Skip to main content
Erschienen in: Pediatric Rheumatology 1/2021

Open Access 01.12.2021 | Review

JAK inhibitors: a potential treatment for JDM in the context of the role of interferon-driven pathology

verfasst von: Meredyth G. Ll Wilkinson, Claire T. Deakin, Charalampia Papadopoulou, Despina Eleftheriou, Lucy R. Wedderburn

Erschienen in: Pediatric Rheumatology | Ausgabe 1/2021

Abstract

Juvenile Idiopathic Inflammatory Myopathies (IIM) are a group of rare diseases that are heterogeneous in terms of pathology that can include proximal muscle weakness, associated skin changes and systemic involvement. Despite options for treatment, many patients continue to suffer resistant disease and lasting side-effects. Advances in the understanding of the immunopathology and genetics underlying IIM may specify new therapeutic targets, particularly where conventional treatment has not achieved a clinical response. An upregulated type I interferon signature is strongly associated with disease and could be a prime target for developing more specific therapeutics. There are multiple components of the IFN pathway that could be targeted for blockade therapy.
Downstream of the cytokine receptor complexes are the Janus kinase-signal transducers and activators of transcription (JAK-STAT) pathway, which consists of JAK1–3, TYK2, and STAT1–6. Therapeutic inhibitors have been developed to target components of this pathway. Promising results have been observed in case studies reporting the use of the JAK inhibitors, Baricitinib, Tofacitinib and Ruxolitinib in the treatment of refractory Juvenile Dermatomyositis (JDM). There is still the question of safety and efficacy for the use of JAK inhibitors in JDM that need to be addressed by clinical trials. Here we review the future for the use of JAK inhibitors as a treatment for JDM.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12969-021-00637-8.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
JAK-STAT
Janus kinase-signal transducers and activators of transcription
JDM
Juvenile dermatomyositis
IIM
Idiopathic Inflammatory Myopathies
JDCBS
UK Juvenile Dermatomyositis cohort and biobank study
MSA
Myositis specific autoantibodies
TNFα
Tumour necrosis factor alpha
DM
Dermatomyositis
PM
Polymyositis
IFNAR
Type I IFN receptor
SLE
Systemic lupus erythematous
IFN type I
Interferon type I
pDCs
Plasmacytoid dendritic cells
IFR
IFN-regulatory factor
IRG
Interferon regulatory genes
PCR
Polymerase chain reaction
G1P2
ISG15 ubiquitin-like modifier
IRF7
Interferon regulatory factor 7
MMT8
Manual muscle testing scores
IL-6
Interleukin 6
MCP1
Monocyte chemoattractant protein 1
MCP2
Monocyte chemoattractant protein 2
IP-10
Interferon gamma-induced protein 10
TNFRII
Tumour necrosis factor receptor II
CEC
Circulating endothelial cells
SH2
Src homology domain-2
HWE
Hardy-Weinberg equilibrium
TIS
Total improvement score
MMT
Manual muscle testing-8
CMAS
Child myositis assessment scale
RA
Rheumatoid arthritis
PsA
Psoriatic arthritis
Ps
Psoriasis
AS
Ankylosing spondylitis
AA
Alopecia areata
AD
Atopic dermatitis
CD
Crohn’s disease
UC
Ulcerative colitis
Vit
Vitiligo
HPS
Hemophagocytic syndrome
GCA
Giant cell arteritis
NIU
Non-infectious uveitis
CLE
Cutaneous lupus erythematosus
LN
Lupus nephritis
DLE
Discoid lupus erythematosus
dSc
Diffuse scleroderma

Introduction

Idiopathic Inflammatory Myopathies (IIM) are a group of rare immune-mediated diseases that are heterogeneous in terms of pathology, clinical phenotypes and age of onset (Table 1). JDM is very rare with an annual incidence of three cases per million children [2, 23, 24] and median age of onset 6.3 years old (IQR; 3.8–9.6) [1]. Children typically present with symmetrical proximal and axial muscle weakness and characteristic skin changes including Gottron’s papules and heliotrope rash. Long-term complications include lung fibrosis, lipodystrophy and calcinosis [2529] . In most JDM cohorts, 60–70% of children with JDM are positive for an autoantibody [3033]. A number of myositis specific antibodies (MSA) have been described associated with a variety of phenotypes in JDM [10].
Table 1
JDM disease features
Epidemiology
Median age of onset (IQR):
6.3 (3.8–9.6) years [1]
Incidence:
7.98 cases/million/year [2]
Prevalence:
14/100,000 [2]
Sex distribution (F:M):
2.1:1 [3]
Clinical features
Muscle weakness
Most patients
Cutaneous manifestations
30–70% [3]
Calcinosis
12–47% [4, 5]
Lipodystrophy
8–14% [6]
Interstitial lung disease
8–19% [7]
Myocardial involvement
Common, non-specific [8]
Vasculopathy
Most patients, central to pathogensis [9]
Autoantibodies
MSA
49% + ve for MSA
- Transcriptional intermediary factor 1 (TIF-1γ) 22–29%
- Nuclear matrix protein 2 (NXP2) 23–25%
-Aminoacyl tRNA synthetase (ASA) 2–4%
-Signal recognition particle (SRP) < 2%
−3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) < 1%
-Nucleosome-remodelling deacetylase complex (Mi-2) 4–10%
-Small ubiquitin-like modifier activating enzyme (SAE) < 1%
-Melanoma differentiation associated gene 5 (MDA5) 7–38% [10]
Pathogenesis
Type I IFN signature
Muscle, blood [11, 12]
Mononuclear cells
Muscle [15]
FOXP3+ regulatory T cells
Increased in muscle [16]
pDCs
Increased in muscle/skin [17]
Myogenic pre-cursor cells
Increased source of IFN in muscle [18, 19]
Mast cells
Increased in skin [20]
Natural killer cells
Decreased in blood [21]
Cytokines
 
Blood:
Increased IRF-4, IL-6, IL-17F, Il-23A, IL-21, GATA3, IL-1β
Muscle:
Increased GATA3, IL-13, STAT5B [22]

The need for new treatments

The mainstay treatments for IIM are prednisolone and methotrexate, and even those patients who respond well to these drugs can have prolonged disease [34, 35]. Other immunotherapy treatments used include mycophenolate mofetil, cyclophosphamide, intravenous immunoglobulin (IvIG), azathioprine, cyclosporine and tacrolimus [3638]. Biological targets include blockade of tumour necrosis factor alpha (TNFα) and B cells (anti-CD20). As potential treatments for JDM, efficacy was reported in a case series of the use of adalimumab and infliximab (TNFα blockades), and also in an International study of B cell depletion by rituximab (anti-CD20) [39, 40]. However, there is a need for more targeted treatments and methods to identify patients who will require these.
Several more recent emerging biologic therapies for the treatment of IIM have been reported including; belimumab, abatacept, bimagrumab, spiponimod, apremilast, gevokizumab, eculizumab and basiliximab (Table 2) [4148]. Sifalimumab, is a fully human immunoglobulin G1 κ anti-IFNα monoclonal antibody that binds to and neutralizes the majority of IFN-α subtypes, is an important candidate therapeutic due to the wealth of evidence of the strong IFN signature identified in myositis [11, 12, 5055]. A phase 1b clinical trial of sifalimumab in adult patients with dermatomyositis (DM) and polymyositis (PM), used outcome measures of IFN gene signature suppression against disease improvement. Initial results suggested that targeting the IFN pathway with sifalimumab showed more neutralisation of IFN gene expression in patients that had greater improvement of disease, but blockade of the type I IFN receptor (IFNAR) may offer superior clinical benefit [49]. Beyond the therapeutics highlighted in Table 2 there are potential new therapies for the treatment of IIM including JAK inhibitors to target the IFN pathway.
Table 2
Emerging biologic therapies for the treatment of adult and juvenile IIM
Biologic
Mechanism
Clinical trial type
Clinical trial number
Patient group
Outcome
rituximab [39]
Monoclonal anti-CD20 antibody that depletes B cells
Randomized, double-blind, placebo-phase trial
JDM and DM
Higher proportion of JDM (87%) patients treated with rituximab met the definition of improvement more quickly compared to adult DM (78%)
belimumab
Anti-B cell activating factor (BAFF) monoclonal antibody
Multicentre double-blind, placebo-controlled trial
Refractory IIM
Evaluating the efficacy and safety
abatacept
Modified fully human soluble recombinant protein that consists of cytotoxic T cell lymphocyte antigen-4 (CTLA4) fused with Fc region of human IgG1
Interventional clinical trial
Refractory JDM
Myositis-associated ILD
IIM
Clinical improvement
Evaluate efficacy and safety
bimagrumab [41, 42]
Human recombinant monoclonal anti-ACVR2B activin type 2 receptor antibody
Phase IIb/III double-blind, placebo-controlled multicentre study
Phase IIb/III Study
IBM/IIM
Improvement in muscle volume and strength
spiponimod
Oral selective sphingosine-1-phosphate receptor modulator, acts by preventing the migration of lymphocytes to inflammatory sites and therefore reducing inflammation
Multicentre, phase 2, double-blind, randomized, controlled trial
IIM
International Myositis Assessment Study (IMACS) definition of improvement
apremilast [44]
Phosphodiesterase-4(PDE-4) inhibitor, reduces the expression of pro-inflammatory cytokines by increasing cyclic adenosine monophosphate
Open-label, single-centre study
Phase two, open-label, single group assignment, interventional study
DM
30% reduction in the cutaneous disease activity and severity index (CDASI)
Safety, efficacy and clinical response
gevokizumab
Humanised IgG2 monoclonal antibody against human IL-1β
Proof-of-concept, randomized, double-blind, placebo-controlled trial
EudraCT number: 2012–005772-34
IIM
Prematurely terminated therefore limited results
eculizumab [46, 47]
Monoclonal humanised antibody against terminal complement components
Randomized, double-blind, placebo-controlled pilot study
Phase two, randomized, placebo-controlled, third-party-blind study
IIM
DM
Improvement of global physician score for cutaneous disease
Evaluation of safety and efficacy, results pending.
basiliximab [48]
IL-2R chimeric monoclonal antibody; blocks Il-2 receptor on the surface of activated T-cells
Open-label, randomized, parallel assignment without masking, phase-2, single center study
Amyopathic dermatomyositis (CADM) patients with interstitial pneumonia
Primary outcome measure is survival at 52 weeks
sifalimumab [49]
anti-IFNα monoclonal antibody
Double-blind, phase 1b multicentre randomized control trial
DM and PM
Neutralisation of IFN gene signature suppression against disease improvement

