Skip to main content
Erschienen in: Journal of Cancer Research and Clinical Oncology 4/2024

Open Access 01.04.2024 | Research

Platinum-based adjuvant chemoradiotherapy versus adjuvant radiotherapy in patients with head and neck adenoid cystic carcinoma

verfasst von: Zichen Qiu, Zheng Wu, Xiong Zhou, Minchuan Lin, Yong Su, Yalan Tao

Erschienen in: Journal of Cancer Research and Clinical Oncology | Ausgabe 4/2024

Abstract

Purpose

The objective of the study was to assess the effectiveness and toxicity of platinum-based adjuvant chemoradiotherapy (POCRT) in comparison to postoperative radiotherapy (PORT) in patients with head and neck adenoid cystic carcinoma (HNACC).

Materials and methods

This retrospective study analyzed patients diagnosed with HNACC at our center between January 2010 and April 2020. A 1:1 propensity score matching method was used to create a matched cohort.

Results

In this study, 206 patients were analyzed, with 147 patients (71.4%) receiving postoperative radiotherapy (PORT) and 59 patients (28.6%) receiving POCRT. Twenty-one patients experienced local–regional failure. The 3-, 5-, and 10-yr local–regional control (LRC) rate for the cohort were 92.0%, 90.6%, and 86.9%, respectively. In both the entire cohort and the matched cohort, the POCRT group exhibited superior LRC compared to the PORT group (Gray's test, all P < 0.05*). Multivariate analysis identified adjuvant concurrent chemotherapy as an independent prognostic factor for LRC (Competing risks regression, HR = 0.144, 95% CI 0.026–0.802, P = 0.027*). In addition, the POCRT group had higher incidences of upper gastrointestinal toxicity and hematologic toxicities, including leukopenia, neutropenia, and anemia (all P < 0.05*).

Conclusion

In terms of reducing locoregional failures in HNACC patients, POCRT may potentially offer a more effective therapeutic approach than using PORT alone, although it also entails an augmented burden of treatment-related toxicity.
Hinweise
Zichen Qiu and Zheng Wu contributed equally to this study.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Adenoid cystic carcinoma (ACC) is an uncommon malignant tumor that originates from the epithelial cells of the salivary glands. ACC was initially reported by Robin et al. in 1853 and later named ACC by Spies et al. in 1930 (Papaspyrou et al. 2011). This type of cancer is primarily found in the head and neck region, and it represents only 1–5% of all malignant tumors in this area (Husain et al. 2013; Amit et al. 2017; Ali et al. 2016).
Head and neck adenoid cystic carcinoma (HNACC) is typically treated with surgery followed by adjuvant radiotherapy (National Comprehensive Cancer Network. Head and Neck Cancers). Adjuvant radiotherapy is particularly effective in improving local and regional control in patients with intermediate to high risk (Chen et al. 2020; Terhaard et al. 2005). However, the role of chemotherapy in adjuvant therapy remains controversial, as only a few relevant reports are available (Samant et al. 2012; Hsieh et al. 2016). The National Comprehensive Cancer Network (NCCN) guidelines suggest that patients with HNACC and high-risk factors may consider adjuvant chemotherapy (National Comprehensive Cancer Network. Head and Neck Cancers). In contrast, the American Society of Clinical Oncology guidelines advise against routine use of concurrent chemotherapy as a standard treatment for salivary gland cancer patients receiving adjuvant radiotherapy, except in the context of clinical trials (Geiger et al. 2021). Similarly, the guidelines from the German Society of Radiation Oncology recommend against routinely adding concurrent chemotherapy for salivary gland cancer patients, as ongoing prospective randomized trials are being conducted to evaluate its effectiveness (von et al. 2022). Currently, the efficacy of adjuvant chemoradiotherapy versus adjuvant radiotherapy for the treatment of salivary gland cancers with adverse features is being investigated in the ongoing phase III randomized controlled trial RTOG-1008 (Joshi and Broughman 2021).
Despite the absence of level I evidence, some radiation oncologists have incorporated the RTOG-1008 trial protocol of including adjuvant concurrent chemotherapy in the treatment of HNACC. While waiting for the results of ongoing clinical trials, this study retrospectively analyzed HNACC patients who received adjuvant radiotherapy at a single center. The objective of the study was to assess the effectiveness and toxicity of platinum-based adjuvant chemoradiotherapy (POCRT) in comparison to postoperative radiotherapy (PORT).

Methods and materials

Patients

This retrospective study aimed to analyze patients diagnosed with HNACC at our center from January 2010 to April 2020. Inclusion criteria were as follows: (1) patients who underwent surgery with curative intent and completed radiotherapy at our center; (2) non-recurrent or metastatic disease; (3) patients with complete pathological reports and follow-up data; (4) absence of a multiple primary tumor; and (5) chemotherapy regimen based on platinum. The data were reviewed under an institutional review board-approved retrospective protocol.

