Skip to main content
Erschienen in: Cancer Immunology, Immunotherapy 11/2023

02.09.2023 | Review

Radiation-associated secondary malignancies: a novel opportunity for applying immunotherapies

verfasst von: Tavus Atajanova, Md Mahfuzur Rahman, David J. Konieczkowski, Zachary S. Morris

Erschienen in: Cancer Immunology, Immunotherapy | Ausgabe 11/2023

Einloggen, um Zugang zu erhalten

Abstract

Radiation is commonly used as a treatment intended to cure or palliate cancer patients. Despite remarkable advances in the precision of radiotherapy delivery, even the most advanced forms inevitably expose some healthy tissues surrounding the target site to radiation. On rare occasions, this results in the development of radiation-associated secondary malignancies (RASM). RASM are typically high-grade and carry a poorer prognosis than their non-radiated counterparts. RASM are characterized by a high mutation burden, increased T cell infiltration, and a microenvironment that bears unique inflammatory signatures of prior radiation, including increased expression of various cytokines (e.g., TGF-β, TNF-α, IL4, and IL10). Interestingly, these cytokines have been shown to up-regulate the expression of PD-1 and/or PD-L1—an immune checkpoint receptor/ligand pair that is commonly targeted by immune checkpoint blocking immunotherapies. Here, we review the current understanding of the tumor-immune interactions in RASM, highlight the distinct clinical and molecular characteristics of RASM that may render them immunologically “hot,” and propose a rationale for the formal testing of immune checkpoint blockade as a treatment approach for patients with RASM.
Literatur
1.
Zurück zum Zitat Ravanat JL, Breton J, Douki T, Gasparutto D, Grand A, Rachidi W et al (2014) Radiation-mediated formation of complex damage to DNA: a chemical aspect overview. Br J Radiol 87(1035):20130715PubMedPubMedCentralCrossRef Ravanat JL, Breton J, Douki T, Gasparutto D, Grand A, Rachidi W et al (2014) Radiation-mediated formation of complex damage to DNA: a chemical aspect overview. Br J Radiol 87(1035):20130715PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Delaney G, Jacob S, Featherstone C, Barton M (2005) The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 104(6):1129–1137PubMedCrossRef Delaney G, Jacob S, Featherstone C, Barton M (2005) The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 104(6):1129–1137PubMedCrossRef
3.
Zurück zum Zitat Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans V et al (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366(9503):2087–2106PubMedCrossRef Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans V et al (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366(9503):2087–2106PubMedCrossRef
4.
Zurück zum Zitat Friedman DL, Whitton J, Leisenring W, Mertens AC, Hammond S, Stovall M et al (2010) Subsequent neoplasms in 5-year survivors of childhood cancer: the childhood cancer survivor study. J Natl Cancer Inst 102(14):1083–1095PubMedPubMedCentralCrossRef Friedman DL, Whitton J, Leisenring W, Mertens AC, Hammond S, Stovall M et al (2010) Subsequent neoplasms in 5-year survivors of childhood cancer: the childhood cancer survivor study. J Natl Cancer Inst 102(14):1083–1095PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Brenner DJ, Curtis RE, Hall EJ, Ron E (2000) Second malignancies in prostate carcinoma patients after radiotherapy compared with surgery. Cancer 88(2):398–406PubMedCrossRef Brenner DJ, Curtis RE, Hall EJ, Ron E (2000) Second malignancies in prostate carcinoma patients after radiotherapy compared with surgery. Cancer 88(2):398–406PubMedCrossRef
7.
Zurück zum Zitat Berrington de Gonzalez A, Curtis RE, Kry SF, Gilbert E, Lamart S, Berg CD et al (2011) Proportion of second cancers attributable to radiotherapy treatment in adults: a cohort study in the US SEER cancer registries. Lancet Oncol 12(4):353–360PubMedCrossRef Berrington de Gonzalez A, Curtis RE, Kry SF, Gilbert E, Lamart S, Berg CD et al (2011) Proportion of second cancers attributable to radiotherapy treatment in adults: a cohort study in the US SEER cancer registries. Lancet Oncol 12(4):353–360PubMedCrossRef
8.
Zurück zum Zitat Cahan WG, Woodard HQ et al (1948) Sarcoma arising in irradiated bone; report of 11 cases. Cancer 1(1):3–29PubMedCrossRef Cahan WG, Woodard HQ et al (1948) Sarcoma arising in irradiated bone; report of 11 cases. Cancer 1(1):3–29PubMedCrossRef
9.
Zurück zum Zitat Yeang MS, Tay K, Ong WS, Thiagarajan A, Tan DS, Ha TC et al (2013) Outcomes and prognostic factors of post-irradiation and de novo sarcomas of the head and neck: a histologically matched case-control study. Ann Surg Oncol 20(9):3066–3075PubMedCrossRef Yeang MS, Tay K, Ong WS, Thiagarajan A, Tan DS, Ha TC et al (2013) Outcomes and prognostic factors of post-irradiation and de novo sarcomas of the head and neck: a histologically matched case-control study. Ann Surg Oncol 20(9):3066–3075PubMedCrossRef
10.
Zurück zum Zitat Gladdy RA, Qin LX, Moraco N, Edgar MA, Antonescu CR, Alektiar KM et al (2010) Do radiation-associated soft tissue sarcomas have the same prognosis as sporadic soft tissue sarcomas? J Clin Oncol 28(12):2064–2069PubMedPubMedCentralCrossRef Gladdy RA, Qin LX, Moraco N, Edgar MA, Antonescu CR, Alektiar KM et al (2010) Do radiation-associated soft tissue sarcomas have the same prognosis as sporadic soft tissue sarcomas? J Clin Oncol 28(12):2064–2069PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Bjerkehagen B, Smeland S, Walberg L, Skjeldal S, Hall KS, Nesland JM et al (2008) Radiation-induced sarcoma: 25-year experience from the Norwegian Radium Hospital. Acta Oncol 47(8):1475–1482PubMedCrossRef Bjerkehagen B, Smeland S, Walberg L, Skjeldal S, Hall KS, Nesland JM et al (2008) Radiation-induced sarcoma: 25-year experience from the Norwegian Radium Hospital. Acta Oncol 47(8):1475–1482PubMedCrossRef
12.