Interferon: mechanisms in autoimmune disease

While the interferon family are a group of molecules central to the anti-viral responses, many autoimmune diseases also have an aberrant interferon response. Gene activation is the main mechanism for the interferon anti-viral response, but interferons are also integral to intra-cellular signalling in the immune system (Additional file 1: Supplementary Fig. 1 [56]). Many autoimmune diseases have been found to have an up-regulated IFN type I signature, including systemic lupus erythematous (SLE), rheumatoid arthritis (RA) and myositis [11, 50, 51, 5759]. The IFN type I comprise of thirteen types including IFN-α, IFN-β, IFN-κ, IFN-ω and IFN-ν; these bind to a common receptor, IFN-α receptor (IFNAR), but the differences in induction of cellular responses is poorly defined [60]. There are three proposed mechanisms. The first is that plasmacytoid dendritic cells (pDCs) are activated by endogenous IFN inducers to produce IFN-α [61]. The second is that genes associated with autoimmune disease risk, lie within the IFN type I signalling pathway that in turn effect the production and response of IFN-α. IFN-regulatory factor (IRF) 5 was identified as a SLE risk gene as it has increased expression and is activated in SLE patients [6264]. Other autoimmune diseases have specific risk genes that associate with the IFN signature [65]. The third mechanism proposes that regulation and control of plasmacytoid dendritic cells (pDC) and the expression of interferon regulatory genes (IRG) is not functioning correctly [61]. A decrease in reactive oxygen species (ROS) production from monocytes can lead to enhanced autoimmunity. In addition there is a predominant STAT1 signature in ROS deficient disease [66]. The relative contribution of these three mechanisms may differ between autoimmune disease, severity and patient.

Role of interferons in myositis

The most abundant IFN type I are IFN-α and IFN-β. The IFNs bind to the IFN-α receptor (IFNAR) and activate the Janus kinase (JAK)-signal transducer and transcription (STAT) pathway that in turn lead to the transcription of IFN-stimulated genes (ISGs) [67, 68]. The over production of IFN in the blood and muscle is an abnormality in the pathogenesis of dermatomyositis [13, 14, 69]. The release of IFN type I leads to immune cell activation and vasculopathy. A major source of IFN type I is from plasmacytoid dendritic cells (pDC) after activation by either self-DNA or viral nucleic acid [70, 71]. Plasmacytoid dendritic cells (pDC) have been identified in JDM muscle, but IFN type I is difficult to detect in serum due to limits of sensitivity of existing assays until recently [11, 72]. The Simoa assay developed by Rodero et al. can detect IFN-α at differential levels and determine cellular sources measured from lysed cell-subsets [57]. Using this assay IFN-α levels were significantly increased in sera from a JDM cohort compared to a healthy cohort [57, 73].
Due to the difficulties in measuring IFN directly, gene expression is often used as a marker of the activation of the IFN type I pathway. An IFN score was developed to encompass a selection of the IFN response genes, IFI27, IFI44L, IFIT1, ISG15, RSAD2 and SIGLEC1, these are measured by quantitative reverse transcription polymerase chain reaction (qPCR) [74]. Other studies have also measured expression of additional genes including ISG15 ubiquitin-like modifier (G1P2), and interferon regulatory factor 7 (IRF7) [51, 71]. Variations of this score have been used to correlate with disease in multiple studies [53, 75, 76]. A signature of 43 genes was elevated in myositis compared to controls [14]. A positive correlation has been shown between an IFN score (6 genes) compared to serum IFN-α levels (n = 24, Rs = 0.620, p = 0.0004) taken from JDM patients [57]. The type II IFN signature also correlates to disease activity in JDM and other chemokines [77]. This suggests that as a whole the IFN family are upregulated in the context of JDM and adult DM. The clinical trial of sifalimumab in DM/PM showed suppression of the IFN gene signature in blood and muscle tissue of the IIM patient cohort. Patients with 15% or greater improvement from baseline manual muscle testing scores (MMT8) showed greater neutralisation of the interferon gene signature than patients with less than 15% improvement [49]. This trial highlights the potential for the therapeutic targeting of interferon in DM and JDM.
Another indirect measure is the IFN-driven protein signature which may include measurement of levels of monocyte chemoattractant protein 1 (MCP-1), monocyte chemoattractant protein 2 (MCP-2), interferon gamma-induced protein 10 (IP-10), tumour necrosis factor receptor II (TNFRII), galectin 9 and chemokine (C-XC motif) ligand 9 (CXCL9). These proteins, measured in serum, significantly correlated with disease activity in JDM [22, 7880]. Chemokines and cytokines have shown to correlate with the IFN signature in peripheral blood mononuclear cells. A study in JDM showed an expansion of peripheral blood naïve immature B cells, skewed to an inflammatory profile, in early disease, that correlated with an IFN type I score taken from RNA-seq analysis of B cells and downstream IFN proteins [81].
Circulating endothelial cells (CEC) have been detected in peripheral blood and associated with vascular injury [82]. An in vitro study has shown that IFN type I treatment of HUVECs impaired endothelial cell function, with significant reduction of tubule formation when HUVECs were cultured with IFN type I + VEGF and anti-IP10 [83]. A recent study in JDM, identified higher CEC in both active and definite inactive disease (JDM n = 90; median 96(IQR 40–192) cell/ml compared to controls n = 79; median 12(IQR 8–24) cells/ml, p < 0.0001). They also showed a strong correlation with other markers of vascular injury including endothelial microparticles and galectin-9 [9]. Another study showed that CEC correlated with extra muscular disease activity but not muscular damage [84]. In JDM, CEC may prove to be a useful biomarker for underlying disease pathology.
Key sites of inflammation in JDM are the muscle and skin. Both muscle and skin tissue biopsy material can provide valuable insights to our understanding of an individual JDM patients disease [8588]. These tissue samples are the key to understanding the pathophysiology of disease at the tissue site. IFN type I and other cytokines have been detected within the inflamed muscle [89]. The IFN proteins (IFN-α,-β,-γ) themselves have been detected in muscle, but also the IFN-stimulated proteins ISG15, MxA and class I MHC [9092]. Higher levels of ISG15 were quantified in JDM muscle tissue compared to non-JDM [93]. Markers of disease activity and muscle damage have been shown to correlate with the expression of MxA in the muscle tissue [94, 95]. Research has been carried out to identify the direct effects that IFN type I has on muscle tissue types. Muscle atrophy and loss of myogenin has been detected on muscle myotubes, reduced junctions and capillary growth on endothelium [96]. A recent study has shown that these effects have been blocked in vitro by the JAK inhibitor Ruxolitinib [97]. These findings build a picture of the interferonopathy at both the tissue site and the peripheral blood.

