Skip to main content
Erschienen in: Cancer Immunology, Immunotherapy 11/2023

21.09.2023 | Review

Metabolic diversity of tumor-infiltrating T cells as target for anti-immune therapeutics

verfasst von: Peipei Li, Fangchao Li, Yanfei Zhang, Xiaoyang Yu, Jingjing Li

Erschienen in: Cancer Immunology, Immunotherapy | Ausgabe 11/2023

Einloggen, um Zugang zu erhalten

Abstract

Tumor-infiltrating T cells are promising drug targets to modulate the tumor microenvironment. However, tumor-infiltrating T lymphocytes, as central targets of cancer immunotherapy, show considerable heterogeneity and dynamics across tumor microenvironments and cancer types that may fundamentally influence cancer growth, metastasis, relapse, and response to clinical drugs. The T cell heterogeneity not only refers to the composition of subpopulations but also divergent metabolic states of T cells. Comparing to the diversity of tumor-infiltrating T cell compositions that have been well recognized, the metabolic diversity of T cells deserves more attention for precision immunotherapy. Single-cell sequencing technology enables panoramic stitching of the tumor bulk, partly by showing the metabolic-related gene expression profiles of tumor-infiltrating T cells at a single-cell resolution. Therefore, we here discuss T cell metabolism reprogramming triggered by tumor microenvironment as well as the potential application of metabolic targeting drugs. The tumor-infiltrating T cells metabolic pathway addictions among different cancer types are also addressed in this brief review.
Literatur
1.
Zurück zum Zitat Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefPubMed Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefPubMed
3.
Zurück zum Zitat Coley WB (1910) The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the streptococcus erysipelas and the bacillus prodigiosus). Proc R Soc Med 3(Surg Sect):1–48PubMedPubMedCentral Coley WB (1910) The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the streptococcus erysipelas and the bacillus prodigiosus). Proc R Soc Med 3(Surg Sect):1–48PubMedPubMedCentral
4.
Zurück zum Zitat Peske JD, Woods AB, Engelhard VH (2015) Control of CD8 T-cell infiltration into tumors by vasculature and microenvironment. Adv Cancer Res 128:263–307PubMedPubMedCentralCrossRef Peske JD, Woods AB, Engelhard VH (2015) Control of CD8 T-cell infiltration into tumors by vasculature and microenvironment. Adv Cancer Res 128:263–307PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Park R, Winnicki M, Liu E, Chu WM (2019) Immune checkpoints and cancer in the immunogenomics era. Brief Funct Genomics 18(2):133–139PubMedCrossRef Park R, Winnicki M, Liu E, Chu WM (2019) Immune checkpoints and cancer in the immunogenomics era. Brief Funct Genomics 18(2):133–139PubMedCrossRef
7.
Zurück zum Zitat Kambayashi Y, Fujimura T, Hidaka T, Aiba S (2019) Biomarkers for predicting efficacies of anti-PD1 antibodies. Front Med (Lausanne) 6:174PubMedCrossRef Kambayashi Y, Fujimura T, Hidaka T, Aiba S (2019) Biomarkers for predicting efficacies of anti-PD1 antibodies. Front Med (Lausanne) 6:174PubMedCrossRef
9.
Zurück zum Zitat Rowshanravan B, Halliday N, Sansom DM (2018) CTLA-4: a moving target in immunotherapy. Blood 131(1):58–67PubMedCrossRef Rowshanravan B, Halliday N, Sansom DM (2018) CTLA-4: a moving target in immunotherapy. Blood 131(1):58–67PubMedCrossRef
10.
Zurück zum Zitat Balch CM, Riley LB, Bae YJ et al (1990) Patterns of human tumor-infiltrating lymphocytes in 120 human cancers. Arch Surg 125(2):200–205PubMedCrossRef Balch CM, Riley LB, Bae YJ et al (1990) Patterns of human tumor-infiltrating lymphocytes in 120 human cancers. Arch Surg 125(2):200–205PubMedCrossRef
11.
Zurück zum Zitat Solis-Castillo LA, Garcia-Romo GS, Diaz-Rodriguez A et al (2020) Tumor-infiltrating regulatory T cells, CD8/Treg ratio, and cancer stem cells are correlated with lymph node metastasis in patients with early breast cancer. Breast Cancer 27(5):837–849PubMedCrossRef Solis-Castillo LA, Garcia-Romo GS, Diaz-Rodriguez A et al (2020) Tumor-infiltrating regulatory T cells, CD8/Treg ratio, and cancer stem cells are correlated with lymph node metastasis in patients with early breast cancer. Breast Cancer 27(5):837–849PubMedCrossRef
12.
Zurück zum Zitat Sharabi A, Tsokos GC (2020) T cell metabolism: new insights in systemic lupus erythematosus pathogenesis and therapy. Nat Rev Rheumatol 16(2):100–112PubMedCrossRef Sharabi A, Tsokos GC (2020) T cell metabolism: new insights in systemic lupus erythematosus pathogenesis and therapy. Nat Rev Rheumatol 16(2):100–112PubMedCrossRef