Zurück zum Zitat Tay GC, Iyer NG, Ong WS, Tai D, Ang MK, Ha TC et al (2016) Outcomes and prognostic factors of radiation-induced and de novo head and neck squamous cell carcinomas. Otolaryngol Head Neck Surg 154(5):880–887PubMedCrossRef Tay GC, Iyer NG, Ong WS, Tai D, Ang MK, Ha TC et al (2016) Outcomes and prognostic factors of radiation-induced and de novo head and neck squamous cell carcinomas. Otolaryngol Head Neck Surg 154(5):880–887PubMedCrossRef
13.
Zurück zum Zitat Lee JS, DuBois SG, Coccia PF, Bleyer A, Olin RL, Goldsby RE (2016) Increased risk of second malignant neoplasms in adolescents and young adults with cancer. Cancer 122(1):116–123PubMedCrossRef Lee JS, DuBois SG, Coccia PF, Bleyer A, Olin RL, Goldsby RE (2016) Increased risk of second malignant neoplasms in adolescents and young adults with cancer. Cancer 122(1):116–123PubMedCrossRef
14.
Zurück zum Zitat MacArthur AC, Spinelli JJ, Rogers PC, Goddard KJ, Phillips N, McBride ML (2007) Risk of a second malignant neoplasm among 5-year survivors of cancer in childhood and adolescence in British Columbia. Canada Pediatr Blood Cancer 48(4):453–459PubMedCrossRef MacArthur AC, Spinelli JJ, Rogers PC, Goddard KJ, Phillips N, McBride ML (2007) Risk of a second malignant neoplasm among 5-year survivors of cancer in childhood and adolescence in British Columbia. Canada Pediatr Blood Cancer 48(4):453–459PubMedCrossRef
15.
Zurück zum Zitat Meadows AT, Friedman DL, Neglia JP, Mertens AC, Donaldson SS, Stovall M et al (2009) Second neoplasms in survivors of childhood cancer: findings from the childhood cancer survivor study cohort. J Clin Oncol 27(14):2356–2362PubMedPubMedCentralCrossRef Meadows AT, Friedman DL, Neglia JP, Mertens AC, Donaldson SS, Stovall M et al (2009) Second neoplasms in survivors of childhood cancer: findings from the childhood cancer survivor study cohort. J Clin Oncol 27(14):2356–2362PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Armstrong GT, Liu W, Leisenring W, Yasui Y, Hammond S, Bhatia S et al (2011) Occurrence of multiple subsequent neoplasms in long-term survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol 29(22):3056–3064PubMedPubMedCentralCrossRef Armstrong GT, Liu W, Leisenring W, Yasui Y, Hammond S, Bhatia S et al (2011) Occurrence of multiple subsequent neoplasms in long-term survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol 29(22):3056–3064PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Hall EJ (2006) Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 65(1):1–7PubMedCrossRef Hall EJ (2006) Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 65(1):1–7PubMedCrossRef
18.
Zurück zum Zitat Boice JD Jr, Harvey EB, Blettner M, Stovall M, Flannery JT (1992) Cancer in the contralateral breast after radiotherapy for breast cancer. N Engl J Med 326(12):781–785PubMedCrossRef Boice JD Jr, Harvey EB, Blettner M, Stovall M, Flannery JT (1992) Cancer in the contralateral breast after radiotherapy for breast cancer. N Engl J Med 326(12):781–785PubMedCrossRef
19.
Zurück zum Zitat Chaturvedi AK, Engels EA, Gilbert ES, Chen BE, Storm H, Lynch CF et al (2007) Second cancers among 104,760 survivors of cervical cancer: evaluation of long-term risk. J Natl Cancer Inst 99(21):1634–1643PubMedCrossRef Chaturvedi AK, Engels EA, Gilbert ES, Chen BE, Storm H, Lynch CF et al (2007) Second cancers among 104,760 survivors of cervical cancer: evaluation of long-term risk. J Natl Cancer Inst 99(21):1634–1643PubMedCrossRef
20.
Zurück zum Zitat Berrington de Gonzalez A, Wong J, Kleinerman R, Kim C, Morton L, Bekelman JE (2015) Risk of second cancers according to radiation therapy technique and modality in prostate cancer survivors. Int J Radiat Oncol Biol Phys 91(2):295–302PubMedCrossRef Berrington de Gonzalez A, Wong J, Kleinerman R, Kim C, Morton L, Bekelman JE (2015) Risk of second cancers according to radiation therapy technique and modality in prostate cancer survivors. Int J Radiat Oncol Biol Phys 91(2):295–302PubMedCrossRef
21.
Zurück zum Zitat Hooning MJ, Aleman BM, Hauptmann M, Baaijens MH, Klijn JG, Noyon R et al (2008) Roles of radiotherapy and chemotherapy in the development of contralateral breast cancer. J Clin Oncol 26(34):5561–5568PubMedCrossRef Hooning MJ, Aleman BM, Hauptmann M, Baaijens MH, Klijn JG, Noyon R et al (2008) Roles of radiotherapy and chemotherapy in the development of contralateral breast cancer. J Clin Oncol 26(34):5561–5568PubMedCrossRef
22.
Zurück zum Zitat De Bruin ML, Sparidans J, vanʹt Veer MB, Noordijk EM, Louwman MW, Zijlstra JM et al (2009) Breast cancer risk in female survivors of Hodgkin’s lymphoma: lower risk after smaller radiation volumes. J Clin Oncol 27(26):4239–4246PubMedCrossRef De Bruin ML, Sparidans J, vanʹt Veer MB, Noordijk EM, Louwman MW, Zijlstra JM et al (2009) Breast cancer risk in female survivors of Hodgkin’s lymphoma: lower risk after smaller radiation volumes. J Clin Oncol 27(26):4239–4246PubMedCrossRef
23.