The JAK-STAT pathway – a therapeutic target

When IFN binds to its respective receptor, IFN-R, on the cell surface membrane, this in turn activates the signalling cascade inducing the Janus kinase-signal transducers and activators of transcription (JAK-STAT) pathway [98, 99] (Fig. 1). The JAK-STAT pathway consists of JAK1–3, TYK2, and STAT1–6, of these JAK1 and TYK2 are directly activated by IFN type 1 proteins. This signalling cascade triggers the receptor-associated JAK to phosphorylate the receptor and other JAKs [100]. If specific tyrosine motifs are phosphorylated in the cytokine receptor, then a docking-site for STATs is opened enabling further phosphorylation of STATs. When STATs are phosphorylated they dimerize through their Src homology domain-2 (SH2) domains, this allows them to translocate to the nucleus and activate specific genes [101]. An individual receptor is made up of several subunits, each is associated with a specific JAK. Therefore, each receptor chain can have more or less specificity to an individual JAK. The JAK-STAT pathway could offer a potential target for the blockade of the transcription of IFN genes [100].

JAK inhibition

JAKs are constructed from four domains made of seven homologous regions (JH1–7) (Fig. 2). To date JAK inhibitors (JAK-inhibitors) have generally targeted the JH1 domain. JH1 is the active catalytic phosphotransferase domain and competes with adenosine triphosphate at the catalytic site [102]. JH2 is a pseudokinase domain that supresses ligand-independent kinase activity, the mode of action is direct interaction with JH1 and activation of ligand-induced JAK [103]. Deucravacitinib is an example of a JAK inhibitor that targets the JH2 psuedokinase domain [104, 105]. JH3/4 have a primary role in stabilising the structure of the enzyme. JH5–7 associate JAKs with their cognate receptors [106]. There have been multiple JAK-inhibitors that have been or are in development. These can be defined in two categories; first-generation or next-generation JAK-inhibitors [100]. The first-generation exert pan-inhibition on all four of the JAKs, these include; tofacitinib, ruxolitinib, baricitinib, and oclacitinib [107]. The next-generation of JAK-inhibitors are more specific in their target blockade, these include; fedratinib, momelotinib, and pacritinib [108]. This specificity should help with disease targeted treatment and reduce associated side-effects.
Inhibition of TYK2 is an example of a more specific next-generation Jakinib. TYK2 has been associated with several autoimmune conditions including; RA, JIA, SLE, type 1 diabetes and MS [109114]. A GWAS analysis of IIM in Caucasian individuals identified that a non-synonymous SNP rs2304256 in TYK2 was associated with DM, IIM but not PM (Bonferroni correction p = 0.17, [115]. In a study of a Chinese Han population, analysis of TYK2 SNPS associated with DM and PM excluded TYK2 rs2304256 as it deviated from the Hardy-Weinberg equilibrium (HWE) in healthy controls [116]. This SNP is in the protein FERM (4.1 protein, erzin, radixin, moesin) domain, mediating interaction with JAK and microtubule interacting proetin1, this is thought to be increased in DM. Examples of TYK2 inhibitors trialled in psoriasis include; brepocitinib, BMS-986165 and PF-06826647 [117]. TYK2 is just one proposed target for inhibition in IIM.

JAK inhibitor use in IIM – clinical trials

For the potential treatment of autoimmune conditions, multiple JAK inhibitors have been developed, trialled or approved [104, 107]. In adults the metabolism, pharmacokinetics and efficacy of JAK-inhibitors are highlighted in Additional file 1: Supplementary Table 1. Clinical trials are ongoing to determine the safety and efficacy of the use of multiple JAK-inhibitors as a therapy for treatment-resistant adult IIM. In addition to their small open-label, proof-of concept study of tofacitinib in 10 treatment-resistant DM patients (6 were anit-TIF1-γ positive), Paik et al. are carrying out a larger randomised controlled trial, with results pending (NCT03002649). Initial results from 10 participants showed they all met the primary outcome DOI at 12 weeks, 5 of 10 (50%) had moderate improvement and 5 of 10 (50%) had minimal improvement according to the 2016 ACR/EULAR myositis response criteria. The secondary outcome showed a significant change in CDASI disease activity score (mean average 28 ± 15.4 (baseline) vs. 9.5 ± 8.5 (12 weeks), p = 0.0005). There was also a trend towards a reduction of CXCL9/10 in serum and STAT1 signalling in 3 of 9 skin biopsies [118]. Another case report of 3 patients with refractory DM and calcinosis treated with tofacitinib showed an improvement of their calcinosis after 12 weeks (3 months) on treatment [119]. There is little know about the pathology of calcinosis but if JAK-inhibitors are effective then the JAK-STAT pathway may play a role in the underlying mechanism. Chen et al. are conducting a single centre, open-label clinical study of the use of tofacitinib in amyopathic dermatomyositis-associated ILD (Chinese Clinical Trial Registry number, ChiCTR-1,800,016,629). Initial results showed that 26 week (6-month) survival after onset of ILD was significantly higher in the prospective group (18 of 18, 100%) compared to the historical controls (25 of 32, 78%, p = 0.04), more conclusive results are pending [120]. Another ongoing study of the use of Baricitinib in adult IIM, is the MYOJAK study, a phase II, multicentre, randomised treatment delayed-start trial to receive active treatment (Baricitinib) or delayed-start after 13 weeks (NCT04208464). These trials are currently only including adult IIM patients of which have different clinical features to that of juvenile disease. Children have distinct developmental and physiological differences to adults, as such it is important to test the pharmokinectics and formulation of any given drug in the appropriate age populations.