13.
14.
Zurück zum Zitat Alcazar I, Marques M, Kumar A et al (2007) Phosphoinositide 3-kinase gamma participates in T cell receptor-induced T cell activation. J Exp Med 204(12):2977–2987PubMedPubMedCentralCrossRef Alcazar I, Marques M, Kumar A et al (2007) Phosphoinositide 3-kinase gamma participates in T cell receptor-induced T cell activation. J Exp Med 204(12):2977–2987PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Wang R, Dillon CP, Shi LZ et al (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35(6):871–882PubMedPubMedCentralCrossRef Wang R, Dillon CP, Shi LZ et al (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35(6):871–882PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Chou C, Pinto AK, Curtis JD et al (2014) c-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells. Nat Immunol 15(9):884–893PubMedPubMedCentralCrossRef Chou C, Pinto AK, Curtis JD et al (2014) c-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells. Nat Immunol 15(9):884–893PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Macintyre AN, Gerriets VA, Nichols AG et al (2014) The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab 20(1):61–72PubMedPubMedCentralCrossRef Macintyre AN, Gerriets VA, Nichols AG et al (2014) The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab 20(1):61–72PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Carr EL, Kelman A, Wu GS et al (2010) Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol 185(2):1037–1044PubMedCrossRef Carr EL, Kelman A, Wu GS et al (2010) Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol 185(2):1037–1044PubMedCrossRef
19.
Zurück zum Zitat Maciver NJ, Jacobs SR, Wieman HL, Wofford JA, Coloff JL, Rathmell JC (2008) Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J Leukoc Biol 84(4):949–957PubMedPubMedCentralCrossRef Maciver NJ, Jacobs SR, Wieman HL, Wofford JA, Coloff JL, Rathmell JC (2008) Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J Leukoc Biol 84(4):949–957PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Johnson MO, Wolf MM, Madden MZ, Andrejeva G, Sugiura A, Contreras DC, Rathmell JC (2018) Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 175(7):1780–1795PubMedPubMedCentralCrossRef Johnson MO, Wolf MM, Madden MZ, Andrejeva G, Sugiura A, Contreras DC, Rathmell JC (2018) Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 175(7):1780–1795PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Pacella I, Procaccini C, Focaccetti C et al (2018) Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth. Proc Natl Acad Sci U S A 115(28):E6546–E6555PubMedPubMedCentralCrossRef Pacella I, Procaccini C, Focaccetti C et al (2018) Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth. Proc Natl Acad Sci U S A 115(28):E6546–E6555PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Berod L, Friedrich C, Nandan A et al (2014) De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med 20(11):1327–1333PubMedCrossRef Berod L, Friedrich C, Nandan A et al (2014) De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med 20(11):1327–1333PubMedCrossRef
23.
Zurück zum Zitat O’Sullivan D, van der Windt GJW, Huang SC et al (2018) Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 49(2):375–376PubMedPubMedCentralCrossRef O’Sullivan D, van der Windt GJW, Huang SC et al (2018) Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 49(2):375–376PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Raud B, Roy DG, Divakaruni AS et al (2018) Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation. Cell Metab 28(3):504–515PubMedPubMedCentralCrossRef Raud B, Roy DG, Divakaruni AS et al (2018) Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation. Cell Metab 28(3):504–515PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Ma R, Ji T, Zhang H et al (2018) A Pck1-directed glycogen metabolic program regulates formation and maintenance of memory CD8(+) T cells. Nat Cell Biol 20(1):21–27PubMedCrossRef Ma R, Ji T, Zhang H et al (2018) A Pck1-directed glycogen metabolic program regulates formation and maintenance of memory CD8(+) T cells. Nat Cell Biol 20(1):21–27PubMedCrossRef
26.
Zurück zum Zitat van der Windt GJ, Everts B, Chang CH et al (2012) Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36(1):68–78PubMedCrossRef van der Windt GJ, Everts B, Chang CH et al (2012) Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36(1):68–78PubMedCrossRef
27.