Zurück zum Zitat Xiang M, Chang DT, Pollom EL (2020) Second cancer risk after primary cancer treatment with three-dimensional conformal, intensity-modulated, or proton beam radiation therapy. Cancer 126(15):3560–3568PubMedCrossRef Xiang M, Chang DT, Pollom EL (2020) Second cancer risk after primary cancer treatment with three-dimensional conformal, intensity-modulated, or proton beam radiation therapy. Cancer 126(15):3560–3568PubMedCrossRef
24.
Zurück zum Zitat Sethi RV, Shih HA, Yeap BY, Mouw KW, Petersen R, Kim DY et al (2014) Second nonocular tumors among survivors of retinoblastoma treated with contemporary photon and proton radiotherapy. Cancer 120(1):126–133PubMedCrossRef Sethi RV, Shih HA, Yeap BY, Mouw KW, Petersen R, Kim DY et al (2014) Second nonocular tumors among survivors of retinoblastoma treated with contemporary photon and proton radiotherapy. Cancer 120(1):126–133PubMedCrossRef
25.
Zurück zum Zitat Mullenders L, Atkinson M, Paretzke H, Sabatier L, Bouffler S (2009) Assessing cancer risks of low-dose radiation. Nat Rev Cancer 9(8):596–604PubMedCrossRef Mullenders L, Atkinson M, Paretzke H, Sabatier L, Bouffler S (2009) Assessing cancer risks of low-dose radiation. Nat Rev Cancer 9(8):596–604PubMedCrossRef
26.
Zurück zum Zitat Schneider U, Lomax A, Timmermann B (2008) Second cancers in children treated with modern radiotherapy techniques. Radiother Oncol 89(2):135–140PubMedCrossRef Schneider U, Lomax A, Timmermann B (2008) Second cancers in children treated with modern radiotherapy techniques. Radiother Oncol 89(2):135–140PubMedCrossRef
28.
Zurück zum Zitat Ikushima H, Miyazono K (2010) TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10(6):415–424PubMedCrossRef Ikushima H, Miyazono K (2010) TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10(6):415–424PubMedCrossRef
29.
Zurück zum Zitat Zhang Q, Liu J, Ao N, Yu H, Peng Y, Ou L et al (2020) Secondary cancer risk after radiation therapy for breast cancer with different radiotherapy techniques. Sci Rep 10(1):1220PubMedPubMedCentralCrossRef Zhang Q, Liu J, Ao N, Yu H, Peng Y, Ou L et al (2020) Secondary cancer risk after radiation therapy for breast cancer with different radiotherapy techniques. Sci Rep 10(1):1220PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Abo-Madyan Y, Aziz MH, Aly MM, Schneider F, Sperk E, Clausen S et al (2014) Second cancer risk after 3D-CRT, IMRT and VMAT for breast cancer. Radiother Oncol 110(3):471–476PubMedCrossRef Abo-Madyan Y, Aziz MH, Aly MM, Schneider F, Sperk E, Clausen S et al (2014) Second cancer risk after 3D-CRT, IMRT and VMAT for breast cancer. Radiother Oncol 110(3):471–476PubMedCrossRef
31.
Zurück zum Zitat Chera BS, Vargas C, Morris CG, Louis D, Flampouri S, Yeung D et al (2009) Dosimetric study of pelvic proton radiotherapy for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 75(4):994–1002PubMedCrossRef Chera BS, Vargas C, Morris CG, Louis D, Flampouri S, Yeung D et al (2009) Dosimetric study of pelvic proton radiotherapy for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 75(4):994–1002PubMedCrossRef
32.
Zurück zum Zitat Fontenot JD, Lee AK, Newhauser WD (2009) Risk of secondary malignant neoplasms from proton therapy and intensity-modulated x-ray therapy for early-stage prostate cancer. Int J Radiat Oncol Biol Phys 74(2):616–622PubMedPubMedCentralCrossRef Fontenot JD, Lee AK, Newhauser WD (2009) Risk of secondary malignant neoplasms from proton therapy and intensity-modulated x-ray therapy for early-stage prostate cancer. Int J Radiat Oncol Biol Phys 74(2):616–622PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Braunstein S, Nakamura JL (2013) Radiotherapy-induced malignancies: review of clinical features, pathobiology, and evolving approaches for mitigating risk. Front Oncol 3:73PubMedPubMedCentralCrossRef Braunstein S, Nakamura JL (2013) Radiotherapy-induced malignancies: review of clinical features, pathobiology, and evolving approaches for mitigating risk. Front Oncol 3:73PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Bougeard G, Renaux-Petel M, Flaman JM, Charbonnier C, Fermey P, Belotti M et al (2015) Revisiting li-fraumeni syndrome from TP53 mutation carriers. J Clin Oncol 33(21):2345–2352PubMedCrossRef Bougeard G, Renaux-Petel M, Flaman JM, Charbonnier C, Fermey P, Belotti M et al (2015) Revisiting li-fraumeni syndrome from TP53 mutation carriers. J Clin Oncol 33(21):2345–2352PubMedCrossRef
35.