Treatment

In this study, all patients underwent surgery at the primary site, with some also receiving neck dissection. The surgical approach was determined by the surgeon, taking into account the patient’s medical history, clinical examination, imaging data, and intraoperative exploration. Pathological risk factors included pathological stage T3-4, N1-3, perineural invasion (PNI), lymphovascular invasion (LVI), R1-2 resections or the presence of histologic solid component. Furthermore, all patients included in this study received postoperative intensity-modulated radiotherapy (IMRT). Clinical target volume (CTV) for all patients included the tumor bed with a 1–2 cm margin and prescribed 60–66 Gy. For patients with pathological risk factors, a boost therapy was administered, with the dose determined by the responsible radiation oncologist. A subset of patients underwent skull base and neck irradiation, with the specific protocol tailored by the attending radiation oncologist based on individual circumstances. Some patients received concurrent platinum-based chemotherapy, and the choice of adjuvant therapy was ultimately determined by a multidisciplinary team discussion. The standard chemotherapy regimen was usually based on cisplatin or nedaplatin, at a dose of 80–100 mg/m2 q3w or 30–40 mg/m2 qw. Some patients received tri-weekly lobaplatin at a dose of 50 mg/m2 or tri-weekly oxaliplatin at a dose of 130 mg/m2. All patients included in this study completed the treatment.

Follow-up strategy and end points

To evaluate treatment response and toxicity, patients were followed up weekly at the outpatient clinic during the course of radiotherapy. Acute radiation-related toxicity was assessed based on the toxicity criteria of the Radiation Therapy Oncology Group and the European Organization for Research and Treatment of Cancer (Cox 1995). Subsequent clinical follow-up was scheduled every 3 months for the first year, every 6 months for the second and third years, and then annually thereafter. The follow-up period ended on April 30, 2023, or the date of death. Suspected recurrent or metastatic lesions were biopsied to confirm disease recurrence. The primary endpoint of this study was local–regional control (LRC), defined as the time from the start of treatment to the first recurrence at the local or regional site, whichever occurred earlier. Secondary endpoints included distant metastasis-free survival (DMFS), disease-free survival (DFS), and overall survival (OS). DMFS was defined as the time from the start of treatment to the first recurrence at a distant site, or death, whichever occurred earlier. DFS was defined as the time from the start of treatment to tumor recurrence, or death, whichever occurred earlier. OS was defined as the time from the start of treatment to death.

Statistical analysis

Patients were divided into two groups, PORT and POCRT, according to whether they received adjuvant concurrent chemotherapy. Categorical data were presented as frequencies and percentages, and were compared using chi-square tests with continuity correction or Fisher’s exact test. The outcomes between the PORT group and the POCRT group were analyzed using the nearest neighbor matching method within propensity score matching (PSM). The matched baseline data encompassed variables such as gender, age, smoking, alcohol consumption, primary site, pathological T stage, pathological N status, perineural invasion (PNI), lymphovascular invasion (LVI), histologic solid component, resection status, skull base RT and neck RT. For LRC with death as the only competing risk, the cumulative incidence function was used to estimate locoregional failure rates, and Gray’s test was used to compare groups (Gray 1988). For DMFS, DFS, and OS, the Kaplan–Meier method was used to estimate the failure rates, and the log-rank test was used to compare patient groups. Multivariate analyses were performed using Competing risks regression or Cox proportional hazards regression models, incorporating adjuvant concurrent chemotherapy, clinicopathological characteristics and skull base/neck RT. All analyses were two-sided, and the significance level was set at P < 0.05.

Results

Clinical characteristics and treatment details

From January 2010 to April 2020, a total of 504 patients with pathologically diagnosed HNACC were treated at our center. The following patients were excluded from this study: 155 patients who did not undergo radical surgery combined with postoperative IMRT, 82 patients with recurrence or metastasis, 56 patients with incomplete data or lost follow-up, 3 patients with concomitant other malignancies, and 2 patients who received docetaxel chemotherapy. Finally, 206 patients were included in the study, and all patients were restaged according to the 8th edition of the American Joint Committee on Cancer criteria. The entire cohort included 147 patients who received PORT (71.4%) and 59 patients who received POCRT (28.6%). Within the entire cohort, 15.5% (n = 32) of patients underwent neck dissection. All patients underwent IMRT to a median dose of 67.5 Gy (range 60–74 Gy). Patients undergoing PORT alone were treated to a median dose of 68 Gy (range 60–74 Gy), and those undergoing POCRT were treated to a median dose of 67 Gy (range 60–70 Gy). The skull base was treated in 64.6% (n = 133) of patients (PORT group = 89, 60.5%; POCRT group = 44, 74.6%), and the neck was irradiated in 62.6% (n = 129) of patients (PORT group = 95, 64.6%; POCRT group = 34, 57.6%). The POCRT group consisted of 30 patients (50.8%) who received cisplatin chemotherapy, 12 patients (20.3%) who received nedaplatin chemotherapy, 12 patients (20.3%) who received lobaplatin chemotherapy, and 5 patients (8.5%) who received oxaliplatin chemotherapy. Among the POCRT group, 69.5% (n = 41) underwent a tri-weekly regimen of chemotherapy, while the remaining 30.5% (n = 18) received weekly chemotherapy. The use of POCRT was associated with the primary location (P = 0.048*) and pathological T stage (P = 0.011*). Propensity score matching was used to match 51 pairs of patients who received PORT or POCRT, and patient characteristics were balanced across all covariates. The clinical characteristics of the two cohorts are summarized in Table 1.
Table 1
Clinical characteristics of PORT and POCRT groups in the whole cohort and matched cohort
Parameters
The entire cohort (n = 206)
The matched cohort (n = 102)
 
PORT (n = 147, %)
POCRT (n = 59, %)
P value
PORT (n = 51, %)
POCRT (n = 51, %)
P value
Sex
  
1.000
  
0.843
 Female
78 (53.1)
32 (54.2)
 
25 (49.0)
27 (52.9)
 
 Male
69 (46.9)
27 (45.8)
 
26 (51.0)
24 (47.1)
 