Zurück zum Zitat O’Sullivan D (2019) The metabolic spectrum of memory T cells. Immunol Cell Biol 97(7):636–646PubMedCrossRef O’Sullivan D (2019) The metabolic spectrum of memory T cells. Immunol Cell Biol 97(7):636–646PubMedCrossRef
28.
Zurück zum Zitat Phan AT, Doedens AL, Palazon A et al (2016) Constitutive glycolytic metabolism supports CD8(+) T cell effector memory differentiation during viral infection. Immunity 45(5):1024–1037PubMedPubMedCentralCrossRef Phan AT, Doedens AL, Palazon A et al (2016) Constitutive glycolytic metabolism supports CD8(+) T cell effector memory differentiation during viral infection. Immunity 45(5):1024–1037PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Sukumar M, Liu J, Ji Y et al (2013) Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J Clin Invest 123(10):4479–4488PubMedPubMedCentralCrossRef Sukumar M, Liu J, Ji Y et al (2013) Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J Clin Invest 123(10):4479–4488PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Han SJ, Glatman Zaretsky A, Andrade-Oliveira V et al (2017) White adipose tissue is a reservoir for memory T cells and promotes protective memory responses to infection. Immunity 47(6):1154–1168PubMedPubMedCentralCrossRef Han SJ, Glatman Zaretsky A, Andrade-Oliveira V et al (2017) White adipose tissue is a reservoir for memory T cells and promotes protective memory responses to infection. Immunity 47(6):1154–1168PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Chapman NM, Zeng H, Nguyen TM et al (2018) mTOR coordinates transcriptional programs and mitochondrial metabolism of activated Treg subsets to protect tissue homeostasis. Nat Commun 9(1):2095PubMedPubMedCentralCrossRef Chapman NM, Zeng H, Nguyen TM et al (2018) mTOR coordinates transcriptional programs and mitochondrial metabolism of activated Treg subsets to protect tissue homeostasis. Nat Commun 9(1):2095PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Pacella I, Piconese S (2019) Immunometabolic checkpoints of Treg dynamics: adaptation to microenvironmental opportunities and challenges. Front Immunol 10:1889PubMedPubMedCentralCrossRef Pacella I, Piconese S (2019) Immunometabolic checkpoints of Treg dynamics: adaptation to microenvironmental opportunities and challenges. Front Immunol 10:1889PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Jin M, Cao W, Chen B, Xiong M, Cao G (2022) Tumor-derived lactate creates a favorable niche for tumor via supplying energy source for tumor and modulating the tumor microenvironment. Front Cell Dev Biol 10:808859PubMedPubMedCentralCrossRef Jin M, Cao W, Chen B, Xiong M, Cao G (2022) Tumor-derived lactate creates a favorable niche for tumor via supplying energy source for tumor and modulating the tumor microenvironment. Front Cell Dev Biol 10:808859PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Holm E, Hagmuller E, Staedt U et al (1995) Substrate balances across colonic carcinomas in humans. Cancer Res 55(6):1373–1378PubMed Holm E, Hagmuller E, Staedt U et al (1995) Substrate balances across colonic carcinomas in humans. Cancer Res 55(6):1373–1378PubMed
36.
Zurück zum Zitat San-Millan I, Brooks GA (2017) Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis 38(2):119–133PubMed San-Millan I, Brooks GA (2017) Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis 38(2):119–133PubMed
38.
Zurück zum Zitat Watson MJ, Vignali PDA, Mullett SJ et al (2021) Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 591(7851):645–651PubMedPubMedCentralCrossRef Watson MJ, Vignali PDA, Mullett SJ et al (2021) Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 591(7851):645–651PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Ippolito L, Morandi A, Taddei ML et al (2019) Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer. Oncogene 38(27):5339–5355PubMedCrossRef Ippolito L, Morandi A, Taddei ML et al (2019) Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer. Oncogene 38(27):5339–5355PubMedCrossRef
41.
Zurück zum Zitat Pan M, Reid MA, Lowman XH et al (2016) Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat Cell Biol 18(10):1090–1101PubMedPubMedCentralCrossRef Pan M, Reid MA, Lowman XH et al (2016) Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat Cell Biol 18(10):1090–1101PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Commisso C, Davidson SM, Soydaner-Azeloglu RG et al (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497(7451):633–637PubMedPubMedCentralCrossRef Commisso C, Davidson SM, Soydaner-Azeloglu RG et al (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497(7451):633–637PubMedPubMedCentralCrossRef