Zurück zum Zitat Le AN, Harton J, Desai H, Powers J, Zelley K, Bradbury AR et al (2020) Frequency of radiation-induced malignancies post-adjuvant radiotherapy for breast cancer in patients with Li-Fraumeni syndrome. Breast Cancer Res Treat 181(1):181–188PubMedPubMedCentralCrossRef Le AN, Harton J, Desai H, Powers J, Zelley K, Bradbury AR et al (2020) Frequency of radiation-induced malignancies post-adjuvant radiotherapy for breast cancer in patients with Li-Fraumeni syndrome. Breast Cancer Res Treat 181(1):181–188PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Hendrickson PG, Luo Y, Kohlmann W, Schiffman J, Maese L, Bishop AJ et al (2020) Radiation therapy and secondary malignancy in Li-Fraumeni syndrome: a hereditary cancer registry study. Cancer Med 9(21):7954–7963PubMedPubMedCentralCrossRef Hendrickson PG, Luo Y, Kohlmann W, Schiffman J, Maese L, Bishop AJ et al (2020) Radiation therapy and secondary malignancy in Li-Fraumeni syndrome: a hereditary cancer registry study. Cancer Med 9(21):7954–7963PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Wong FL, Boice JD Jr, Abramson DH, Tarone RE, Kleinerman RA, Stovall M et al (1997) Cancer incidence after retinoblastoma. Radiat Sarcoma Risk JAMA 278(15):1262–1267 Wong FL, Boice JD Jr, Abramson DH, Tarone RE, Kleinerman RA, Stovall M et al (1997) Cancer incidence after retinoblastoma. Radiat Sarcoma Risk JAMA 278(15):1262–1267
38.
Zurück zum Zitat Best T, Li D, Skol AD, Kirchhoff T, Jackson SA, Yasui Y et al (2011) Variants at 6q21 implicate PRDM1 in the etiology of therapy-induced second malignancies after Hodgkin’s lymphoma. Nat Med 17(8):941–943PubMedPubMedCentralCrossRef Best T, Li D, Skol AD, Kirchhoff T, Jackson SA, Yasui Y et al (2011) Variants at 6q21 implicate PRDM1 in the etiology of therapy-induced second malignancies after Hodgkin’s lymphoma. Nat Med 17(8):941–943PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Knight JA, Skol AD, Shinde A, Hastings D, Walgren RA, Shao J et al (2009) Genome-wide association study to identify novel loci associated with therapy-related myeloid leukemia susceptibility. Blood 113(22):5575–5582PubMedPubMedCentralCrossRef Knight JA, Skol AD, Shinde A, Hastings D, Walgren RA, Shao J et al (2009) Genome-wide association study to identify novel loci associated with therapy-related myeloid leukemia susceptibility. Blood 113(22):5575–5582PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Armstrong GT, Sklar CA, Hudson MM, Robison LL (2007) Long-term health status among survivors of childhood cancer: Does sex matter? J Clin Oncol 25(28):4477–4489PubMedCrossRef Armstrong GT, Sklar CA, Hudson MM, Robison LL (2007) Long-term health status among survivors of childhood cancer: Does sex matter? J Clin Oncol 25(28):4477–4489PubMedCrossRef
41.
Zurück zum Zitat Bhatia S, Sklar C (2002) Second cancers in survivors of childhood cancer. Nat Rev Cancer 2(2):124–132PubMedCrossRef Bhatia S, Sklar C (2002) Second cancers in survivors of childhood cancer. Nat Rev Cancer 2(2):124–132PubMedCrossRef
42.
Zurück zum Zitat Prochazka M, Hall P, Gagliardi G, Granath F, Nilsson BN, Shields PG et al (2005) Ionizing radiation and tobacco use increases the risk of a subsequent lung carcinoma in women with breast cancer: case-only design. J Clin Oncol 23(30):7467–7474PubMedCrossRef Prochazka M, Hall P, Gagliardi G, Granath F, Nilsson BN, Shields PG et al (2005) Ionizing radiation and tobacco use increases the risk of a subsequent lung carcinoma in women with breast cancer: case-only design. J Clin Oncol 23(30):7467–7474PubMedCrossRef
43.
Zurück zum Zitat Travis LB, Gospodarowicz M, Curtis RE, Clarke EA, Andersson M, Glimelius B et al (2002) Lung cancer following chemotherapy and radiotherapy for Hodgkin’s disease. J Natl Cancer Inst 94(3):182–192PubMedCrossRef Travis LB, Gospodarowicz M, Curtis RE, Clarke EA, Andersson M, Glimelius B et al (2002) Lung cancer following chemotherapy and radiotherapy for Hodgkin’s disease. J Natl Cancer Inst 94(3):182–192PubMedCrossRef
44.
Zurück zum Zitat Behjati S, Gundem G, Wedge DC, Roberts ND, Tarpey PS, Cooke SL et al (2016) Mutational signatures of ionizing radiation in second malignancies. Nat Commun 7:12605PubMedPubMedCentralCrossRef Behjati S, Gundem G, Wedge DC, Roberts ND, Tarpey PS, Cooke SL et al (2016) Mutational signatures of ionizing radiation in second malignancies. Nat Commun 7:12605PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Donson AM, Erwin NS, Kleinschmidt-DeMasters BK, Madden JR, Addo-Yobo SO, Foreman NK (2007) Unique molecular characteristics of radiation-induced glioblastoma. J Neuropathol Exp Neurol 66(8):740–749PubMedCrossRef Donson AM, Erwin NS, Kleinschmidt-DeMasters BK, Madden JR, Addo-Yobo SO, Foreman NK (2007) Unique molecular characteristics of radiation-induced glioblastoma. J Neuropathol Exp Neurol 66(8):740–749PubMedCrossRef
46.
Zurück zum Zitat Gonin-Laurent N, Gibaud A, Huygue M, Lefevre SH, Le Bras M, Chauveinc L et al (2006) Specific TP53 mutation pattern in radiation-induced sarcomas. Carcinogenesis 27(6):1266–1272PubMedCrossRef Gonin-Laurent N, Gibaud A, Huygue M, Lefevre SH, Le Bras M, Chauveinc L et al (2006) Specific TP53 mutation pattern in radiation-induced sarcomas. Carcinogenesis 27(6):1266–1272PubMedCrossRef
47.