Age, y (range 15–78 y, median 43 y)
1.000
  
0.796
  <  = 60
123 (83.7)
49 (83.1)
 
41 (80.4)
43 (84.3)
 
  > 60
24 (16.3)
10 (16.9)
 
10 (19.6)
8 (15.7)
 
Smoke
  
0.644
  
0.715
 No
127 (86.4)
53 (89.8)
 
48 (94.1)
46 (90.2)
 
 Yes
20 (13.6)
6 (10.2)
 
3 (5.9)
5 (9.8)
 
Alcohol
  
0.240
  
1.000
 No
134 (91.2)
57 (96.6)
 
49 (96.1)
49 (96.1)
 
 Yes
13 (8.8)
2 (3.4)
 
2 (3.9)
2 (3.9)
 
Primary location
  
0.048*
  
0.872
 Major salivary
59 (40.1)
14 (23.7)
 
14 (27.5)
14 (27.5)
 
 Minor salivary
73 (49.7)
34 (57.6)
 
26 (51.0)
28 (54.9)
 
 Lacrimal
15 (10.2)
11 (18.6)
 
11 (21.6)
9 (17.6)
 
pT stage
  
0.011*
  
0.484
 T1-2
64 (43.5)
14 (23.7)
 
10 (19.6)
14 (27.5)
 
 T3-4
83 (56.5)
45 (76.3)
 
41 (80.4)
37 (72.5)
 
pN positive
  
1.000
  
1.000
 No
140 (95.2)
56 (94.9)
 
50 (98.0)
49 (96.1)
 
 Yes
7 (4.8)
3 (5.1)
 
1 (2.0)
2 (3.9)
 
PNI
  
0.200
  
1.000
 No
58 (39.5)
17 (28.8)
 
17 (33.3)
17 (33.3)
 
 Yes
89 (60.5)
42 (71.2)
 
34 (66.7)
34 (66.7)
 
LVI
  
0.106
  
0.678
 No
141 (95.9)
53 (89.8)
 
47 (92.2)
49 (96.1)
 
 Yes
6 (4.1)
6 (10.2)
 
4 (7.8)
2 (3.9)
 
Histologic solid component
 
0.531
  
1.000
 Absence
57 (38.8)
26 (44.1)
 
20 (39.2)
21 (41.2)
 
 Presence
90 (61.2)
33 (55.9)
 
31 (60.8)
30 (58.8)
 
Resection status
  
0.098
  
0.625
 R0
97 (66.0)
46 (78.0)
 
42 (82.4)
39 (76.5)
 
 R1-2
50 (34.0)
13 (22.0)
 
9 (17.6)
12 (23.5)
 
Skull base RT
  
0.076
  
0.095
 No
58 (39.5)
15 (25.4)
 
22 (43.1)
13 (25.5)
 
 Yes
89 (60.5)
44 (74.6)
 
29 (56.9)
38 (74.5)
 
Neck RT
  
0.426
  
0.692
 No
52 (35.4)
25 (42.4)
 
26 (51.0)
23 (45.1)
 
 Yes
95 (64.6)
34 (57.6)
 
25 (49.0)
28 (54.9)
 
PORT postoperative radiotherapy, POCRT postoperative chemoradiotherapy, PNI perineural invasion, LVI lymphovascular invasion, R0 complete resection, R1-2 microscopic or macroscopic positive
*Statistically significant difference (P value < 0.05)

Clinical outcomes and patterns of failure

After a median follow-up of 73.5 months (range, 15–227 months), 21 (10.2%) of the 206 patients experienced local–regional failure, 70 (34.0%) developed distant metastasis, and 47 (22.8%) died (42 from cancer, 5 from non-cancer-related diseases or accidents). The 3-, 5-, and 10-yr LRC for the cohort were 92.0%, 90.6%, and 86.9%, respectively. The 3-, 5-, and 10-yr DMFS were 76.1%, 68.5%, and 56.7%, respectively. The 3-, 5-, and 10-yr DFS were 73.2%, 65.0%, and 54.8%, respectively. The 3-, 5-, and 10-yr OS were 91.7%, 85.3%, and 67.0%, respectively.
The most frequent pattern of failure was distant metastasis, which occurred in a median time of 30 months (range, 4–116 months). The lung was the most commonly affected site of distant metastasis (80%), followed by bone (19%), liver (17%), and brain (11%). The median time to local–regional failure was 22 months (range, 1–98 months), with 90.9% of these failures occurring in high-dose areas. Table 2 provides a detailed summary of the characteristics of patients who experienced local–regional failure.
Table 2
Patterns of failure of the 21 patients who developed locoregional failures after adjuvant therapy
Case
Group
Primary location
pT
N stage
PNI
LVI
R1-2#
Local failure
Regional failure
Time to failure, month
Time to death, month
1
PORT
Lacrimal gland
T3
N0
 + 
 + 
In field
4
Alive till last visit
2
PORT
Lacrimal gland
T2
N0
 + 
 + 
In field
36
Alive till last visit
3
PORT
Nasal cavity
T4a
N0
 + 
In field
11
28
4
PORT
Nasal cavity
T4a
N0
 + 
 + 
In field
1
35
5
PORT
Nasopharynx
T3
N0
 + 
 + 
In field
51
Alive till last visit
6
PORT
Nasal cavity
T4a
N0
 + 
In field
56
81
7
PORT
Hard palate
T3
N0
 + 
In-field (Level III)
Out-field (Level IV and Va)
66
84
8
PORT
Hard palate
T4a
N0
 + 
 + 
In field
In-field (Level Ib, II and III)
26
33
9
PORT
Maxillary sinus
T3
N0
 + 
 + 
In field
22
41
10
PORT
Lacrimal gland
T4
N0
 + 
 + 
 + 
In field
24
30
11
PORT
Parotid gland
T4a
N1 (Level II)
 + 
 + 
In field
In field (Level II and V)
5
32
12
PORT
Submandibular gland
T4a
N0
 + 
 + 
In field
8
Alive till last visit
13
POCRT
Lacrimal gland
T3
N0
 + 
 + 
 + 
In field
12
32
14
PORT
Soft palate
T4
N0
 + 
In field
7
Alive till last visit
15
PORT
Lacrimal gland
T4
N0
 + 
Out – field
86
Alive till last visit
16
PORT
Maxillary sinus
T4a
N0
 + 
In field
16
Alive till last visit
17
PORT
Maxillary sinus
T4a
N0
 + 
In field (Level Ib)
98
111
18
PORT
Submandibular gland
T2
N2b (Level II)
 + 
 + 
In field
11
17
19
PORT
Maxillary sinus
T4b
N1 (Level Ib)
 + 
In field
4
146
20
POCRT
Maxillary sinus
T4a
N0
 + 
In field
61
Alive till last visit
21
PORT
Parotid gland
T3
N0
 + 
 + 
In field (Level II)
28
Alive till last visit
PORT postoperative radiotherapy, POCRT postoperative chemoradiotherapy, PNI perineural invasion, LVI lymphovascular invasion, # microscopic or macroscopic positive

