Skip to main content
Erschienen in: Italian Journal of Pediatrics 1/2022

Open Access 01.12.2022 | Research

Investigation of the relationship between community-acquired respiratory distress syndrome toxin and the high-mobility group box protein 1-toll-like receptors-myeloid differentiation factor 88 signaling pathway in Mycoplasma pneumoniae pneumonia

verfasst von: Yujie Fan, Ying Ding, Yuqin Li, Dandan Zhang, Min Yu, Wei-fang Zhou, Xiaoxing Kong

Erschienen in: Italian Journal of Pediatrics | Ausgabe 1/2022

Abstract

Background

In recent years, reports of refractory Mycoplasma pneumoniae pneumonia (RMPP) have gradually increased, including reports on how these conditions threaten the lives of children. However, the specific mechanism of Mycoplasma pneumoniae pneumonia (MPP) remains unclear. This study aimed to investigate the relationship between community-acquired respiratory distress syndrome toxin (CARDS TX) and High-mobility group box protein 1-Toll-like receptors-Myeloid differentiation factor 88 (HMGB1-TLRs-MyD88) in MPP and to examine the immune pathogenesis of Mycoplasma pneumoniae infection.

Methods

Children who were diagnosed with MPP and examined by bronchoscopy were included in the MPP group. Additionally, children who underwent bronchoscopy because of bronchial foreign bodies in the same period were included in the control group. Gene expression of CARDS TX, HMGB1, Toll-like receptor 2 (TLR2), Toll-like receptor 4 (TLR4), MyD88, and cluster of differentiation 14 (CD14) in bronchoalveolar lavage fluid (BALF) were detected using real-time reverse transcription-polymerase chain reaction. Correlations between CARDS TX and HMGB1-TLRs-MyD88 were analyzed.

Results

CARDS TX, HMGB1, TLR2, MyD88, and CD14 mRNA expression in BALF in the MPP group was significantly higher than that in the control group (all P < 0.05). CARDS TX mRNA expression was positively correlated with HMGB1, TLR2, MyD88, and CD14 mRNA expression (all P < 0.05). Furthermore, HMGB1 mRNA expression was positively correlated with TLR2, MyD88, and CD14 mRNA expression (all P < 0.05).

Conclusions

CARDS TX may participate in the immune pathogenesis of MPP through the HMGB1-TLRs/CD14-MyD88 pathway.
Hinweise
Yujie Fan and Ying Ding contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BALF
Bronchoalveolar lavage fluid
CARDS TX
Community-acquired respiratory distress syndrome toxin
CD14
Cluster of differentiation 14
HMGB1
High-mobility group box protein 1
IL-1β
Interleukin-1β
MPP
Mycoplasma pneumoniae Pneumonia
MyD88
Myeloid differentiation factor 88
PCR
Polymerase chain reaction
RAGE
Receptor for advanced glycation end products
TLR
Toll-like receptor
TNF-α
Tumor necrosis factor-α

Background

Community-acquired pneumonia is one of the main diseases in hospitalization of children worldwide, especially in developing countries. Among children older than 5 years, community-acquired pneumonia is caused by Mycoplasma pneumoniae (MP) infection in 40% of children [1]. In recent years, the number of cases of refractory Mycoplasma pneumoniae pneumonia (RMPP) has significantly increased [2]. Some studies have shown that community-acquired respiratory distress syndrome toxin (CARDS TX) is an important toxin produced by MP [3]. High-mobility group box protein 1 (HMGB1) is highly expressed in RMPP, suggesting that it may play an important role in the pathogenesis of MP [4].
In this study, we aimed to detect the relative gene expression of CARDS TX, HMGB1, and their related receptors in bronchoalveolar lavage fluid (BALF) of children with MPP. We also aimed to examine the relationships between CARDS TX and HMGB1, Toll-like receptors (TLRs), and myeloid differentiation factor 88 (MyD88), and to further explore the pathogenic mechanism of MP.

Methods

Patients

From January 2018 to June 2019, 66 children were diagnosed with MPP and examined by bronchoscopy in the affiliated Children’s Hospital of Suzhou University. These children were included in the MPP case group (mean ± SD age, 5.58 ± 2.67 years; 32 boys, 34 girls). A total of 20 children who underwent bronchoscopy because of bronchial foreign bodies in the same period were included in the control group (mean ± SD age, 5.23 ± 2.24 years; 12 boys, 8 girls).
MPP was diagnosed according to the following: (1) the diagnostic criteria of community-acquired pneumonia in children were met [5]; (2) compatible with bronchoscopy indications [6]: children requiring bronchoscopy and alveolar lavage with no significant improvement in clinical symptoms, signs and/or reexamination of imaging after 5 to 7 days of outpatient or in-patient treatment; and (3) MP DNA > 1.0 × 103 copies was detected in BALF.
Children were included in the control group if they met the following criteria: (1) there was a clear history of foreign body inhalation and irritant cough, and the course of disease was shorter than 7 days; (2) an imaging examination showed a clear shadow of foreign bodies, but did not indicate inflammatory changes; and (3) there was no history of pulmonary infection within 2 months.
The exclusion criteria for the study were as follows. Other viral and bacterial infections were excluded. Additionally, patients with an incomplete history and data of bronchopulmonary dysplasia, pulmonary mass, genetic and metabolic diseases, hematological diseases, and immunodeficiency were excluded.
The study was approved by the hospital ethics committee and informed consent was obtained from the parents of the children.