Zurück zum Zitat Manner J, Radlwimmer B, Hohenberger P, Mossinger K, Kuffer S, Sauer C et al (2010) MYC high level gene amplification is a distinctive feature of angiosarcomas after irradiation or chronic lymphedema. Am J Pathol 176(1):34–39PubMedPubMedCentralCrossRef Manner J, Radlwimmer B, Hohenberger P, Mossinger K, Kuffer S, Sauer C et al (2010) MYC high level gene amplification is a distinctive feature of angiosarcomas after irradiation or chronic lymphedema. Am J Pathol 176(1):34–39PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Nguyen DH, Oketch-Rabah HA, Illa-Bochaca I, Geyer FC, Reis-Filho JS, Mao JH et al (2011) Radiation acts on the microenvironment to affect breast carcinogenesis by distinct mechanisms that decrease cancer latency and affect tumor type. Cancer Cell 19(5):640–651PubMedPubMedCentralCrossRef Nguyen DH, Oketch-Rabah HA, Illa-Bochaca I, Geyer FC, Reis-Filho JS, Mao JH et al (2011) Radiation acts on the microenvironment to affect breast carcinogenesis by distinct mechanisms that decrease cancer latency and affect tumor type. Cancer Cell 19(5):640–651PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Olschowka JA, Kyrkanides S, Harvey BK, O’Banion MK, Williams JP, Rubin P et al (1997) ICAM-1 induction in the mouse CNS following irradiation. Brain Behav Immun 11(4):273–285PubMedCrossRef Olschowka JA, Kyrkanides S, Harvey BK, O’Banion MK, Williams JP, Rubin P et al (1997) ICAM-1 induction in the mouse CNS following irradiation. Brain Behav Immun 11(4):273–285PubMedCrossRef
50.
Zurück zum Zitat Zhao Y, Zhang T, Wang Y, Lu D, Du J, Feng X et al (2021) ICAM-1 orchestrates the abscopal effect of tumor radiotherapy. Proc Natl Acad Sci 118(14):e2010333118PubMedPubMedCentralCrossRef Zhao Y, Zhang T, Wang Y, Lu D, Du J, Feng X et al (2021) ICAM-1 orchestrates the abscopal effect of tumor radiotherapy. Proc Natl Acad Sci 118(14):e2010333118PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Chen B, Zhao Z, Lee V, Reddy R, Stoodley M (2016) Radiation-induced expression of platelet endothelial cell adhesion molecule-1 in cerebral endothelial cells. Int J Radiat Res 14(3):181–188CrossRef Chen B, Zhao Z, Lee V, Reddy R, Stoodley M (2016) Radiation-induced expression of platelet endothelial cell adhesion molecule-1 in cerebral endothelial cells. Int J Radiat Res 14(3):181–188CrossRef
52.
Zurück zum Zitat Sans E, Delachanal E, Duperray A (2001) Analysis of the roles of ICAM-1 in neutrophil transmigration using a reconstituted mammalian cell expression model: implication of ICAM-1 cytoplasmic domain and Rho-dependent signaling pathway. J Immunol 166(1):544–551PubMedCrossRef Sans E, Delachanal E, Duperray A (2001) Analysis of the roles of ICAM-1 in neutrophil transmigration using a reconstituted mammalian cell expression model: implication of ICAM-1 cytoplasmic domain and Rho-dependent signaling pathway. J Immunol 166(1):544–551PubMedCrossRef
53.
Zurück zum Zitat Williams MR, Luscinskas FW (2011) Leukocyte rolling and adhesion via ICAM-1 signals to endothelial permeability. Focus on “Leukocyte rolling and adhesion both contribute to regulation of microvascular permeability to albumin via ligation of ICAM-1.” Am J Physiol Cell Physiol 301(4):777–779CrossRef Williams MR, Luscinskas FW (2011) Leukocyte rolling and adhesion via ICAM-1 signals to endothelial permeability. Focus on “Leukocyte rolling and adhesion both contribute to regulation of microvascular permeability to albumin via ligation of ICAM-1.” Am J Physiol Cell Physiol 301(4):777–779CrossRef
54.
Zurück zum Zitat Grönloh MLB, Arts JJG, Martínez SP, van der Veen AA, Kempers L, van Steen ACI, et al. Endothelial transmigration hotspots limit vascular leakage through heterogeneous expression of ICAM1. bioRxiv. 2022:2022.01.14.476297 Grönloh MLB, Arts JJG, Martínez SP, van der Veen AA, Kempers L, van Steen ACI, et al. Endothelial transmigration hotspots limit vascular leakage through heterogeneous expression of ICAM1. bioRxiv. 2022:2022.01.14.476297
55.
Zurück zum Zitat Padmanabhan J, Gonzalez AL (2012) The effects of extracellular matrix proteins on neutrophil-endothelial interaction–a roadway to multiple therapeutic opportunities. Yale J Biol Med 85(2):167–185PubMedPubMedCentral Padmanabhan J, Gonzalez AL (2012) The effects of extracellular matrix proteins on neutrophil-endothelial interaction–a roadway to multiple therapeutic opportunities. Yale J Biol Med 85(2):167–185PubMedPubMedCentral
56.
Zurück zum Zitat Calveley VL, Khan MA, Yeung IW, Vandyk J, Hill RP (2005) Partial volume rat lung irradiation: temporal fluctuations of in-field and out-of-field DNA damage and inflammatory cytokines following irradiation. Int J Radiat Biol 81(12):887–899PubMedCrossRef Calveley VL, Khan MA, Yeung IW, Vandyk J, Hill RP (2005) Partial volume rat lung irradiation: temporal fluctuations of in-field and out-of-field DNA damage and inflammatory cytokines following irradiation. Int J Radiat Biol 81(12):887–899PubMedCrossRef
57.