Evidence for the use of JAK inhibitors in JDM

There have been several reports and case series which support the need to pursue testing JAK-inhibitors for the future therapeutic use in juvenile DM (Table 3). The potential for Ruxolitinib was shown in a report of compassionate treatment for a case of severe vasculopathic refractory JDM. The thirteen year old patient presented with severe disease and was admitted to ICU after 3 weeks of diagnosis with multi-symptom, systemic disease. Over a period of 78 weeks (18 months) the patient was poorly controlled with combination therapy, and developed lower limb oedema and diffuse fascia calcinosis. The IFN type I signature was investigated, which showed IFN-α serum levels and IFN score were increased compared to controls, this was also the case with constitutive phosphorylation of STAT1/3 in T-cells and monocytes. From these results the patient was taken off MMF, rituximab infusions were stopped, and switched to Ruxolitinib (10 mg BD) with Prednisolone. After 2 table there was a noted improvement in disease activity scores and no reported adverse events. During the 52 weeks (12 months) of Ruxolitnib treatment the IFN measures did not normalise, but there was decreased STAT 1 phosphorylation in T cells [121].
Table 3
Case studies or case series of JAK-inhibitors in juvenile dermatomyositis
Case study
JAK-inhibitors
Patient
Disease course and prior treatment
Outcome
Aeschilimann et al. 2018 [121]
ruxolitinib
13 year old; JDM (anti-NXP2)
- Un-controlled disease with admission to ICU
- Complexity of severe symptoms over 18 months
-Prednisolone dependant, refractory to treatment including; methotrexate, IVIG, plasma exchange, MMF and rituximab
-Increased IFN scores and STAT1 phosphorylation of T-cells and monocytes
After 52 weeks (12 months) of treatment:
-Improvement of disease activity scores
- decreased STAT1 phosphorylation in T-cells
Papadopoulou et al. 2019 [122]
baricitinib
11 year old; JDM (anti-TIF1-γ, anti-Ro52)
- 7 year history of JDM (with calcinosis)
- steroid dependant; refractory to sequential treatment with azathioprine, mycophenolate mofetil, infliximab, adalimumab, rituximab, tacrolimus and cyclosporine, intravenous immunoglobulin (IVIG)
- negative for class 4 and 5 variants of monogenic interferonopathies
After 26 weeks (6 months) of treatment:
- clear improvement of disease
- IFN biomarkers decreased
- decreased level of CEC
Sabbagh et al. 2019 [123]
tofacitinib
2 anti-MDA5 JDM patients
12y/o male
15y/o female
Elevated 28-gene IFN score
Un-controlled disease:
Patient 1 – continuous flares after treatment with pulsed methylprednisolone, IVIg, methotrexate, MMF, rituximab
Patient 2 – continuous flares after treatment with pulsed methylprednisolone, IVIg, MMF, abatacept, cyclophosphamide, rituximab and sildenafil
After 26 week (6 months) of treatment:
- decrease in disease activity score
- Decrease of IFN score and STAT1 phosphorylation of T-cells and monocytes
Yu et al. 2020 [124]
tofacitinib
n = 3 JDM
11y/o fem (ANA 1:320, anti-MDA5)
10y/o female (ANA 1:80, anti-Mi-2, anti-Ro-52
10y/o male (Negative)
Refractory JDM: patients failed ≥2 steroid sparing agents or high-dose steroids.
After 26 week (6 months):
- Significant improvement of clinical scores; CMAS, MMT8, PGA, DAS and CHAQ
Le Voyer et al. 2021 [125]
baricitnib
ruxolitinib
n = 3 JDM
2/3 female
mean 8.7 years [2530]
NXP2 = 1
TIF1-y = 1
MDA5 = 1
No MSA = 0
n = 7 JDM
5/7 female
mean 9.1 years [1, 2, 2533]
NXP2 = 3
TIF1-y = 2
MDA5 = 1
No MSA = 1
9 refractory disease and 1 new-onset
Refractory muscle involvement (n = 8)
Ulcerative skin disease (n = 2)
After 26 weeks (6 months):
→Improvement in clinical scores
→Clinically inactive disease
→Decrease in seral IFN-α
Ding et al. 2021 [126]
tofacitinib 7/25 (28%)
ruxolitinib 18/25 (72%)
n = 25 JDM
11/25 (44%) female
Mean age of onset 4.6 ± 3.3 years
Mean age to start JAK inhibitors 7.2 ± 4 years
All refractory
8/25 (32%) ineffective treatment
17/25 (68%) glucocorticoid dependant
25 patients followed up median of 34 weeks (7 months) (range – 3-21 months)
→24/25 (96%) had rash improvement, 16/24 (66.7%) complete resolution
→7/25 (28%) improved CMAS
Kim et al. 2021 [127]
baricitinib
4 JDM
(5.8–20.7 years old)
→Chronically active disease
→Failed 3–6 immunomodulatory medications
After 24 weeks of treatment:
→Disease improvement assessed by clinical score
→Down regulation of IRG
→Decrease in serum IP-10
Positive results were seen in a compassionate case of the use of the Jakinib, Baricitinib for an eleven year old male with a seven year history of refractory JDM positive for anti-TIF1-γ and anti-Ro52 autoantibodies. When Baricitinib therapy was started clear improvement of disease was recorded. The IFN biomarkers, IFN type I signature and STAT1 phosphorylation in T cells and monocytes, decreased to comparative levels seen in controls. Also observed was a marked decrease of CEC. To note this was a singular, very severe case, however for the first time in seven years prednisolone could be tapered down, progression of calcinosis was halted and the disease improved as a whole [122]. Further prospective studies need to be carried out to investigate the safety and efficacy of Baricitnib for the use in the treatment of JDM.
A report of 2 patients with anti-MDA5 AB+ JDM with uncontrolled disease were treated with tofacitinib. Disease activity scores decreased within 26 weeks (6 months) following the start of tofacitinib therapy; IFN score, STAT1 phosphorylation of T-cells and monocytes decreased. This report shows evidence that tofacitinib improves JDM at an immunopathogenic level [123]. Another recent report of 3 cases of refractory JDM showed that 26 weeks (6 months) of treatment with tofacitinib was tolerated and the patients responded well to the treatment. Comparing 0–26 weeks (0–6 months) on treatment there were significant improvements in physician global VAS (p < 0.001), manual muscle testing-8 (MMT) (p = 0.002), child myositis assessment scale (CMAS) (p = 0.006), C-HAQ (p < 0.001) and DAS (p = 0.002). This set of case reports showed that tofacitinib treatment improved signs and symptoms of JDM and could be a promising treatment option [124].
A recent retrospective study included nine refractory and one new-onset JDM patients treated with ruxolitinib (n = 7) or baricitinib (n = 3). At 26 weeks (6 months) of follow up five of the ten patients (three Ruxolitnib and two Baricitinib) had reached clinically inactive disease (CID). In these patients the mean daily dose of steroids decreased from 1.1 mg/kg (range 0.35–2) to 0.1 (range, 0–0.3, p = 0.008). Serum IFN-α levels normalised 26 weeks (6 months) after the start of treatment in all patients [125].
A larger case series of refractory JDM patients, 8/25(35%) treatment was ineffective and 17/25 (68%) glucocorticoid dependant, were treated with tofacitinib 7/25(28%) or ruxolitinib 18/25 (72%). All 25 patients were followed up for a median of 30 weeks (7 months) (range = 3–21 months). 24/25 (96%) of patients had improvement of their rash of which 16/24 (66.7%) the rash completely resolved. The cutaneous assessment tool binary method score significantly decreased (7.0(3.0–10.0) to 0.0(0.0–1.0) p < 0.001). As a measure of muscle activity 7/25 (28%) of patients showed an improvement of CMAS score (from 18.6 ± 15.0 to 35.7 ± 6.3, p = 0.018). As of follow-up in August 2019 7/25 (28%) of patients had discontinued glucocorticoids. This case series has shown promise for the use of both drugs especially to improve skin disease [126].
Recently data has been published from a compassionate use study (NCT01724580) for the treatment of JDM with Baricitinib. Four JDM patients with chronically active disease were assessed at regular intervals over a 24 week period. There was significant improvement in clinical scores from 4 weeks (Physicians Global Assessment, Pt Global activity and CDASI activity score) and down-regulation of IRG score (28 genes) and serum IP-10. In CD4+ and CD8+ T Cells there were lower levels IFN-α stimulated pSTAT1 and interleukin-2 (IL-2) stimulated pSTAT5 IC50s. In CD4+ T cells and CD19+ B cells there were lower levels of IL-10- stimulated pSTAT3 IC50s [127].
Overall, these reports provide more supportive evidence for the use of JAK-inhibitors in JDM, but these are limited case studies with the use of several distinct JAK-inhibitors. Along with specific clinical trials of the use of JAK-inhibitors in the treatment of JDM, there is a need for standardised outcome measures for both clinical and pathological disease improvement.

The future of JAK inhibitors

Clinical trials currently only include adult IIM patients. Successful results from these trials and validation of the case studies in JDM should be translatable to trials and treatment in juvenile disease. There are multiple JAK-inhibitors that are being trialled as potential new therapeutics for adult IIM, but these differ in their JAK targets and pharmokinetics. JAK-inhibitors provide one step further towards more targeted treatment beyond IFN blockade. It is vital to continue to investigate the exact pathogenic mechanism of the JAK/STAT pathway in IIM. If a more specific target can be found then a refined Jakinib can be developed for clinical trial in juvenile disease.

Concluding remarks

There is a wealth of information and evidence for the potential use of JAK-inhibitors as a therapy for JDM. There is a desperate need for therapeutics that target defined pathogenic pathways in JDM. The IFN pathway is a clear point of target. JAK-inhibitors appear to be promising, but there is still the question of safety and efficacy for the use in JDM. The choice of agent will need careful consideration before choice of trials of first generation pan-JAK-inhibitors or next-generation JAK specific inhibitors. An international collaborative approach, or novel trial design for disease trials, may be required in order to achieve clear evidence of efficacy.

Acknowledgments

MGLlW would like to thank all co-authors for their contributions to this review.

Declarations

None required.
Authors consent.