Collection of BALF in children with pneumonia

All children fasted before the operation and did not drink any water. The children were placed in the supine position and underwent bronchoscopy and bronchoalveolar lavage after local anesthesia. According to the results of an imaging examination, the healthy side was examined first to determine whether there were inflammation and abnormalities. The lesion site was then examined and lavage was performed with normal saline at 37 °C (each injection was 5–10 ml of lavage, and the total amount was ≤ 5–10 ml/kg). The lavage fluid was then sucked out through negative pressure, and the reabsorption rate of each lavage fluid was ≥ 40%. The obtained BALF was stored in a sterilized collector for later inspection.

Real-time PCR for detection of MP

A real-time polymerase chain reaction (PCR) procedure (Daan Gene Co. Ltd., Guangzhou, China), which was approved by the State Food and Drug Administration of China, was used to detect MP in real time [7]. Briefly, the sample of BALF was shaken, centrifuged, and then removed liquid supernatant. The sediment was collected, blended with 50 μL of DNA extraction solution, incubated at 100 °C for 10 min, and centrifuged at 12,000 rpm for 5 min. PCR amplification was performed using primers and probes (Daan Gene Co. Ltd.) in a 7600 real-time PCR system (Applied Biosystems, Foster City, CA, USA). The PCR conditions were as follows: 93 °C for 2 min; 10 cycles of 93 °C for 45 s, and 55 °C for 60 s; and 30 cycles of 93 °C for 30 s and 55 °C for 45 s. Quantitative curves were drawn with standard control samples at several concentrations.

Detection of CARDS TX, HMGB1, receptor for advanced glycation end products, TLR2, TLR4, MyD88, TLR6, and CD14 mRNA expression

BALF samples were centrifuged at 15,000 × g at 4 °C for 5 min, and 0.5 ml of Trizol (Aidlab Biotechnologies Co., Ltd., Beijing, China) was added to the bottom of the tube for precipitation. Total RNA was extracted and reverse transcribed to synthesize cDNA. The mRNA expression of CARDS TX, HMGB1, receptor for advanced glycation end products (RAGE), TLR2, TLR4, MyD88, TLR6, and CD14 was determined using real-time PCR. CARDS TX used pdhA as the internal reference, and the others used 18 s as the internal reference. Gene expression was assessed using the comparative cycle threshold (Ct) method. The relative amount of mRNA was determined by subtracting the Ct values for these genes from the Ct value for the housekeeping gene pdhA or 18 s (ΔCt). The amount of mRNA was expressed relative to the amount of pdhA or 18 s mRNA (2−ΔΔCt) and presented as mean ± SEM. The sequence of primers is shown in Table 1.
Table 1
Forward and reverse primers used for real-time PCR
DNA
F(5’ → 3’)
R (5’ → 3’)
pdh A
ACTGGTTCTGCCCTACCTTCCGTTCC
CTTCGTGCATTGCTTCGTAACTCGC
18 s
ACGACCCATTCGAACGTCTG
CCGTTTCTCAGGCTCCCTC
CARDS TX
TTCCACTTCAGAAACACCCACAGC
TCAATCAGGGCACGCAAACG
HMGB1
TGTAAGGCTGTGTAAGATT
AAGGTTAGTGGCTATTGAA
RAGE
GTGAAGGAACAGACCAGGAGAACA
TGGGCTGAAGCTACAGGAGAA
TLR2
TGAGGAACTTGAGATTGAT
CACGGAACTTGTAACATC
TLR4
TCAGTGTGCTTGTAGTAT
CCTGGCTTGAGTAGATAA
MyD88
AGCCATTCACACATCTTCACCC
GCTATGCTTCACCATTTCCTACA
TLR6
TGCAGAGTAACAGGAGCACACA
ACCCTCGGACTCCAGCAAA
CD14
CTCAGCTGCAACAGACTGAACA
GGAGTTCATTGAGCCCTCGTG

Detection of tumor necrosis factor-α and interleukin-1β levels by ELISA

The cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1β in BALF were detected by the ELISA method. The specific steps were carried out according to the manufacturer’s instructions in a commercial ELISA kit (Neobioscience, Shenzhen, China).