Zurück zum Zitat Finkelstein JN, Johnston C, Barrett T, Oberdorster G (1997) Particulate-cell interactions and pulmonary cytokine expression. Environ Health Perspect 105(Suppl 5):1179–1182PubMedPubMedCentralCrossRef Finkelstein JN, Johnston C, Barrett T, Oberdorster G (1997) Particulate-cell interactions and pulmonary cytokine expression. Environ Health Perspect 105(Suppl 5):1179–1182PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Olman MA, White KE, Ware LB, Cross MT, Zhu S, Matthay MA (2002) Microarray analysis indicates that pulmonary edema fluid from patients with acute lung injury mediates inflammation, mitogen gene expression, and fibroblast proliferation through bioactive interleukin-1. Chest 121(3 Suppl):69S-70SPubMedCrossRef Olman MA, White KE, Ware LB, Cross MT, Zhu S, Matthay MA (2002) Microarray analysis indicates that pulmonary edema fluid from patients with acute lung injury mediates inflammation, mitogen gene expression, and fibroblast proliferation through bioactive interleukin-1. Chest 121(3 Suppl):69S-70SPubMedCrossRef
59.
Zurück zum Zitat Porter DW, Ye J, Ma J, Barger M, Robinson VA, Ramsey D et al (2002) Time course of pulmonary response of rats to inhalation of crystalline silica: NF-kappa B activation, inflammation, cytokine production, and damage. Inhal Toxicol 14(4):349–367PubMedCrossRef Porter DW, Ye J, Ma J, Barger M, Robinson VA, Ramsey D et al (2002) Time course of pulmonary response of rats to inhalation of crystalline silica: NF-kappa B activation, inflammation, cytokine production, and damage. Inhal Toxicol 14(4):349–367PubMedCrossRef
60.
Zurück zum Zitat Sedgwick JB, Menon I, Gern JE, Busse WW (2002) Effects of inflammatory cytokines on the permeability of human lung microvascular endothelial cell monolayers and differential eosinophil transmigration. J Allergy Clin Immunol 110(5):752–756PubMedCrossRef Sedgwick JB, Menon I, Gern JE, Busse WW (2002) Effects of inflammatory cytokines on the permeability of human lung microvascular endothelial cell monolayers and differential eosinophil transmigration. J Allergy Clin Immunol 110(5):752–756PubMedCrossRef
61.
Zurück zum Zitat Di Maggio FM, Minafra L, Forte GI, Cammarata FP, Lio D, Messa C et al (2015) Portrait of inflammatory response to ionizing radiation treatment. J Inflamm (Lond) 12:14PubMedCrossRef Di Maggio FM, Minafra L, Forte GI, Cammarata FP, Lio D, Messa C et al (2015) Portrait of inflammatory response to ionizing radiation treatment. J Inflamm (Lond) 12:14PubMedCrossRef
62.
Zurück zum Zitat Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604PubMedCrossRef Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604PubMedCrossRef
63.
Zurück zum Zitat Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24:99–146PubMedCrossRef Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24:99–146PubMedCrossRef
64.
Zurück zum Zitat Martin M, Lefaix J, Delanian S (2000) TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys 47(2):277–290PubMedCrossRef Martin M, Lefaix J, Delanian S (2000) TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys 47(2):277–290PubMedCrossRef
65.
Zurück zum Zitat Anscher MS, Crocker IR, Jirtle RL (1990) Transforming growth factor-beta 1 expression in irradiated liver. Radiat Res 122(1):77–85PubMedCrossRef Anscher MS, Crocker IR, Jirtle RL (1990) Transforming growth factor-beta 1 expression in irradiated liver. Radiat Res 122(1):77–85PubMedCrossRef
66.
Zurück zum Zitat Barcellos-Hoff MH, Dix TA (1996) Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol 10(9):1077–1083PubMed Barcellos-Hoff MH, Dix TA (1996) Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol 10(9):1077–1083PubMed
67.
Zurück zum Zitat Barcellos-Hoff MH, Park C, Wright EG (2005) Radiation and the microenvironment-tumorigenesis and therapy. Nat Rev Cancer 5(11):867–875PubMedCrossRef Barcellos-Hoff MH, Park C, Wright EG (2005) Radiation and the microenvironment-tumorigenesis and therapy. Nat Rev Cancer 5(11):867–875PubMedCrossRef
68.
Zurück zum Zitat Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303(5659):848–851PubMedCrossRef Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303(5659):848–851PubMedCrossRef
69.
Zurück zum Zitat Barcellos-Hoff MH, Derynck R, Tsang ML, Weatherbee JA (1994) Transforming growth factor-beta activation in irradiated murine mammary gland. J Clin Invest 93(2):892–899PubMedPubMedCentralCrossRef Barcellos-Hoff MH, Derynck R, Tsang ML, Weatherbee JA (1994) Transforming growth factor-beta activation in irradiated murine mammary gland. J Clin Invest 93(2):892–899PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Wang J, Zheng H, Sung CC, Richter KK, Hauer-Jensen M (1998) Cellular sources of transforming growth factor-beta isoforms in early and chronic radiation enteropathy. Am J Pathol 153(5):1531–1540PubMedPubMedCentralCrossRef Wang J, Zheng H, Sung CC, Richter KK, Hauer-Jensen M (1998) Cellular sources of transforming growth factor-beta isoforms in early and chronic radiation enteropathy. Am J Pathol 153(5):1531–1540PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Yarnold J, Brotons MC (2010) Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol 97(1):149–161PubMedCrossRef Yarnold J, Brotons MC (2010) Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol 97(1):149–161PubMedCrossRef
72.
Zurück zum Zitat Chithra P, Sajithlal GB, Chandrakasan G (1998) Influence of Aloe vera on the glycosaminoglycans in the matrix of healing dermal wounds in rats. J Ethnopharmacol 59(3):179–186PubMedCrossRef Chithra P, Sajithlal GB, Chandrakasan G (1998) Influence of Aloe vera on the glycosaminoglycans in the matrix of healing dermal wounds in rats. J Ethnopharmacol 59(3):179–186PubMedCrossRef
73.