Competing interests

No conflicts of interest to declare.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Martin N, Krol P, Smith S, Murray K, Pilkington CA, Davidson JE, et al. A national registry for juvenile dermatomyositis and other paediatric idiopathic inflammatory myopathies: 10 years’ experience; the juvenile dermatomyositis national (UK and Ireland) cohort biomarker study and repository for idiopathic inflammatory Myopat. Rheumatology. 2011;50(1):137–45. https://doi.org/10.1093/rheumatology/keq261.CrossRefPubMed Martin N, Krol P, Smith S, Murray K, Pilkington CA, Davidson JE, et al. A national registry for juvenile dermatomyositis and other paediatric idiopathic inflammatory myopathies: 10 years’ experience; the juvenile dermatomyositis national (UK and Ireland) cohort biomarker study and repository for idiopathic inflammatory Myopat. Rheumatology. 2011;50(1):137–45. https://​doi.​org/​10.​1093/​rheumatology/​keq261.CrossRefPubMed
2.
Zurück zum Zitat Meyer A, Meyer N, Schaeffer M, Gottenberg JE, Geny B, Sibilia J. Incidence and prevalence of inflammatory myopathies: a systematic review. Rheumatol. 2015;54(1):50–63.CrossRef Meyer A, Meyer N, Schaeffer M, Gottenberg JE, Geny B, Sibilia J. Incidence and prevalence of inflammatory myopathies: a systematic review. Rheumatol. 2015;54(1):50–63.CrossRef
6.
Zurück zum Zitat Huemer C, Kitson H, Malleson PN, Sanderson S, Huemer M, Cabral DA, et al. Lipodystrophy in patients with juvenile dermatomyositis - evaluation of clinical and metabolic abnormalities. J Rheumatol. 2001;28(3):610–5.PubMed Huemer C, Kitson H, Malleson PN, Sanderson S, Huemer M, Cabral DA, et al. Lipodystrophy in patients with juvenile dermatomyositis - evaluation of clinical and metabolic abnormalities. J Rheumatol. 2001;28(3):610–5.PubMed
8.
Zurück zum Zitat Cantez S, Gross GJ, MacLusky I, Feldman BM. Cardiac findings in children with juvenile Dermatomyositis at disease presentation. Pediatr Rheumatol Online J. 2017;15(1):54.PubMedPubMedCentralCrossRef Cantez S, Gross GJ, MacLusky I, Feldman BM. Cardiac findings in children with juvenile Dermatomyositis at disease presentation. Pediatr Rheumatol Online J. 2017;15(1):54.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Papadopoulou C, Hong Y, Krol P, Al Obaidi M, Pilkington C, Wedderburn LR, et al. The vasculopathy of juvenile dermatomyositis: endothelial injury, hypercoagulability, and increased arterial stiffness. Arthritis Rheum. 2021;73(7):1253–66. https://doi.org/10.1002/art.41639.CrossRef Papadopoulou C, Hong Y, Krol P, Al Obaidi M, Pilkington C, Wedderburn LR, et al. The vasculopathy of juvenile dermatomyositis: endothelial injury, hypercoagulability, and increased arterial stiffness. Arthritis Rheum. 2021;73(7):1253–66. https://​doi.​org/​10.​1002/​art.​41639.CrossRef
12.
Zurück zum Zitat Greenberg SA, Pinkus JL, Pinkus GS, Burleson T, Sanoudou D, Tawil R, et al. Interferon-alpha/beta-mediated innate immune mechanisms in dermatomyositis. Ann Neurol. 2005;57(5):664–78.PubMedCrossRef Greenberg SA, Pinkus JL, Pinkus GS, Burleson T, Sanoudou D, Tawil R, et al. Interferon-alpha/beta-mediated innate immune mechanisms in dermatomyositis. Ann Neurol. 2005;57(5):664–78.PubMedCrossRef
13.
Zurück zum Zitat Walsh RJ, Kong SW, Yao Y, Jallal B, Kiener PA, Pinkus JL, et al. Type I interferon-inducible gene expression in blood is present and reflects disease activity in dermatomyositis and polymyositis. Arthritis Rheum. 2007;56(11):3784–92.PubMedPubMedCentralCrossRef Walsh RJ, Kong SW, Yao Y, Jallal B, Kiener PA, Pinkus JL, et al. Type I interferon-inducible gene expression in blood is present and reflects disease activity in dermatomyositis and polymyositis. Arthritis Rheum. 2007;56(11):3784–92.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Baechler EC, Bauer JW, Slattery CA, Ortmann WA, Espe KJ, Novitzke J, et al. An interferon signature in the peripheral blood of dermatomyositis patients is associated with disease activity. Mol Med. 2007;13(1–2):59–68.PubMedPubMedCentralCrossRef Baechler EC, Bauer JW, Slattery CA, Ortmann WA, Espe KJ, Novitzke J, et al. An interferon signature in the peripheral blood of dermatomyositis patients is associated with disease activity. Mol Med. 2007;13(1–2):59–68.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Ekholm L, Michelle Kahlenberg J, Helmers SB, Tjärnlund A, Yalavarthi S, Zhao W, et al. Dysfunction of endothelial progenitor cells is associated with the type I IFN pathway in patients with polymyositis and dermatomyositis. Rheumatol (United Kingdom). 2016;55(11):1987–92. Ekholm L, Michelle Kahlenberg J, Helmers SB, Tjärnlund A, Yalavarthi S, Zhao W, et al. Dysfunction of endothelial progenitor cells is associated with the type I IFN pathway in patients with polymyositis and dermatomyositis. Rheumatol (United Kingdom). 2016;55(11):1987–92.
20.
Zurück zum Zitat Yokota M, Suzuki K, Tokoyoda K, Meguro K, Hosokawa J, Tanaka S, et al. Roles of mast cells in the pathogenesis of inflammatory myopathy. Arthritis Res Ther. 2014;16(2). Yokota M, Suzuki K, Tokoyoda K, Meguro K, Hosokawa J, Tanaka S, et al. Roles of mast cells in the pathogenesis of inflammatory myopathy. Arthritis Res Ther. 2014;16(2).
22.
Zurück zum Zitat Wienke J, Deakin CT, Wedderburn LR, van Wijk F, van Royen-Kerkhof A. Systemic and Tissue Inflammation in Juvenile Dermatomyositis: From Pathogenesis to the Quest for Monitoring Tools. Front Immunol. 2018;9:2951.PubMedPubMedCentralCrossRef Wienke J, Deakin CT, Wedderburn LR, van Wijk F, van Royen-Kerkhof A. Systemic and Tissue Inflammation in Juvenile Dermatomyositis: From Pathogenesis to the Quest for Monitoring Tools. Front Immunol. 2018;9:2951.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Pachman LM, Lipton R, Ramsey-Goldman R, Shamiyeh E, Abbott K, Mendez EP, et al. History of infection before the onset of juvenile dermatomyositis: results from the National Institute of Arthritis and Musculoskeletal and Skin Diseases Research Registry. Arthritis Rheum. 2005;53(2):166–72.PubMedCrossRef Pachman LM, Lipton R, Ramsey-Goldman R, Shamiyeh E, Abbott K, Mendez EP, et al. History of infection before the onset of juvenile dermatomyositis: results from the National Institute of Arthritis and Musculoskeletal and Skin Diseases Research Registry. Arthritis Rheum. 2005;53(2):166–72.PubMedCrossRef
24.
Zurück zum Zitat Shah M, Mamyrova G, Targoff IN, Huber AM, Malley JD, Rice MM, et al. The clinical phenotypes of the juvenile idiopathic inflammatory myopathies. Med. 2013;92(1):25–41.CrossRef Shah M, Mamyrova G, Targoff IN, Huber AM, Malley JD, Rice MM, et al. The clinical phenotypes of the juvenile idiopathic inflammatory myopathies. Med. 2013;92(1):25–41.CrossRef
25.
Zurück zum Zitat McCann LJ, Juggins AD, Maillard SM, Wedderburn LR, Davidson JE, Murray KJ, et al. The Juvenile Dermatomyositis National Registry and Repository (UK and Ireland)--clinical characteristics of children recruited within the first 5 yr. Rheumatol. 2006;45(10):1255–60.CrossRef McCann LJ, Juggins AD, Maillard SM, Wedderburn LR, Davidson JE, Murray KJ, et al. The Juvenile Dermatomyositis National Registry and Repository (UK and Ireland)--clinical characteristics of children recruited within the first 5 yr. Rheumatol. 2006;45(10):1255–60.CrossRef
26.
Zurück zum Zitat Guseinova D, Consolaro A, Trail L, Ferrari C, Pistorio A, Ruperto N, et al. Comparison of clinical features and drug therapies among European and Latin American patients with juvenile dermatomyositis. Clin Exp Rheumatol. 2011;29(1):117–24.PubMed Guseinova D, Consolaro A, Trail L, Ferrari C, Pistorio A, Ruperto N, et al. Comparison of clinical features and drug therapies among European and Latin American patients with juvenile dermatomyositis. Clin Exp Rheumatol. 2011;29(1):117–24.PubMed
27.
Zurück zum Zitat Ravelli A, Trail L, Ferrari C, Ruperto N, Pistorio A, Pilkington C, et al. Long-term outcome and prognostic factors of juvenile dermatomyositis: a multinational, multicenter study of 490 patients. Arthritis Care Res. 2010;62(1):63–72.CrossRef Ravelli A, Trail L, Ferrari C, Ruperto N, Pistorio A, Pilkington C, et al. Long-term outcome and prognostic factors of juvenile dermatomyositis: a multinational, multicenter study of 490 patients. Arthritis Care Res. 2010;62(1):63–72.CrossRef
28.
Zurück zum Zitat Sato JO, Sallum AM, Ferriani VP, Marini R, Sacchetti SB, Okuda EM, et al. A Brazilian registry of juvenile dermatomyositis: onset features and classification of 189 cases. Clin Exp Rheumatol. 2009;27(6):1031–8.PubMed Sato JO, Sallum AM, Ferriani VP, Marini R, Sacchetti SB, Okuda EM, et al. A Brazilian registry of juvenile dermatomyositis: onset features and classification of 189 cases. Clin Exp Rheumatol. 2009;27(6):1031–8.PubMed
29.