Univariable and multivariable analysis

Within the entire cohort, a comparison between the POCRT group and patients undergoing PORT indicated superior locoregional control (LRC) after accounting for competing risk events (P = 0.048*, Gray’s test, Fig. 1A). In the POCRT group, the 3-year, 5-year, and 10-year locoregional failure cumulative incidence rates were 1.7%, 1.7%, and 4.3% respectively, while in the PORT group, they were 9.5%, 11.2%, and 15.2%. However, no statistically significant differences were observed between the two groups in terms of DMFS, DFS, and OS (all P > 0.05, Log-rank test, Fig. 1B–D). To minimize inherent selection bias in the retrospective cohort, propensity score matching was used to balance the PORT and POCRT groups. Within the matched cohort, the POCRT group continued to demonstrate superior LRC compared to the PORT group (P = 0.022*, Gray's test, Fig. 2A). No significant differences were observed between the POCRT and PORT groups in terms of DMFS, DFS, and OS in the matched cohort (all P > 0.05, Log-rank test, Fig. 2B–D).
Multivariate analysis, which included adjuvant concurrent chemotherapy, clinical-pathological factors and skull base/neck RT, identified adjuvant concurrent chemotherapy as an independent prognostic factor for LRC (Competing risks regression, HR = 0.144, 95% CI 0.026–0.802, P = 0.027*, Table 3). Independent prognostic factors for LRC also included pathological T stage, pathological N status, PNI, LVI, resection status and neck RT. PNI, LVI and histologic solid component were independent prognostic factors for DMFS, and pathological N status, PNI, LVI, histologic solid component, and resection status were independent prognostic factors for DFS, and pathological N status, PNI, LVI and histologic solid component were independent prognostic factors for OS (Cox proportional hazards regression, all P < 0.05*, Table 3). Adjuvant concurrent chemotherapy was not an independent prognostic factor for DMFS, DFS, or OS.
Table 3
Multivariable analyses of clinicopathological factors by outcomes
Outcomes
HR (95% CI)
P value
LRC (Competing risks regression)
  
 Chemotherapy (POCRT vs. PORT)
0.144 (0.026–0.802)
0.027*
 Primary location
  
  Major salivary
Ref
 
  Minor salivary
0.548 (0.100–2.993)
0.490
  Lacrimal
0.310 (0.022–3.325)
0.310
 pT stage (T3-4 vs. T1-2)
10.162 (2.103–49.114)
0.004*
 pN positive (Yes vs. No)
14.582 (3.198–66.488)
 < 0.001*
 PNI (Yes vs. No)
3.819 (1.140–12.795)
0.030*
 LVI (Yes vs. No)
4.333 (1.059–17.727)
0.041*
 Histologic solid component (Presence vs. Absence)
0.391 (0.120–1.272)
0.120
 Resection status (R1-2 vs. R0)
10.326 (3.074–34.687)
 < 0.001*
 Skull base RT (Yes vs. No)
0.712 (0.201–2.517)
0.600
 Neck RT (Yes vs. No)
0.131 (0.022–0.772)
0.025*
DMFS (Cox proportional hazards regression)
  
 Chemotherapy (POCRT vs. PORT)
1.484 (0.873–2.524)
0.145
 Primary location
  
  Major salivary
Ref
 
  Minor salivary
0.937 (0.329–2.669)
0.904
  Lacrimal
0.576 (0.257–1.291)
0.180
 pT stage (T3-4 vs. T1-2)
1.449 (0.850–2.469)
0.173
 pN positive (Yes vs. No)
2.170 (0.954–4.936)
0.065
 PNI (Yes vs. No)
2.596 (1.414–4.765)
0.002*
 LVI (Yes vs. No)
3.216 (1.467–7.048)
0.004*
 Histologic solid component (Presence vs. Absence)
4.602 (2.393–8.848)
< 0.001*
 Resection status (R1-2 vs. R0)
1.572 (0.917–2.695)
0.100
 Skull base RT (Yes vs. No)
1.557 (0.890–2.725)
0.121
 Neck RT (Yes vs. No)
1.207 (0.598–2.438)
0.599
DFS (Cox proportional hazards regression)
  