Zurück zum Zitat Lefaix JL, Daburon F (1998) Diagnosis of acute localized irradiation lesions: review of the French experimental experience. Health Phys 75(4):375–384PubMedCrossRef Lefaix JL, Daburon F (1998) Diagnosis of acute localized irradiation lesions: review of the French experimental experience. Health Phys 75(4):375–384PubMedCrossRef
75.
Zurück zum Zitat Khanna L, Prasad SR, Yedururi S, Parameswaran AM, Marcal LP, Sandrasegaran K et al (2021) Second malignancies after radiation therapy: update on pathogenesis and cross-sectional imaging findings. Radiographics 41(3):876–894PubMedCrossRef Khanna L, Prasad SR, Yedururi S, Parameswaran AM, Marcal LP, Sandrasegaran K et al (2021) Second malignancies after radiation therapy: update on pathogenesis and cross-sectional imaging findings. Radiographics 41(3):876–894PubMedCrossRef
76.
Zurück zum Zitat Nepon H, Safran T, Reece EM, Murphy AM, Vorstenbosch J, Davison PG (2021) Radiation-induced tissue damage: clinical consequences and current treatment options. Semin Plast Surg 35(3):181–188PubMedPubMedCentralCrossRef Nepon H, Safran T, Reece EM, Murphy AM, Vorstenbosch J, Davison PG (2021) Radiation-induced tissue damage: clinical consequences and current treatment options. Semin Plast Surg 35(3):181–188PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM et al (2020) A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 20(3):174–186PubMedPubMedCentralCrossRef Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM et al (2020) A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 20(3):174–186PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Ejaz A, Greenberger JS, Rubin PJ (2019) Understanding the mechanism of radiation induced fibrosis and therapy options. Pharmacol Ther 204:107399PubMedCrossRef Ejaz A, Greenberger JS, Rubin PJ (2019) Understanding the mechanism of radiation induced fibrosis and therapy options. Pharmacol Ther 204:107399PubMedCrossRef
79.
Zurück zum Zitat Yu G, Pang Y, Merchant M, Kesserwan C, Gangalapudi V, Abdelmaksoud A et al (2021) Tumor mutation burden, expressed neoantigens and the immune microenvironment in diffuse gliomas. Cancers (Basel). 13(23):6092PubMedPubMedCentralCrossRef Yu G, Pang Y, Merchant M, Kesserwan C, Gangalapudi V, Abdelmaksoud A et al (2021) Tumor mutation burden, expressed neoantigens and the immune microenvironment in diffuse gliomas. Cancers (Basel). 13(23):6092PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Kocakavuk E, Anderson KJ, Varn FS, Johnson KC, Amin SB, Sulman EP et al (2021) Radiotherapy is associated with a deletion signature that contributes to poor outcomes in patients with cancer. Nat Genet 53(7):1088–1096PubMedPubMedCentralCrossRef Kocakavuk E, Anderson KJ, Varn FS, Johnson KC, Amin SB, Sulman EP et al (2021) Radiotherapy is associated with a deletion signature that contributes to poor outcomes in patients with cancer. Nat Genet 53(7):1088–1096PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Wang P, Chen Y, Wang C (2021) Beyond tumor mutation burden: tumor neoantigen burden as a biomarker for immunotherapy and other types of therapy. Front Oncol 11:672677PubMedPubMedCentralCrossRef Wang P, Chen Y, Wang C (2021) Beyond tumor mutation burden: tumor neoantigen burden as a biomarker for immunotherapy and other types of therapy. Front Oncol 11:672677PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Lhuillier C, Rudqvist NP, Elemento O, Formenti SC, Demaria S (2019) Radiation therapy and anti-tumor immunity: exposing immunogenic mutations to the immune system. Genome Med 11(1):40PubMedPubMedCentralCrossRef Lhuillier C, Rudqvist NP, Elemento O, Formenti SC, Demaria S (2019) Radiation therapy and anti-tumor immunity: exposing immunogenic mutations to the immune system. Genome Med 11(1):40PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat O’Sullivan T, Saddawi-Konefka R, Vermi W, Koebel CM, Arthur C, White JM et al (2012) Cancer immunoediting by the innate immune system in the absence of adaptive immunity. J Exp Med 209(10):1869–1882PubMedPubMedCentralCrossRef O’Sullivan T, Saddawi-Konefka R, Vermi W, Koebel CM, Arthur C, White JM et al (2012) Cancer immunoediting by the innate immune system in the absence of adaptive immunity. J Exp Med 209(10):1869–1882PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482(7385):400–404PubMedPubMedCentralCrossRef Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482(7385):400–404PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Bao S, Jiang X, Jin S, Tu P, Lu J (2021) TGF-beta1 induces immune escape by enhancing PD-1 and CTLA-4 expression on T lymphocytes in hepatocellular carcinoma. Front Oncol 11:694145PubMedPubMedCentralCrossRef Bao S, Jiang X, Jin S, Tu P, Lu J (2021) TGF-beta1 induces immune escape by enhancing PD-1 and CTLA-4 expression on T lymphocytes in hepatocellular carcinoma. Front Oncol 11:694145PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Wang X, Yang L, Huang F, Zhang Q, Liu S, Ma L et al (2017) Inflammatory cytokines IL-17 and TNF-alpha up-regulate PD-L1 expression in human prostate and colon cancer cells. Immunol Lett 184:7–14PubMedPubMedCentralCrossRef Wang X, Yang L, Huang F, Zhang Q, Liu S, Ma L et al (2017) Inflammatory cytokines IL-17 and TNF-alpha up-regulate PD-L1 expression in human prostate and colon cancer cells. Immunol Lett 184:7–14PubMedPubMedCentralCrossRef
87.
88.