Zurück zum Zitat Christen-Zaech S, Seshadri R, Sundberg J, Paller AS, Pachman LM. Persistent association of nailfold capillaroscopy changes and skin involvement over thirty-six months with duration of untreated disease in patients with juvenile dermatomyositis. Arthritis Rheum. 2008;58(2):571–6.PubMedPubMedCentralCrossRef Christen-Zaech S, Seshadri R, Sundberg J, Paller AS, Pachman LM. Persistent association of nailfold capillaroscopy changes and skin involvement over thirty-six months with duration of untreated disease in patients with juvenile dermatomyositis. Arthritis Rheum. 2008;58(2):571–6.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Tansley SL, Betteridge ZE, Shaddick G, Gunawardena H, Arnold K, Wedderburn LR, et al. Calcinosis in juvenile dermatomyositis is influenced by both anti-NXP2 autoantibody status and age at disease onset. Rheumatol. 2014;53(12):2204–8.CrossRef Tansley SL, Betteridge ZE, Shaddick G, Gunawardena H, Arnold K, Wedderburn LR, et al. Calcinosis in juvenile dermatomyositis is influenced by both anti-NXP2 autoantibody status and age at disease onset. Rheumatol. 2014;53(12):2204–8.CrossRef
33.
Zurück zum Zitat Rider LG, Shah M, Mamyrova G, Huber AM, Rice MM, Targoff IN, et al. The myositis autoantibody phenotypes of the juvenile idiopathic inflammatory myopathies. Med. 2013;92(4):223–43.CrossRef Rider LG, Shah M, Mamyrova G, Huber AM, Rice MM, Targoff IN, et al. The myositis autoantibody phenotypes of the juvenile idiopathic inflammatory myopathies. Med. 2013;92(4):223–43.CrossRef
35.
Zurück zum Zitat Deakin CT, Yasin SA, Simou S, Arnold KA, Tansley SL, Betteridge ZE, et al. Muscle biopsy in combination with myositis-specific autoantibodies aids prediction of outcomes in juvenile dermatomyositis. Arthritis Rheum. 2016;11(68):2806–16. https://doi.org/10.1002/art.39753.CrossRef Deakin CT, Yasin SA, Simou S, Arnold KA, Tansley SL, Betteridge ZE, et al. Muscle biopsy in combination with myositis-specific autoantibodies aids prediction of outcomes in juvenile dermatomyositis. Arthritis Rheum. 2016;11(68):2806–16. https://​doi.​org/​10.​1002/​art.​39753.CrossRef
36.
Zurück zum Zitat Deakin CT, Campanilho-Marques R, Simou S, Moraitis E, Wedderburn LR, Pullenayegum E, et al. Efficacy and Safety of Cyclophosphamide Treatment in Severe Juvenile Dermatomyositis Shown by Marginal Structural Modeling. Arthritis Rheum. 2018;70(5):785–93.CrossRef Deakin CT, Campanilho-Marques R, Simou S, Moraitis E, Wedderburn LR, Pullenayegum E, et al. Efficacy and Safety of Cyclophosphamide Treatment in Severe Juvenile Dermatomyositis Shown by Marginal Structural Modeling. Arthritis Rheum. 2018;70(5):785–93.CrossRef
39.
Zurück zum Zitat Oddis CV, Reed AM, Aggarwal R, Rider LG, Ascherman DP, Levesque MC, et al. Rituximab in the treatment of refractory adult and juvenile dermatomyositis and adult polymyositis: a randomized, placebo-phase trial. Arthritis Rheum. 2013;65(2):314–24.PubMedPubMedCentralCrossRef Oddis CV, Reed AM, Aggarwal R, Rider LG, Ascherman DP, Levesque MC, et al. Rituximab in the treatment of refractory adult and juvenile dermatomyositis and adult polymyositis: a randomized, placebo-phase trial. Arthritis Rheum. 2013;65(2):314–24.PubMedPubMedCentralCrossRef
40.
46.
Zurück zum Zitat Patwardhan A, Spencer CH. Biologics in refractory myositis: experience in juvenile vs. adult myositis; part II: emerging biologic and other therapies on the horizon. Pediatr Rheumatol Online J. 2019;17(1):56.PubMedPubMedCentralCrossRef Patwardhan A, Spencer CH. Biologics in refractory myositis: experience in juvenile vs. adult myositis; part II: emerging biologic and other therapies on the horizon. Pediatr Rheumatol Online J. 2019;17(1):56.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Higgs BW, Zhu W, Morehouse C, White WI, Brohawn P, Guo X, et al. A phase 1b clinical trial evaluating sifalimumab, an anti-IFN-alpha monoclonal antibody, shows target neutralisation of a type I IFN signature in blood of dermatomyositis and polymyositis patients. Ann Rheum Dis. 2014;73(1):256–62.PubMedCrossRef Higgs BW, Zhu W, Morehouse C, White WI, Brohawn P, Guo X, et al. A phase 1b clinical trial evaluating sifalimumab, an anti-IFN-alpha monoclonal antibody, shows target neutralisation of a type I IFN signature in blood of dermatomyositis and polymyositis patients. Ann Rheum Dis. 2014;73(1):256–62.PubMedCrossRef
50.
Zurück zum Zitat Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100(5):2610–5.PubMedPubMedCentralCrossRef Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100(5):2610–5.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Bilgic H, Ytterberg SR, Amin S, McNallan KT, Wilson JC, Koeuth T, et al. Interleukin-6 and type I interferon-regulated genes and chemokines mark disease activity in dermatomyositis. Arthritis Rheum. 2009;60(11):3436–46.PubMedCrossRef Bilgic H, Ytterberg SR, Amin S, McNallan KT, Wilson JC, Koeuth T, et al. Interleukin-6 and type I interferon-regulated genes and chemokines mark disease activity in dermatomyositis. Arthritis Rheum. 2009;60(11):3436–46.PubMedCrossRef
55.
Zurück zum Zitat De Jesus AA, Canna SW. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases Graphical abstract Find the latest version. 2019;130(4):1669–82. De Jesus AA, Canna SW. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases Graphical abstract Find the latest version. 2019;130(4):1669–82.
56.
Zurück zum Zitat Ronnblom L, Elkon KB. Cytokines as therapeutic targets in SLE. Nat Rev Rheumatol. 2010;6(6):339–47. Ronnblom L, Elkon KB. Cytokines as therapeutic targets in SLE. Nat Rev Rheumatol. 2010;6(6):339–47.
59.
Zurück zum Zitat Cooles FAH, Anderson AE, Lendrem DW, Norris J, Pratt AG, Hilkens CMU, et al. The interferon gene signature is increased in patients with early treatment-naive rheumatoid arthritis and predicts a poorer response to initial therapy. J Allergy Clin Immunol. 2018;141(1):445–448.e4.PubMedPubMedCentralCrossRef Cooles FAH, Anderson AE, Lendrem DW, Norris J, Pratt AG, Hilkens CMU, et al. The interferon gene signature is increased in patients with early treatment-naive rheumatoid arthritis and predicts a poorer response to initial therapy. J Allergy Clin Immunol. 2018;141(1):445–448.e4.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat George R, Stark1,* and James E. Darnell Jr.2 *. No Title. J Immuni. 2012;36(4):503–14. George R, Stark1,* and James E. Darnell Jr.2 *. No Title. J Immuni. 2012;36(4):503–14.
69.
Zurück zum Zitat Greenberg SA, Bradshaw EM, Pinkus JL, Pinkus GS, Burleson T, Due B, et al. Plasma cells in muscle in inclusion body myositis and polymyositis. Neurology. 2005;65(11):1782–7.PubMedCrossRef Greenberg SA, Bradshaw EM, Pinkus JL, Pinkus GS, Burleson T, Due B, et al. Plasma cells in muscle in inclusion body myositis and polymyositis. Neurology. 2005;65(11):1782–7.PubMedCrossRef
73.
Zurück zum Zitat Gitiaux C, Bondet V, Bekaddour N, Nusbaum P, Hubas A, Melki I, et al. Inhibition of IFNα secretion in cells from patients with juvenile dermatomyositis under TBK1 inhibitor treatment revealed by single-molecular assay technology. Rheumatol (United Kingdom). 2020;59(5):1171–4. Gitiaux C, Bondet V, Bekaddour N, Nusbaum P, Hubas A, Melki I, et al. Inhibition of IFNα secretion in cells from patients with juvenile dermatomyositis under TBK1 inhibitor treatment revealed by single-molecular assay technology. Rheumatol (United Kingdom). 2020;59(5):1171–4.
74.
Zurück zum Zitat Rice GI, Melki I, Frémond ML, Briggs TA, Rodero MP, Kitabayashi N, et al. Assessment of type I interferon signaling in pediatric inflammatory disease. J Clin Immunol. 2017;37(2):123–32.PubMedCrossRef Rice GI, Melki I, Frémond ML, Briggs TA, Rodero MP, Kitabayashi N, et al. Assessment of type I interferon signaling in pediatric inflammatory disease. J Clin Immunol. 2017;37(2):123–32.PubMedCrossRef
77.
Zurück zum Zitat Moneta GM, Pires Marafon D, Marasco E, Rosina S, Verardo M, Fiorillo C, et al. Muscle expression of type I and type II interferons is increased in juvenile dermatomyositis and related to clinical and histologic features. Arthritis Rheum. 2019;71(6):1011–21. https://doi.org/10.1002/art.40800.CrossRef Moneta GM, Pires Marafon D, Marasco E, Rosina S, Verardo M, Fiorillo C, et al. Muscle expression of type I and type II interferons is increased in juvenile dermatomyositis and related to clinical and histologic features. Arthritis Rheum. 2019;71(6):1011–21. https://​doi.​org/​10.​1002/​art.​40800.CrossRef
79.
Zurück zum Zitat Bellutti Enders F, van Wijk F, Scholman R, Hofer M, Prakken BJ, van Royen-Kerkhof A, et al. Correlation of CXCL10, tumor necrosis factor receptor type II, and galectin 9 with disease activity in juvenile dermatomyositis. Arthritis Rheum. 2014;66(8):2281–9.CrossRef Bellutti Enders F, van Wijk F, Scholman R, Hofer M, Prakken BJ, van Royen-Kerkhof A, et al. Correlation of CXCL10, tumor necrosis factor receptor type II, and galectin 9 with disease activity in juvenile dermatomyositis. Arthritis Rheum. 2014;66(8):2281–9.CrossRef
81.