 Chemotherapy (POCRT vs. PORT)
1.215 (0.729–2.026)
0.455
 Primary location
  
  Major salivary
Ref
 
  Minor salivary
0.725 (0.274–1.918)
0.517
  Lacrimal
0.543 (0.262–1.125)
0.100
 pT stage (T3-4 vs. T1-2)
1.603 (0.956–2.688)
0.074
 pN positive (Yes vs. No)
2.780 (1.207–6.406)
0.016*
 PNI (Yes vs. No)
2.269 (1.300–3.962)
0.004*
 LVI (Yes vs. No)
2.430 (1.127–5.239)
0.023*
 Histologic solid component (Presence vs. Absence)
2.955 (1.680–5.200)
 < 0.001*
 Resection status (R1-2 vs. R0)
2.019 (1.233–3.305)
0.005*
 Skull base RT (Yes vs. No)
1.321 (0.779–2.242)
0.301
 Neck RT (Yes vs. No)
1.082 (0.555–2.110)
0.818
OS (Cox proportional hazards regression)
  
 Chemotherapy (POCRT vs. PORT)
1.279 (0.636–2.573)
0.490
 Primary location
  
  Major salivary
Ref
 
  Minor salivary
1.083 (0.287–4.091)
0.906
  Lacrimal
0.775 (0.283–2.120)
0.619
 pT stage (T3-4 vs. T1-2)
1.197 (0.630–2.273)
0.583
 pN positive (Yes vs. No)
2.471 (1.018–6.000)
0.046*
 PNI (Yes vs. No)
4.512 (1.949–10.447)
 < 0.001*
 LVI (Yes vs. No)
5.502 (2.176–13.912)
 < 0.001*
 Histologic solid component (Presence vs. Absence)
4.946 (1.913–12.789)
 < 0.001*
 Resection status (R1-2 vs. R0)
1.283 (0.653–2.523)
0.470
 Skull base RT (Yes vs. No)
1.182 (0.573–2.439)
0.651
 Neck RT (Yes vs. No)
0.715 (0.296–1.728)
0.456
LRC locoregional control, DMFS distant metastasis free survival, DFS disease free survival, OS overall survival, PORT postoperative radiotherapy, POCRT postoperative chemoradiotherapy, HR hazard ratio, CI confidence interval, PNI perineural invasion, LVI lymphovascular invasion, RT radiotherapy
*Statistically significant difference (P value < 0.05)

Acute toxicities

The acute toxicities during radiotherapy were evaluated and listed in Table 4, with comparison between the PORT and POCRT groups. Six patients experienced unscheduled treatment interruptions during radiotherapy, with five patients interrupting radiotherapy due to grade 4 toxicity reactions and one patient interrupting radiotherapy due to nasal bleeding. All patients resumed treatment within one week after the interruption and completed the full course of treatment. Overall, compared with the PORT group, the POCRT group had a higher incidence of unscheduled radiotherapy interruptions, but the difference was not significant (P = 0.057). In addition, the POCRT group had higher incidences of upper gastrointestinal toxicity and hematologic toxicities, including leukopenia, neutropenia, and anemia (all P < 0.05*). No grade 4 hematologic toxicity or treatment-related deaths were observed.
Table 4
Acute radiation-related toxicities in the 206 patients of the entire cohort
Toxicity
PORT (n = 147, %)
POCRT (n = 59, %)
P value
Unscheduled interruption
  
0.057
 No
145 (98.6)
55 (93.2)
 
 Yes
2 (1.4)
4 (6.8)
 
Any toxicity
  
0.429
 G0-2
135 (91.8)
52 (88.1)
 
 G3-4
12 (8.2)
7 (11.9)
 
Skin
  
0.324
 G0-2
145 (98.6)
57 (96.6)
 
 G3-4
2 (1.4)
2 (3.4)
 
Mucous membrane
  
1.000
 G0-2
138 (93.9)
55 (93.2)
 
 G3-4
9 (6.1)
4 (6.8)
 
Eye
  
0.691
 G0-1
142 (96.6)
56 (94.9)
 
 G2-3
5 (3.4)
3 (5.1)
 
Salivary gland
  
0.512
 G0
45 (30.6)
21 (35.6)
 
 G1-2
102 (69.4)
38 (64.4)
 
Pharynx and esophagus
  
0.184
 G0-1
137 (93.2)
58 (98.3)
 
 G2-3
10 (6.8)
1 (1.7)
 
Upper G.I
  
 < 0.001*
 G0
96 (65.3)
21 (35.6)
 
 G1
51 (34.7)
38 (64.4)
 
Hematologic WBC
  
< 0.001*
 G0-1
142 (96.6)
44 (74.6)
 
 G2-3
5 (3.4)
15 (25.4)
 
Platelets
  
0.626
 G0
144 (98.0)
57 (96.6)
 
 G1-2
3 (2.0)
2 (3.4)
 
Neutrophils
  
 < 0.001*
 G0-1
143 (97.3)
44 (74.6)
 
 G2-3
4 (2.7)
15 (25.4)
 
Hemoglobin
  
0.024*
 G0-1
146 (99.3)
55 (93.2)
 
 G2-3
1 (0.7)
4 (6.8)
 
PORT postoperative radiotherapy, POCRT postoperative chemoradiotherapy, upper G.I. upper gastrointestinal, WBC white blood cell
*Statistically significant difference (P value < 0.05)

