rotterdam Study research center visit, and was truncated at date of pathology confirmed-cancer diagnosis, death (14.6 per 1000 person-years among the STEMI patients and 12.1 per 1000 person-years among the Rotterdam Study population), loss to follow-up (0.9% of the STEMI patients and 0.3% of the Rotterdam Study population), linkage with the cancer registry, or 5 years of follow-up (to account for longer follow-up in the Rotterdam Study), whichever came first.
Following a pre-specified analysis plan, Cox models were used to obtain hazards ratios (HRs) for incident cancer among STEMI patients compared to the Rotterdam Study population. All analyses were adjusted for factors associated with both atherosclerotic cardiovascular disease and cancer: age, sex, smoking, diabetes, body mass index, and C-reactive protein [5, 6]. Based on prior data, [24] we stratified the 5-year follow-up period into pre-specified time strata of 0–3, 3–6, 6–12, 12–24, and 24–60 months.
Continuous candidate risk indicators for cancer diagnosis in the first year after STEMI hospitalization were standardized for comparison of corresponding age- and sex-adjusted HRs. However, if proven significant after Bonferroni correction, adjusted HRs for clinically meaningful thresholds were additionally presented in order to enhance clinical interpretation.
IBM SPSS Statistics version 25 was used for all statistical analyses.

Results

Baseline characteristics of the STEMI patients and Rotterdam Study general population sample are displayed in Table 1. A total of 26.0% of the STEMI patients were women, and the median age was 62.6 years. Among the Rotterdam Study participants 57.3% were women and median age was 63.1 years. Of the included STEMI patients, 1.7% presented with a resuscitated cardiac arrest. Nearly all STEMI patients (99.4%) underwent coronary angiography, of whom 95.2% underwent primary percutaneous coronary intervention and 2.5% underwent urgent coronary artery bypass grafting. Significant obstructive coronary disease in non-culprit coronary arteries was present in 38.5% of these patients.
Table 1
Baseline characteristics
 
STEMI patients
Rotterdam study
n = 1809
n = 10,052
Age, years *
62.6 (54.0–71.8)
63.1 (57.9–72.0)
Women
471 (26.0)
5762 (57.3)
Smoking status
 Current
357 (19.9)
2253 (22.7)
 Former
817 (45.6)
4596 (46.3)
 Never
618 (34.5)
3072 (31.0)
Body mass index, kg/m2 *
26.3 (24.4–29.1)
26.7 (24.3–29.5)
Total cholesterol, mmol/L
5.1 (1.2)
5.7 (1.0)
High-density lipoprotein cholesterol, mmol/L
1.2 (0.3)
1.4 (0.4)
Hypertension
901 (49.8)
3876 (39.5)
Diabetes mellitus
279 (15.4)
755 (7.5)
Aspirin use
287 (15.9)
1359 (13.5)
Anticogulant use
60 (3.3)
314 (3.1)
History of coronary heart disease:
250 (13.8)
690 (6.9)
 Myocardial infarction
208 (11.5)
502 (5.0)
 Percutaneous coronary intervention
174 (9.6)
190 (1.9)
 Coronary artery bypass grafting
42 (2.3)
239 (2.4)
History of cerebroascular disease
117 (6.5)
675 (6.7)
History of venous thrombo-embolism
34 (1.9)
324 (3.2)
Chronic obstructive pulmonary disease
163 (9.0)
646 (6.4)
Glomerular filtration rate, mL/kg/1.73 m2 *
86 (72–97)
81 (71–91)
Renal dialysis
3 (0.2)
1 (0.0)
Sodium, mmol/L
138 (3)
142 (2)
History of cancer **
100 (5.5)
363 (3.6)
Hemoglobin, mmol/L
8.9 (1.0)
8.8 (0.8)
Platelet count, 109/L
251 (70)
266 (62)
Leukocyte count, 109/L *
10.6 (8.4–13.2)
6.6 (5.6–7.8)
C-reactive protein, mg/L *
2.0 (2.0–7.0)
1.6 (0.6–3.5)
Unimputed data. Values are counts (percentages) or means (standard deviations)
*Median (25th–75th percentile) because of skewed distribution
**Not including non-melanoma skin cancer
Over the entire 5-year period, 115 STEMI patients and 677 general population individuals were diagnosed with cancer (crude incidence rates 16.5 and 14.3 per 1000 person-years, respectively; Table 2). Over the full 5-year follow-up, there was no significant difference in the incidence of cancer between STEMI patients and the general population (Fig. 2; HR 0.96, 95% CI 0.78–1.19). However, the proportional hazards assumption was violated [P < 0.001 for Ln(follow-up time) interaction term], indicating that hazards were not stable over the 5-year follow-up period [10]. In the first 3 months after STEMI, cancer incidence was markedly higher among STEMI patients compared to the general population (HR 2.45, 95% CI 1.13–5.30). Differences in cancer incidence between STEMI patients and the general population gradually dissolved during follow-up (P-for-trend 0.004).
Table 2
Incident cancer diagnoses
 