Zurück zum Zitat Piper CJM, Wilkinson MGL, Deakin CT, Otto GW, Dowle S, Duurland CL, et al. CD19(+)CD24(hi)CD38(hi) B Cells Are Expanded in Juvenile Dermatomyositis and Exhibit a Pro-Inflammatory Phenotype After Activation Through Toll-Like Receptor 7 and Interferon-alpha. Front Immunol. 2018;9:1372.PubMedPubMedCentralCrossRef Piper CJM, Wilkinson MGL, Deakin CT, Otto GW, Dowle S, Duurland CL, et al. CD19(+)CD24(hi)CD38(hi) B Cells Are Expanded in Juvenile Dermatomyositis and Exhibit a Pro-Inflammatory Phenotype After Activation Through Toll-Like Receptor 7 and Interferon-alpha. Front Immunol. 2018;9:1372.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Kishi T, Chipman J, Evereklian M, Nghiem K, Stetler-Stevenson M, Rick ME, et al. Endothelial activation markers as disease activity and damage measures in juvenile dermatomyositis. J Rheumatol. 2020;47(7):1011–8.PubMedCrossRef Kishi T, Chipman J, Evereklian M, Nghiem K, Stetler-Stevenson M, Rick ME, et al. Endothelial activation markers as disease activity and damage measures in juvenile dermatomyositis. J Rheumatol. 2020;47(7):1011–8.PubMedCrossRef
85.
Zurück zum Zitat Bohan A, Peter JB. Polymyositis and dermatomyositis (first of two parts). N Engl J Med. 1975;292(7):344–7.PubMedCrossRef Bohan A, Peter JB. Polymyositis and dermatomyositis (first of two parts). N Engl J Med. 1975;292(7):344–7.PubMedCrossRef
86.
Zurück zum Zitat Bohan A, Peter JB. Polymyositis and dermatomyositis (second of two parts). N Engl J Med. 1975;292(8):403–7.PubMedCrossRef Bohan A, Peter JB. Polymyositis and dermatomyositis (second of two parts). N Engl J Med. 1975;292(8):403–7.PubMedCrossRef
87.
Zurück zum Zitat Wedderburn LR, Varsani H, Li CK, Newton KR, Amato AA, Banwell B, et al. International consensus on a proposed score system for muscle biopsy evaluation in patients with juvenile dermatomyositis: a tool for potential use in clinical trials. Arthritis Rheum. 2007;57(7):1192–201.PubMedCrossRef Wedderburn LR, Varsani H, Li CK, Newton KR, Amato AA, Banwell B, et al. International consensus on a proposed score system for muscle biopsy evaluation in patients with juvenile dermatomyositis: a tool for potential use in clinical trials. Arthritis Rheum. 2007;57(7):1192–201.PubMedCrossRef
89.
Zurück zum Zitat Lundberg I, Ulfgren AK, Nyberg P, Andersson U, Klareskog L. Cytokine production in muscle tissue of patients with idiopathic inflammatory myopathies. Arthritis Rheum. 1997;40(5):865–74.PubMedCrossRef Lundberg I, Ulfgren AK, Nyberg P, Andersson U, Klareskog L. Cytokine production in muscle tissue of patients with idiopathic inflammatory myopathies. Arthritis Rheum. 1997;40(5):865–74.PubMedCrossRef
90.
Zurück zum Zitat Nagaraju K, Raben N, Loeffler L, Parker T, Rochon PJ, Lee E, et al. Conditional up-regulation of MHC class I in skeletal muscle leads to self-sustaining autoimmune myositis and myositis-specific autoantibodies. Proc Natl Acad Sci U S A. 2000;97(16):9209–14.PubMedPubMedCentralCrossRef Nagaraju K, Raben N, Loeffler L, Parker T, Rochon PJ, Lee E, et al. Conditional up-regulation of MHC class I in skeletal muscle leads to self-sustaining autoimmune myositis and myositis-specific autoantibodies. Proc Natl Acad Sci U S A. 2000;97(16):9209–14.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Li CK, Varsani H, Holton JL, Gao B, Woo P, Wedderburn LR, et al. MHC Class I overexpression on muscles in early juvenile dermatomyositis. J Rheumatol. 2004;31(3):605–9.PubMed Li CK, Varsani H, Holton JL, Gao B, Woo P, Wedderburn LR, et al. MHC Class I overexpression on muscles in early juvenile dermatomyositis. J Rheumatol. 2004;31(3):605–9.PubMed
95.
Zurück zum Zitat Soponkanaporn S, Deakin CT, Schutz PW, Marshall LR, Yasin SA, Johnson CM, et al. Expression of myxovirus-resistance protein a: a possible marker of muscle disease activity and autoantibody specificities in juvenile dermatomyositis. Neuropathol Appl Neurobiol. 2019;45(4):410–20. https://doi.org/10.1111/nan.12498.CrossRefPubMed Soponkanaporn S, Deakin CT, Schutz PW, Marshall LR, Yasin SA, Johnson CM, et al. Expression of myxovirus-resistance protein a: a possible marker of muscle disease activity and autoantibody specificities in juvenile dermatomyositis. Neuropathol Appl Neurobiol. 2019;45(4):410–20. https://​doi.​org/​10.​1111/​nan.​12498.CrossRefPubMed
99.
Zurück zum Zitat Gadina M, Le MT, Schwartz DM, Silvennoinen O, Nakayamada S, Yamaoka K, et al. Janus kinases to jakinibs: From basic insights to clinical practice. Rheumatol (United Kingdom). 2019;58:i4–16. Gadina M, Le MT, Schwartz DM, Silvennoinen O, Nakayamada S, Yamaoka K, et al. Janus kinases to jakinibs: From basic insights to clinical practice. Rheumatol (United Kingdom). 2019;58:i4–16.
105.
Zurück zum Zitat Liu C, Lin J, Langevine C, Smith D, Li J, Tokarski JS, et al. Discovery of BMS-986202: a clinical Tyk2 inhibitor that binds to Tyk2 JH2. J Med Chem. 2021;64(1):677–94.PubMedCrossRef Liu C, Lin J, Langevine C, Smith D, Li J, Tokarski JS, et al. Discovery of BMS-986202: a clinical Tyk2 inhibitor that binds to Tyk2 JH2. J Med Chem. 2021;64(1):677–94.PubMedCrossRef
107.
Zurück zum Zitat Fragoulis GE, Mcinnes IB, Siebert S, JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid arthritis. Rheumatol (United Kingdom). 2019;58:i43–54. Fragoulis GE, Mcinnes IB, Siebert S, JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid arthritis. Rheumatol (United Kingdom). 2019;58:i43–54.
109.
Zurück zum Zitat Eyre S, Bowes J, Diogo D, Lee A, Barton A, Martin P, et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat Genet. 2012;44(12):1336–40.PubMedPubMedCentralCrossRef Eyre S, Bowes J, Diogo D, Lee A, Barton A, Martin P, et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat Genet. 2012;44(12):1336–40.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Hinks A, Marion MC, Cobb J, Comeau ME, Sudman M, Ainsworth HC, et al. Brief Report: The Genetic Profile of Rheumatoid Factor-Positive Polyarticular Juvenile Idiopathic Arthritis Resembles That of Adult Rheumatoid Arthritis. Arthritis Rheum. 2018;70(6):957–62.CrossRef Hinks A, Marion MC, Cobb J, Comeau ME, Sudman M, Ainsworth HC, et al. Brief Report: The Genetic Profile of Rheumatoid Factor-Positive Polyarticular Juvenile Idiopathic Arthritis Resembles That of Adult Rheumatoid Arthritis. Arthritis Rheum. 2018;70(6):957–62.CrossRef
111.
Zurück zum Zitat Suarez-Gestal M, Calaza M, Endreffy E, Pullmann R, Ordi-Ros J, Domenico Sebastiani G, et al. Replication of recently identified systemic lupus erythematosus genetic associations: a case-control study. Arthritis Res Ther. 2009;11(3):1–9.CrossRef Suarez-Gestal M, Calaza M, Endreffy E, Pullmann R, Ordi-Ros J, Domenico Sebastiani G, et al. Replication of recently identified systemic lupus erythematosus genetic associations: a case-control study. Arthritis Res Ther. 2009;11(3):1–9.CrossRef
112.
Zurück zum Zitat Wallace C, Smyth DJ, Maisuria-armer M, Walker NM, Todd JA. UKPMC funders group alters susceptibility to type 1 diabetes. Diabetes Res. 2010;42(1):1–13. Wallace C, Smyth DJ, Maisuria-armer M, Walker NM, Todd JA. UKPMC funders group alters susceptibility to type 1 diabetes. Diabetes Res. 2010;42(1):1–13.
118.
Zurück zum Zitat Paik JJ, Casciola-Rosen L, Shin JY, Albayda J, Tiniakou E, Leung DG, et al. Study of Tofacitinib in refractory dermatomyositis: an open-label pilot study of ten patients. Arthritis Rheum. 2021;73(5):858–65.CrossRef Paik JJ, Casciola-Rosen L, Shin JY, Albayda J, Tiniakou E, Leung DG, et al. Study of Tofacitinib in refractory dermatomyositis: an open-label pilot study of ten patients. Arthritis Rheum. 2021;73(5):858–65.CrossRef
119.
Zurück zum Zitat Shneyderman M, Ahlawat S, Christopher-Stine L, J. Paik J. Calcinosis in refractory dermatomyositis improves with tofacitinib monotherapy: a case series. Rheumatology. 2021;0:1–2. Shneyderman M, Ahlawat S, Christopher-Stine L, J. Paik J. Calcinosis in refractory dermatomyositis improves with tofacitinib monotherapy: a case series. Rheumatology. 2021;0:1–2.
121.
Zurück zum Zitat Aeschlimann FA, Frémond ML, Duffy D, Rice GI, Charuel JL, Bondet V, et al. A child with severe juvenile dermatomyositis treated with ruxolitinib. Brain. 2018;141(11):e80.PubMedCrossRef Aeschlimann FA, Frémond ML, Duffy D, Rice GI, Charuel JL, Bondet V, et al. A child with severe juvenile dermatomyositis treated with ruxolitinib. Brain. 2018;141(11):e80.PubMedCrossRef
122.
Zurück zum Zitat Papadopoulou C, Hong Y, Omoyinmi E, Brogan PA, Eleftheriou D. Janus kinase 1/2 inhibition with baricitinib in the treatment of juvenile dermatomyositis. Brain. 2019;142(3):E8.PubMedPubMedCentralCrossRef Papadopoulou C, Hong Y, Omoyinmi E, Brogan PA, Eleftheriou D. Janus kinase 1/2 inhibition with baricitinib in the treatment of juvenile dermatomyositis. Brain. 2019;142(3):E8.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Le Voyer T, Gitiaux C, Authier F-J, Bodemer C, Melki I, Quartier P, et al. JAK inhibitors are effective in a subset of patients with juvenile dermatomyositis: a monocentric retrospective study. Rheumatology. 2021:1–8. Le Voyer T, Gitiaux C, Authier F-J, Bodemer C, Melki I, Quartier P, et al. JAK inhibitors are effective in a subset of patients with juvenile dermatomyositis: a monocentric retrospective study. Rheumatology. 2021:1–8.
Metadaten
Titel
JAK inhibitors: a potential treatment for JDM in the context of the role of interferon-driven pathology
verfasst von
Meredyth G. Ll Wilkinson
Claire T. Deakin
Charalampia Papadopoulou
Despina Eleftheriou
Lucy R. Wedderburn
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
Pediatric Rheumatology / Ausgabe 1/2021
Elektronische ISSN: 1546-0096
DOI
https://doi.org/10.1186/s12969-021-00637-8