Discussion

In this single-center cohort of patients with HNACC, our study revealed that LRC of those patients treated with POCRT might be superior to those treated with PORT after accounting for competing risk events (P = 0.048* in the entire cohort, P = 0.022* in the matched cohort). However, POCRT did not show any improvement in DMFS, DFS and OS. Additionally, upper gastrointestinal and hematologic toxicities were more frequent in the POCRT group (all P < 0.05*).
The 5-yr LRC, DMFS, DFS, and OS for this study were 90.6%, 68.5%, 65.0%, and 85.3%, respectively, which were similar to the clinical outcomes reported by the French National Network on rare head and neck cancers (5-yr MFS, RFS, and OS were 62%, 64%, and 85%, respectively) in their prospective cohort (Atallah et al. 2020). Surgery remains the primary treatment for HNACC, but the complex anatomy of the head and neck often makes complete removal of high T-stage tumors difficult. Therefore, postoperative radiotherapy is an important adjuvant treatment for HNACC. The NCCN guidelines recommend adjuvant radiotherapy for all HNACC patients after surgery, and for HNACC without high-risk factors, the evidence is category 2B (National Comprehensive Cancer Network. Head and Neck Cancers). Overall, the patients included in this cohort received consistent radiotherapy techniques and achieved satisfactory local–regional control.
The addition of chemotherapy in adjuvant therapy lacks high-level evidence. However, recent data from a large national study show that the use of POCRT in HNACC has significantly increased, even in the absence of new category I evidence or clinical trial data (Gordon et al. 2023). Therefore, it is of clinical significance to clarify the role and beneficiary population of POCRT. Baseline characteristics of this study indicate that patients with minor salivary/lacrimal disease or high T-stage tumors are more likely to receive POCRT. This is likely due to the need to preserve organ function, which limits the extent of surgical resection and therefore strengthens the intensity of adjuvant radiotherapy. In the present study, LRC of HNACC treated with POCRT might be superior to those treated with PORT after accounting for competing risk events (P = 0.048* in the entire cohort, P = 0.022* in the matched cohort), and multivariate analysis showed that POCRT was an independent prognostic factor for LRC (Competing risks regression, HR = 0.144, 95% CI 0.026–0.802, P = 0.027*), suggesting that adding platinum-based adjuvant concurrent chemotherapy may be an effective method to further improve the local–regional control of HNACC. This study obtained consistent results in a relatively large sample compared with previous studies. Schoenfeld et al. included 35 patients with salivary gland cancer, and the 3-yr LRC rate in the POCRT group was 92% (Schoenfeld et al. 2012). Hsieh et al. constructed a multicenter cohort of 91 patients with salivary gland ACC, of which 33 received POCRT, and the 5-yr LRC rate in the POCRT group was 97% (Hsieh et al. 2016).
Previously conducted clinical trials have indicated that postoperative chemoradiotherapy, as opposed to postoperative radiotherapy alone, can improve DFS in head and neck squamous cell carcinoma (Bernier et al. 2004; Cooper et al. 2004). However, a similar conclusion was not reached in this study on HNACC. HNACC is a highly recurrent risk tumor, with distant metastasis and local regional recurrence being primary patterns of failure in many studies (Atallah et al. 2020; Amit et al. 2014; van et al. 2013). In the present study, although POCRT is unlikely to decrease the risk of distant metastasis in HNACC patients, it may enhance local regional control and thus improve treatment efficacy, which is particularly important given the difficulty of salvage treatment for recurrent HNACC. To improve the overall survival, effective chemotherapeutic agents for systemic treatment may be necessary.
The toxicity associated with POCRT treatment is a significant concern. Previous prospective randomized trials have demonstrated that POCRT may result in increased grade 3–4 acute toxicity compared to PORT alone (Bernier et al. 2004; Cooper et al. 2004). However, this study did not observe a significant increase in grade 3–4 acute toxicity associated with POCRT, possibly due to the large sample size difference between the two groups. Furthermore, although not statistically significant, the POCRT group showed a higher incidence of unscheduled treatment interruptions, which could negatively impact the prognosis of patients by reducing the local–regional control rate (Maciejewski et al. 1989; Suwinski et al. 2003). In this study, upper gastrointestinal and hematological toxicities were more common in the POCRT group. Based on these findings, radiation oncologists should exercise caution when applying POCRT as an adjuvant treatment for HNACC.
This study presents some limitations. Firstly, while the sample size is larger compared to previous reported studies, this research remains retrospective and the follow-up time remains relatively limited given the protracted course of HNACC. Thus, the results of this study should be interpreted with caution. Secondly, the lack of clinical pathological features, such as histological grading, may have biased the results. However, histological description seems to be operator dependent, and there is no standardized protocol at our center, it is difficult to include this variable. Thirdly, the retrospective analyses were unable to control the effects of many other potential confounders, and inconsistent chemotherapy regimens also may act as a confounding factor. Nonetheless, conducting prospective clinical studies on HNACC, a rare type of cancer, is challenging. Therefore, we suggest that this study may provide useful information for radiation oncologists, particularly regarding the potential benefits of adding chemotherapy to adjuvant treatment in HNACC patients. To summarize, platinum-based adjuvant chemoradiotherapy may be a more effective treatment modality than postoperative radiotherapy alone in reducing local–regional failure in HNACC patients in the IMRT era, and these findings require validation through further studies.

Declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.
This observational study was approved by the Medical Ethics Committee of Affiliated Hospital of Sun Yat-sen University Cancer Center with the approval number B2022-018, and the need for written informed consent was waived.
NA.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Jetzt bestellen und 100 € sparen!

Literatur
Zurück zum Zitat Ali S, Yeo JCL, Magos T et al (2016) Clinical outcomes of adenoid cystic carcinoma of the head and neck: a single institution 20-year experience. J Laryngol Otol 130(7):680–685CrossRefPubMed Ali S, Yeo JCL, Magos T et al (2016) Clinical outcomes of adenoid cystic carcinoma of the head and neck: a single institution 20-year experience. J Laryngol Otol 130(7):680–685CrossRefPubMed
Zurück zum Zitat Amit M, Binenbaum Y, Sharma K et al (2014) Analysis of failure in patients with adenoid cystic carcinoma of the head and neck. An international collaborative study. Head Neck 36(7):998–1004CrossRefPubMed Amit M, Binenbaum Y, Sharma K et al (2014) Analysis of failure in patients with adenoid cystic carcinoma of the head and neck. An international collaborative study. Head Neck 36(7):998–1004CrossRefPubMed
Zurück zum Zitat Amit M, Na’Ara S, Trejo-Leider L et al (2017) Defining the surgical margins of adenoid cystic carcinoma and their impact on outcome: an international collaborative study. Head Neck 39(5):1008–1014CrossRefPubMedPubMedCentral Amit M, Na’Ara S, Trejo-Leider L et al (2017) Defining the surgical margins of adenoid cystic carcinoma and their impact on outcome: an international collaborative study. Head Neck 39(5):1008–1014CrossRefPubMedPubMedCentral
Zurück zum Zitat Atallah S, Casiraghi O, Fakhry N et al (2020) A prospective multicentre REFCOR study of 470 cases of head and neck Adenoid cystic carcinoma: epidemiology and prognostic factors. Eur J Cancer 130:241–249CrossRefPubMed Atallah S, Casiraghi O, Fakhry N et al (2020) A prospective multicentre REFCOR study of 470 cases of head and neck Adenoid cystic carcinoma: epidemiology and prognostic factors. Eur J Cancer 130:241–249CrossRefPubMed
Zurück zum Zitat Bernier J, Domenge C, Ozsahin M et al (2004) Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med 350(19):1945–1952CrossRefPubMed Bernier J, Domenge C, Ozsahin M et al (2004) Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med 350(19):1945–1952CrossRefPubMed
Zurück zum Zitat Chen Y, Zheng ZQ, Chen FP et al (2020) Role of postoperative radiotherapy in nonmetastatic head and neck adenoid cystic carcinoma. J Natl Compr Canc Netw 18(11):1476–1484CrossRefPubMed Chen Y, Zheng ZQ, Chen FP et al (2020) Role of postoperative radiotherapy in nonmetastatic head and neck adenoid cystic carcinoma. J Natl Compr Canc Netw 18(11):1476–1484CrossRefPubMed
Zurück zum Zitat Cooper JS, Pajak TF, Forastiere AA et al (2004) Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med 350(19):1937–1944CrossRefPubMed Cooper JS, Pajak TF, Forastiere AA et al (2004) Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med 350(19):1937–1944CrossRefPubMed
Zurück zum Zitat Cox JD (1995) Toxicity criteria of the radiation therapy oncology group (RTOG) and the European organization for research and treatment of cancer (EORTC). Int J Radiat Oncol Biol Phys 31:1341–1346CrossRefPubMed Cox JD (1995) Toxicity criteria of the radiation therapy oncology group (RTOG) and the European organization for research and treatment of cancer (EORTC). Int J Radiat Oncol Biol Phys 31:1341–1346CrossRefPubMed
Zurück zum Zitat Geiger JL, Ismaila N, Beadle B et al (2021) Management of salivary gland malignancy: ASCO guideline. J Clin Oncol 39(17):1909–1941CrossRefPubMed Geiger JL, Ismaila N, Beadle B et al (2021) Management of salivary gland malignancy: ASCO guideline. J Clin Oncol 39(17):1909–1941CrossRefPubMed
Zurück zum Zitat Gordon AJ, Chow MS, Patel A et al (2023) Adoption of adjuvant chemotherapy in high-risk salivary gland malignancies. Head Neck 45(1):167–177CrossRefPubMed Gordon AJ, Chow MS, Patel A et al (2023) Adoption of adjuvant chemotherapy in high-risk salivary gland malignancies. Head Neck 45(1):167–177CrossRefPubMed
Zurück zum Zitat Gray RJ (1988) A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann Statist 16:1141–1154CrossRef Gray RJ (1988) A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann Statist 16:1141–1154CrossRef
Zurück zum Zitat Hsieh CE, Lin CY, Lee LY et al (2016) Adding concurrent chemotherapy to postoperative radiotherapy improves locoregional control but not overall survival in patients with salivary gland adenoid cystic carcinoma—a propensity score matched study. Radiat Oncol 11(1):1–10CrossRef Hsieh CE, Lin CY, Lee LY et al (2016) Adding concurrent chemotherapy to postoperative radiotherapy improves locoregional control but not overall survival in patients with salivary gland adenoid cystic carcinoma—a propensity score matched study. Radiat Oncol 11(1):1–10CrossRef