Zurück zum Zitat Quandt D, Jasinski-Bergner S, Muller U, Schulze B, Seliger B (2014) Synergistic effects of IL-4 and TNFalpha on the induction of B7–H1 in renal cell carcinoma cells inhibiting allogeneic T cell proliferation. J Transl Med 12:151PubMedPubMedCentralCrossRef Quandt D, Jasinski-Bergner S, Muller U, Schulze B, Seliger B (2014) Synergistic effects of IL-4 and TNFalpha on the induction of B7–H1 in renal cell carcinoma cells inhibiting allogeneic T cell proliferation. J Transl Med 12:151PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Valero C, Lee M, Hoen D, Zehir A, Berger MF, Seshan VE et al (2021) Response rates to Anti-PD-1 immunotherapy in microsatellite-stable solid tumors with 10 or more mutations per megabase. JAMA Oncol 7(5):739–743PubMedCrossRef Valero C, Lee M, Hoen D, Zehir A, Berger MF, Seshan VE et al (2021) Response rates to Anti-PD-1 immunotherapy in microsatellite-stable solid tumors with 10 or more mutations per megabase. JAMA Oncol 7(5):739–743PubMedCrossRef
90.
Zurück zum Zitat Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520PubMedPubMedCentralCrossRef Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Cercek A, Lumish M, Sinopoli J, Weiss J, Shia J, Lamendola-Essel M et al (2022) PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. N Engl J Med 386(25):2363–2376PubMedPubMedCentralCrossRef Cercek A, Lumish M, Sinopoli J, Weiss J, Shia J, Lamendola-Essel M et al (2022) PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. N Engl J Med 386(25):2363–2376PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Solomon B, Young RJ, Bressel M, Urban D, Hendry S, Thai A et al (2018) Prognostic significance of PD-L1(+) and CD8(+) immune cells in HPV(+) oropharyngeal squamous cell carcinoma. Cancer Immunol Res 6(3):295–304PubMedCrossRef Solomon B, Young RJ, Bressel M, Urban D, Hendry S, Thai A et al (2018) Prognostic significance of PD-L1(+) and CD8(+) immune cells in HPV(+) oropharyngeal squamous cell carcinoma. Cancer Immunol Res 6(3):295–304PubMedCrossRef
93.
Zurück zum Zitat Briere D, Sudhakar N, Woods DM, Hallin J, Engstrom LD, Aranda R et al (2018) The class I/IV HDAC inhibitor mocetinostat increases tumor antigen presentation, decreases immune suppressive cell types and augments checkpoint inhibitor therapy. Cancer Immunol Immunother 67(3):381–392PubMedCrossRef Briere D, Sudhakar N, Woods DM, Hallin J, Engstrom LD, Aranda R et al (2018) The class I/IV HDAC inhibitor mocetinostat increases tumor antigen presentation, decreases immune suppressive cell types and augments checkpoint inhibitor therapy. Cancer Immunol Immunother 67(3):381–392PubMedCrossRef
94.
Zurück zum Zitat Liu C, Zheng S, Jin R, Wang X, Wang F, Zang R et al (2020) The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity. Cancer Lett 470:95–105PubMedCrossRef Liu C, Zheng S, Jin R, Wang X, Wang F, Zang R et al (2020) The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity. Cancer Lett 470:95–105PubMedCrossRef
95.
Zurück zum Zitat Hastings K, Yu HA, Wei W, Sanchez-Vega F, DeVeaux M, Choi J et al (2019) EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer. Ann Oncol 30(8):1311–1320PubMedPubMedCentralCrossRef Hastings K, Yu HA, Wei W, Sanchez-Vega F, DeVeaux M, Choi J et al (2019) EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer. Ann Oncol 30(8):1311–1320PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Biton J, Mansuet-Lupo A, Pecuchet N, Alifano M, Ouakrim H, Arrondeau J et al (2018) TP53, STK11, and EGFR mutations predict tumor immune profile and the response to Anti-PD-1 in lung adenocarcinoma. Clin Cancer Res 24(22):5710–5723PubMedCrossRef Biton J, Mansuet-Lupo A, Pecuchet N, Alifano M, Ouakrim H, Arrondeau J et al (2018) TP53, STK11, and EGFR mutations predict tumor immune profile and the response to Anti-PD-1 in lung adenocarcinoma. Clin Cancer Res 24(22):5710–5723PubMedCrossRef
98.
Zurück zum Zitat Yi M, Li A, Zhou L, Chu Q, Luo S, Wu K (2021) Immune signature-based risk stratification and prediction of immune checkpoint inhibitor’s efficacy for lung adenocarcinoma. Cancer Immunol Immunother 70(6):1705–1719PubMedPubMedCentralCrossRef Yi M, Li A, Zhou L, Chu Q, Luo S, Wu K (2021) Immune signature-based risk stratification and prediction of immune checkpoint inhibitor’s efficacy for lung adenocarcinoma. Cancer Immunol Immunother 70(6):1705–1719PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Thompson JC, Hwang WT, Davis C, Deshpande C, Jeffries S, Rajpurohit Y et al (2020) Gene signatures of tumor inflammation and epithelial-to-mesenchymal transition (EMT) predict responses to immune checkpoint blockade in lung cancer with high accuracy. Lung Cancer 139:1–8PubMedCrossRef Thompson JC, Hwang WT, Davis C, Deshpande C, Jeffries S, Rajpurohit Y et al (2020) Gene signatures of tumor inflammation and epithelial-to-mesenchymal transition (EMT) predict responses to immune checkpoint blockade in lung cancer with high accuracy. Lung Cancer 139:1–8PubMedCrossRef
Metadaten
Titel
Radiation-associated secondary malignancies: a novel opportunity for applying immunotherapies
verfasst von
Tavus Atajanova
Md Mahfuzur Rahman
David J. Konieczkowski
Zachary S. Morris
Publikationsdatum
02.09.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Cancer Immunology, Immunotherapy / Ausgabe 11/2023
Print ISSN: 0340-7004
Elektronische ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-023-03532-1

Weitere Artikel der Ausgabe 11/2023

Cancer Immunology, Immunotherapy 11/2023 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.