Weitere Artikel der Ausgabe 1/2021

Pediatric Rheumatology 1/2021 Zur Ausgabe

Mit dem Seitenschneider gegen das Reißverschluss-Malheur

03.06.2024 Urologische Notfallmedizin Nachrichten

Wer ihn je erlebt hat, wird ihn nicht vergessen: den Schmerz, den die beim Öffnen oder Schließen des Reißverschlusses am Hosenschlitz eingeklemmte Haut am Penis oder Skrotum verursacht. Eine neue Methode für rasche Abhilfe hat ein US-Team getestet.

Ähnliche Überlebensraten nach Reanimation während des Transports bzw. vor Ort

29.05.2024 Reanimation im Kindesalter Nachrichten

Laut einer Studie aus den USA und Kanada scheint es bei der Reanimation von Kindern außerhalb einer Klinik keinen Unterschied für das Überleben zu machen, ob die Wiederbelebungsmaßnahmen während des Transports in die Klinik stattfinden oder vor Ort ausgeführt werden. Jedoch gibt es dabei einige Einschränkungen und eine wichtige Ausnahme.

Alter der Mutter beeinflusst Risiko für kongenitale Anomalie

28.05.2024 Kinder- und Jugendgynäkologie Nachrichten

Welchen Einfluss das Alter ihrer Mutter auf das Risiko hat, dass Kinder mit nicht chromosomal bedingter Malformation zur Welt kommen, hat eine ungarische Studie untersucht. Sie zeigt: Nicht nur fortgeschrittenes Alter ist riskant.

Begünstigt Bettruhe der Mutter doch das fetale Wachstum?

Ob ungeborene Kinder, die kleiner als die meisten Gleichaltrigen sind, schneller wachsen, wenn die Mutter sich mehr ausruht, wird diskutiert. Die Ergebnisse einer US-Studie sprechen dafür.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.