Zurück zum Zitat Husain Q, Kanumuri VV, Svider PF et al (2013) Sinonasal adenoid cystic carcinoma: systematic review of survival and treatment strategies. Otolaryngol Head Neck Surg 148(1):29–39CrossRefPubMed Husain Q, Kanumuri VV, Svider PF et al (2013) Sinonasal adenoid cystic carcinoma: systematic review of survival and treatment strategies. Otolaryngol Head Neck Surg 148(1):29–39CrossRefPubMed
Zurück zum Zitat Joshi NP, Broughman JR (2021) Postoperative management of salivary gland tumors. Curr Treat Options Oncol 22:1–10CrossRef Joshi NP, Broughman JR (2021) Postoperative management of salivary gland tumors. Curr Treat Options Oncol 22:1–10CrossRef
Zurück zum Zitat Maciejewski B, Withers HR, Taylor JMG et al (1989) Dose fractionation and regeneration in radiotherapy for cancer of the oral cavity and oropharynx: tumor dose-response and repopulation. Int J Radiat Oncol Biol Phys 16(3):831–843CrossRefPubMed Maciejewski B, Withers HR, Taylor JMG et al (1989) Dose fractionation and regeneration in radiotherapy for cancer of the oral cavity and oropharynx: tumor dose-response and repopulation. Int J Radiat Oncol Biol Phys 16(3):831–843CrossRefPubMed
Zurück zum Zitat National Comprehensive Cancer Network. Head and Neck Cancers (Version 1.2023). National Comprehensive Cancer Network. Head and Neck Cancers (Version 1.2023).
Zurück zum Zitat Papaspyrou G, Hoch S, Rinaldo A et al (2011) Chemotherapy and targeted therapy in adenoid cystic carcinoma of the head and neck: a review. Head Neck 33(6):905–911CrossRefPubMed Papaspyrou G, Hoch S, Rinaldo A et al (2011) Chemotherapy and targeted therapy in adenoid cystic carcinoma of the head and neck: a review. Head Neck 33(6):905–911CrossRefPubMed
Zurück zum Zitat Samant S, Van Den Brekel MW, Kies MS et al (2012) Concurrent chemoradiation for adenoid cystic carcinoma of the head and neck. Head Neck 34(9):1263–1268CrossRefPubMed Samant S, Van Den Brekel MW, Kies MS et al (2012) Concurrent chemoradiation for adenoid cystic carcinoma of the head and neck. Head Neck 34(9):1263–1268CrossRefPubMed
Zurück zum Zitat Schoenfeld JD, Sher DJ, Norris CM Jr et al (2012) Salivary gland tumors treated with adjuvant intensity-modulated radiotherapy with or without concurrent chemotherapy. Int J Radiat Oncol Biol Phys 82(1):308–314CrossRefPubMed Schoenfeld JD, Sher DJ, Norris CM Jr et al (2012) Salivary gland tumors treated with adjuvant intensity-modulated radiotherapy with or without concurrent chemotherapy. Int J Radiat Oncol Biol Phys 82(1):308–314CrossRefPubMed
Zurück zum Zitat Suwinski R, Sowa A, Rutkowski T et al (2003) Time factor in postoperative radiotherapy: a multivariate locoregional control analysis in 868 patients. Int J Radiat Oncol Biol Phys 56(2):399–412CrossRefPubMed Suwinski R, Sowa A, Rutkowski T et al (2003) Time factor in postoperative radiotherapy: a multivariate locoregional control analysis in 868 patients. Int J Radiat Oncol Biol Phys 56(2):399–412CrossRefPubMed
Zurück zum Zitat Terhaard CHJ, Lubsen H, Rasch CRN et al (2005) The role of radiotherapy in the treatment of malignant salivary gland tumors. Int J Radiat Oncol Biol Phys 61(1):103–111CrossRefPubMed Terhaard CHJ, Lubsen H, Rasch CRN et al (2005) The role of radiotherapy in the treatment of malignant salivary gland tumors. Int J Radiat Oncol Biol Phys 61(1):103–111CrossRefPubMed
Zurück zum Zitat van Weert S, Bloemena E, van der Waal I et al (2013) Adenoid cystic carcinoma of the head and neck: a single-center analysis of 105 consecutive cases over a 30-year period. Oral Oncol 49(8):824–829CrossRefPubMed van Weert S, Bloemena E, van der Waal I et al (2013) Adenoid cystic carcinoma of the head and neck: a single-center analysis of 105 consecutive cases over a 30-year period. Oral Oncol 49(8):824–829CrossRefPubMed
Zurück zum Zitat von der Grün J, Rödel C, Semrau S et al (2022) Patterns of care analysis for salivary gland cancer: a survey within the German society of radiation oncology (DEGRO) and recommendations for daily practice. Strahlenther Onkol 198(2):123–134CrossRefPubMed von der Grün J, Rödel C, Semrau S et al (2022) Patterns of care analysis for salivary gland cancer: a survey within the German society of radiation oncology (DEGRO) and recommendations for daily practice. Strahlenther Onkol 198(2):123–134CrossRefPubMed
Metadaten
Titel
Platinum-based adjuvant chemoradiotherapy versus adjuvant radiotherapy in patients with head and neck adenoid cystic carcinoma
verfasst von
Zichen Qiu
Zheng Wu
Xiong Zhou
Minchuan Lin
Yong Su
Yalan Tao
Publikationsdatum
01.04.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Cancer Research and Clinical Oncology / Ausgabe 4/2024
Print ISSN: 0171-5216
Elektronische ISSN: 1432-1335
DOI
https://doi.org/10.1007/s00432-024-05719-0

Weitere Artikel der Ausgabe 4/2024

Journal of Cancer Research and Clinical Oncology 4/2024 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.