STEMI patients
Rotterdam study
 
n = 1809
n = 10,052
All incident cancers
115
677
Cancer subtypes
Upper gastrointestinal
10 (8.7)
30 (4.4)
Hepatobiliary and panreatic
2 (1.7)
27 (4.0)
Colorectal
15 (13.0)
118 (17.4)
Breast
7 (6.1)
107 (15.8)
Prostate
18 (15.7)
111 (16.4)
Genital
1 (0.9)
24 (3.5)
Urologic
11 (9.6)
63 (9.3)
Otolaryngol
3 (2.6)
20 (3.0)
Lung
23 (20.0)
81 (12.0)
Melanoma
9 (7.8)
26 (3.8)
Hematologic
10 (8.7)
37 (5.5)
Other/unknown primary origin
6 (5.2)
33 (4.9)
Metastases at cancer diagnosis
21 (18.3)
97 (14.3)
Incident cancers by follow-up time strata
0–3 Months
15 (13.0)
22 (3.2)
3–6 Months
11 (9.6)
32 (4.7)
6–12 Months
16 (13.9)
66 (9.7)
12–24 Months
26 (22.6)
158 (23.3)
24–60 Months
47 (40.9)
399 (58.9)
Values are counts (percentages among total number of cancer cases)
Sensitivity analyses, including competing risk regression to account for non-cancer mortality, age- and sex-matched analysis, and complete-case analysis yielded similar estimates and patterns (data available upon request). No significant associations were observed with common cancer locations or the presence of disseminated disease at time of cancer diagnosis (Table 2).
Among STEMI patients, higher C-reactive protein, higher platelet counts, and lower hemoglobin were significantly associated with cancer incidence during the first year after STEMI (Fig. 2; age- and sex-adjusted HRs 2.93 for C-reactive protein > 10 mg/dL, 2.10 for platelet count > 300*109, and 3.92 for hemoglobin < 7.5 mmol/L). History of coronary heart disease and presence of non-culprit coronary stenosis were not significantly associated with cancer incidence in any of the follow-up time strata.

Discussion

During the initial period after hospitalization, STEMI patients appeared at increased risk of being diagnosed with (likely pre-existing) cancer. This might be explained by some STEMIs being of 'paraneoplastic' thrombotic origin, for instance due to a pro-thrombotic state induced by an asymptomatic undiagnosed cancer, as we postulated previously [11].
Our results are generally in line with findings from several administrative databases [24]. These previous studies were hampered by asymmetrical data collection among individuals with and without myocardial infarction, detection bias through clinical work-up of patients with myocardial infarction, or lack of available data on confounding shared risk factors.
In order to study the existence of paraneoplastic STEMI, we chose our reference population carefully to address several issues. First, we ensured identical follow-up using linkage to a nationwide cancer registry, hence ruling out asymmetrical data collection. Next, we aimed to reduce the likelihood of spurious associations by detecting asymptomatic cancers through routine clinical work-up in STEMI patients, since Rotterdam Study participants underwent comparable blood work and examinations. The only marked difference was the prevalence of thoracic imaging: > 90% of STEMI patients underwent chest radiography, while only 35.3% of the Rotterdam Study participants underwent non-enhanced cardiac CT as part of the study protocol. However, lung cancers accounted for only 13.5% of all diagnoses during the initial 3 months of follow-up. Next, in order to address shared etiology, we adjusted for cardiovascular risk factors that have been implicated in cancer development [5]. Nonetheless, residual confounding cannot be ruled out.
The lack of ethnic diversity in our study populations (95.8% of the Rotterdam Study is white) warrants replication in other populations. Also, absolute cancer risks are likely somewhat underestimated, since we only had data available on pathology-confirmed cases [9]. However, this was the case for both populations and hence is unlikely to have affected the presented relative risk estimates.