44.
45.
Zurück zum Zitat Sinclair LV, Rolf J, Emslie E, Shi YB, Taylor PM, Cantrell DA (2013) Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol 14(5):500–508PubMedPubMedCentralCrossRef Sinclair LV, Rolf J, Emslie E, Shi YB, Taylor PM, Cantrell DA (2013) Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol 14(5):500–508PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Sharma MD, Baban B, Chandler P et al (2007) Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 117(9):2570–2582PubMedPubMedCentralCrossRef Sharma MD, Baban B, Chandler P et al (2007) Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 117(9):2570–2582PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Dugnani E, Pasquale V, Bordignon C, Canu A, Piemonti L, Monti P (2017) Integrating T cell metabolism in cancer immunotherapy. Cancer Lett 411:12–18PubMedCrossRef Dugnani E, Pasquale V, Bordignon C, Canu A, Piemonti L, Monti P (2017) Integrating T cell metabolism in cancer immunotherapy. Cancer Lett 411:12–18PubMedCrossRef
48.
Zurück zum Zitat Zhao Q, Chu Z, Zhu L et al (2017) 2-Deoxy-d-Glucose treatment decreases anti-inflammatory M2 macrophage polarization in mice with tumor and allergic airway inflammation. Front Immunol 8:637PubMedPubMedCentralCrossRef Zhao Q, Chu Z, Zhu L et al (2017) 2-Deoxy-d-Glucose treatment decreases anti-inflammatory M2 macrophage polarization in mice with tumor and allergic airway inflammation. Front Immunol 8:637PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Kagoya Y, Nakatsugawa M, Yamashita Y et al (2016) BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest 126(9):3479–3494PubMedPubMedCentralCrossRef Kagoya Y, Nakatsugawa M, Yamashita Y et al (2016) BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest 126(9):3479–3494PubMedPubMedCentralCrossRef
50.
51.
Zurück zum Zitat Nabe S, Yamada T, Suzuki J et al (2018) Reinforce the antitumor activity of CD8(+) T cells via glutamine restriction. Cancer Sci 109(12):3737–3750PubMedPubMedCentralCrossRef Nabe S, Yamada T, Suzuki J et al (2018) Reinforce the antitumor activity of CD8(+) T cells via glutamine restriction. Cancer Sci 109(12):3737–3750PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Zhong L, Li Y, Muluh TA, Wang Y (2023) Combination of CAR-T cell therapy and radiotherapy: opportunities and challenges in solid tumors (Review). Oncol Lett 26(1):281PubMedPubMedCentralCrossRef Zhong L, Li Y, Muluh TA, Wang Y (2023) Combination of CAR-T cell therapy and radiotherapy: opportunities and challenges in solid tumors (Review). Oncol Lett 26(1):281PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Vormittag P, Gunn R, Ghorashian S, Veraitch FS (2018) A guide to manufacturing CAR T cell therapies. Curr Opin Biotechnol 53:164–181PubMedCrossRef Vormittag P, Gunn R, Ghorashian S, Veraitch FS (2018) A guide to manufacturing CAR T cell therapies. Curr Opin Biotechnol 53:164–181PubMedCrossRef
55.
Zurück zum Zitat Fan TW, Warmoes MO, Sun Q et al (2016) Distinctly perturbed metabolic networks underlie differential tumor tissue damages induced by immune modulator beta-glucan in a two-case ex vivo non-small-cell lung cancer study. Cold Spring Harb Mol Case Stud 2(4):a000893PubMedPubMedCentralCrossRef Fan TW, Warmoes MO, Sun Q et al (2016) Distinctly perturbed metabolic networks underlie differential tumor tissue damages induced by immune modulator beta-glucan in a two-case ex vivo non-small-cell lung cancer study. Cold Spring Harb Mol Case Stud 2(4):a000893PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Vande Voorde J, Ackermann T, Pfetzer N et al (2019) Improving the metabolic fidelity of cancer models with a physiological cell culture medium. Sci Adv 5(1):eaau7314PubMedPubMedCentralCrossRef Vande Voorde J, Ackermann T, Pfetzer N et al (2019) Improving the metabolic fidelity of cancer models with a physiological cell culture medium. Sci Adv 5(1):eaau7314PubMedPubMedCentralCrossRef
Metadaten
Titel
Metabolic diversity of tumor-infiltrating T cells as target for anti-immune therapeutics
verfasst von
Peipei Li
Fangchao Li
Yanfei Zhang
Xiaoyang Yu
Jingjing Li
Publikationsdatum
21.09.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Cancer Immunology, Immunotherapy / Ausgabe 11/2023
Print ISSN: 0340-7004
Elektronische ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-023-03540-1

Weitere Artikel der Ausgabe 11/2023

Cancer Immunology, Immunotherapy 11/2023 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.