Conclusion

In conclusion, although rare, thrombotic STEMI might be a paraneoplastic manifestation of yet to be diagnosed cancer, and is hallmarked by a pro-inflammatory status and anemia.

Acknowledgements

The authors thank the registration team of the Netherlands Comprehensive Cancer Organization (IKNL, https://​iknl.​nl/​en/​) for the collection of data for the Netherlands Cancer Registry. The dedication, commitment, and contribution of inhabitants, general practitioners, and pharmacists to the Rotterdam Study are gratefully acknowledged.

Declarations

Conflict of interest

All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Dr Leening reports receiving speaker fees from Sanofi, and Novartis; and served on an advisory board for Boehringer Ingelheim; all unrelated to the submitted work. No other disclosures were reported.

Ethics approval

This study was approved by the Institutional Review Board of the Albert Schweitzer Hospital, Dordrecht (WOAC 2018.93), and the requirement for informed consent for the retrospective clinical cohort of STEMI patients was waived. The Rotterdam Study was approved by the Institutional Review Board of the Erasmus MC (MEC 02.1015) and by the Ministry of Health, Welfare, and Sport of the Netherlands, implementing the Population Screening Act: Rotterdam Study (license number 1071272-159521-PG). The Rotterdam Study has been entered into the Netherlands National Trial Register (NTR; www.​trialregister.​nl) and into the WHO International Clinical Trials Registry Platform (www.​who.​int/​ictrp/​network/​primary/​en/​) under shared catalogue number NTR6831. All Rotterdam Study participants provided written informed consent to participate and to obtain information from their treating physicians.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Dent – Das Online-Abo der Zahnmedizin

Online-Abonnement

Mit e.Dent erhalten Sie Zugang zu allen zahnmedizinischen Fortbildungen und unseren zahnmedizinischen und ausgesuchten medizinischen Zeitschriften.

Literatur
1.
Zurück zum Zitat Navi BB, Reiner AS, Kamel H, Iadecola C, Okin PM, Elkind MSV, et al. Risk of arterial thromboembolism in patients with cancer. J Am Coll Cardiol. 2017;70(8):926–38.CrossRefPubMedPubMedCentral Navi BB, Reiner AS, Kamel H, Iadecola C, Okin PM, Elkind MSV, et al. Risk of arterial thromboembolism in patients with cancer. J Am Coll Cardiol. 2017;70(8):926–38.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Rinde LB, Smabrekke B, Hald EM, Brodin EE, Njolstad I, Mathiesen EB, et al. Myocardial infarction and future risk of cancer in the general population: the Tromso Study. Eur J Epidemiol. 2017;32(3):193–201.CrossRefPubMed Rinde LB, Smabrekke B, Hald EM, Brodin EE, Njolstad I, Mathiesen EB, et al. Myocardial infarction and future risk of cancer in the general population: the Tromso Study. Eur J Epidemiol. 2017;32(3):193–201.CrossRefPubMed
3.
Zurück zum Zitat Malmborg M, Christiansen CB, Schmiegelow MD, Torp-Pedersen C, Gislason G, Schou M. Incidence of new onset cancer in patients with a myocardial infarction: a nationwide cohort study. BMC Cardiovasc Disord. 2018;18(1):198.CrossRefPubMedPubMedCentral Malmborg M, Christiansen CB, Schmiegelow MD, Torp-Pedersen C, Gislason G, Schou M. Incidence of new onset cancer in patients with a myocardial infarction: a nationwide cohort study. BMC Cardiovasc Disord. 2018;18(1):198.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Navi BB, Reiner AS, Kamel H, Iadecola C, Okin PM, Tagawa ST, et al. Arterial thromboembolic events preceding the diagnosis of cancer in older persons. Blood. 2019;133(8):781–9.CrossRefPubMedPubMedCentral Navi BB, Reiner AS, Kamel H, Iadecola C, Okin PM, Tagawa ST, et al. Arterial thromboembolic events preceding the diagnosis of cancer in older persons. Blood. 2019;133(8):781–9.CrossRefPubMedPubMedCentral
5.
7.
Zurück zum Zitat Ikram MA, Brusselle G, Ghanbari M, Goedegebure A, Ikram MK, Kavousi M, et al. Objectives, design and main findings until 2020 from the Rotterdam Study. Eur J Epidemiol. 2020;35(5):483–517.CrossRefPubMedPubMedCentral Ikram MA, Brusselle G, Ghanbari M, Goedegebure A, Ikram MK, Kavousi M, et al. Objectives, design and main findings until 2020 from the Rotterdam Study. Eur J Epidemiol. 2020;35(5):483–517.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Leening MJG, Kavousi M, Heeringa J, van Rooij FJA, Verkroost-van Heemst J, Deckers JW, et al. Methods of data collection and definitions of cardiac outcomes in the Rotterdam Study. Eur J Epidemiol. 2012;27(3):173–85.CrossRefPubMedPubMedCentral Leening MJG, Kavousi M, Heeringa J, van Rooij FJA, Verkroost-van Heemst J, Deckers JW, et al. Methods of data collection and definitions of cardiac outcomes in the Rotterdam Study. Eur J Epidemiol. 2012;27(3):173–85.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat van der Willik KD, Rojas-Saunero LP, Labrecque JA, Ikram MA, Schagen SB, Stricker BHC, et al. Pathology-confirmed versus non pathology-confirmed cancer diagnoses: incidence, participant characteristics, and survival. Eur J Epidemiol. 2020;35(6):557–65.CrossRefPubMed van der Willik KD, Rojas-Saunero LP, Labrecque JA, Ikram MA, Schagen SB, Stricker BHC, et al. Pathology-confirmed versus non pathology-confirmed cancer diagnoses: incidence, participant characteristics, and survival. Eur J Epidemiol. 2020;35(6):557–65.CrossRefPubMed
11.
Zurück zum Zitat Leening MJG, Weevers APJD, van Geuns RM, Deckers JW, Levin MD. Recurrent late bioresorbable scaffold thrombosis as a presenting symptom of underlying cancer. J Am Coll Cardiol. 2018;71(2):259–60.CrossRefPubMed Leening MJG, Weevers APJD, van Geuns RM, Deckers JW, Levin MD. Recurrent late bioresorbable scaffold thrombosis as a presenting symptom of underlying cancer. J Am Coll Cardiol. 2018;71(2):259–60.CrossRefPubMed
Metadaten
Titel
Risk of cancer after ST-segment-elevation myocardial infarction
verfasst von
Maarten J. G. Leening
Nathalie I. Bouwer
M. Arfan Ikram
Maryam Kavousi
Rikje Ruiter
Eric Boersma
Ewout-Jan van den Bos
Auke P. J. D. Weevers
Jaap W. Deckers
Mark-David Levin
Publikationsdatum
22.03.2023
Verlag
Springer Netherlands
Erschienen in
European Journal of Epidemiology / Ausgabe 8/2023
Print ISSN: 0393-2990
Elektronische ISSN: 1573-7284
DOI
https://doi.org/10.1007/s10654-023-00984-8

Weitere Artikel der Ausgabe 8/2023

European Journal of Epidemiology 8/2023 Zur Ausgabe