Statistical analysis

Data were analyzed with SPSS version 24.0 for Windows (IBM Corp., Armonk, NY, USA). Measurement data that had a normal distribution and homogeneity of variance are expressed as mean ± SD. The t-test is used for comparison between the two groups. Pearson correlation was used for correlation analysis. Categorical data were analyzed by the chi-square test. A P value < 0.05 was considered statistically significant.

Results

CARDS TX and HMGB1 mRNA expression levels and their correlation

Mean CARDS TX and HMGB1 mRNA expression in the MPP group was significantly higher than that in the control group (both P < 0.05, Table 2). There was a positive correlation between HMGB1 and CARDS TX mRNA expression in the MPP group (r = 0.376, P < 0.05, Fig. 1).
Table 2
Comparison of CARDS TX and HMGB1 mRNA expression levels between the MPP and control groups
 
MPP(n = 66)
Control(n = 20)
Statistical value
P value
CARDS TX
5.33 ± 3.31
0.96 ± 0.20
t = 10.664
0.001
HMGB1
15.50 ± 7.89
1.28 ± 0.55
t = 14.527
0.001

Comparison of TNF-α and IL-1β levels between the MPP and control groups

MPP tends to occur in school-age and preschool children, while bronchial foreign body tends to occur in infants and young children. In order to avoid the influence of age, a total of 20 children with MPP and 10 with foreign bodies (controls) aged 4–7 years were selected for further comparison. Mean TNF-α and IL-1β levels in the MPP group were significantly lower than those in the control group (all P < 0.05, Table 3).
Table 3
Comparison of TNF-α and IL-1β levels between the MPP and control groups
 
MPP(n = 20)
Control(n = 10)
t value
P value
TNF-α(pg/ml)
23.60 ± 0.44
42.85 ± 10.02
-6.074
0.001
IL-1β(pg/ml)
9.94 ± 0.37
19.53 ± 1.60
-18.756
0.001

Comparison of TLR2, TLR4, RAGE, MyD88, TLR6, and CD14 mRNA expression levels between the MPP and control groups

Mean TLR2, MyD88, and CD14 mRNA levels in BALF in the MPP group were significantly higher than those in the control group (all P < 0.05, Table 4). However, there were no significant differences in the relative expression of TLR4, RAGE, and TLR6 between the two groups.
Table 4
Comparison of TLR2, TLR4, RAGE, MyD88, TLR6, and CD14 mRNA expression levels between the MPP and control groups
 
MPP(n = 20)
Control(n = 10)
t value
P value
TLR2
12.02 ± 5.60
1.03 ± 0.24
8.755
0.001
TLR4
1.25 ± 0.54
1.01 ± 0.26
1.675
0.105
RAGE
1.12 ± 0.48
0.94 ± 0.23
1.105
0.278
MyD88
20.04 ± 8.80
0.98 ± 0.34
9.675
0.001
TLR6
0.98 ± 0.39
1.01 ± 0.21
-0.248
0.806
CD14
3.09 ± 1.46
0.96 ± 0.28
4.530
0.001

Correlations of CARDS TX and HMGB1 with TLR2, MyD88, and CD14 in the MPP group

In the MPP group, CARDS TX mRNA expression in BALF was positively correlated with TLR2, MyD88, and CD14 mRNA expression (r = 0.665, 0.483, and 0.639, respectively; all P < 0.05). HMGB1 mRNA expression was also positively correlated with TLR2, MyD88, and CD14 mRNA expression (r = 0.723, 0.668, and 0.707, respectively; all P < 0.05, Table 5).
Table 5
Correlations of CARDS TX and HMGB1 mRNA expression with TLR2, MyD88, and CD14 mRNA expression in the MPP group
 
CARDS TX
HMGB1
 
r value
P value
r value
P value
TLR2
0.665
0.001
0.723
0.001
MyD88
0.483
0.031
0.668
0.001
CD14
0.639
0.002
0.707
0.001

Discussion

In recent years, reports of MPP and RMPP have gradually increased, including reports on how these conditions threaten the lives of children [2, 8]. However, the specific mechanism of RMPP remains unclear. At present, this mechanism is believed to be related to MP drug resistance, immune dysfunction, mixed infection, excessive MP load, mucus suppository, and CARDS TX [9].
CARDS TX is an important toxin produced by MP 3. Some studies that exposed primates to MP and CARDS TX showed similar histopathological changes in the lungs [10]. HMGB1 is an important marker of inflammation. HMGB1 participates in the immune process in occurrence and development of MPP and is related to the severity of MPP [4, 11]. We studied children with the diagnosis of MPP who were examined by bronchoscopy and bronchoalveolar lavage. We found that CARDS TX and HMGB1 mRNA expression in BALF in the MPP group was significantly higher than that in the control group. This finding is consistent with a study by Ding et al. [4] and Li et al. [11]. There is a positive correlation between HMGB1 and CARDS TX, suggesting that MP may mediate cell injury and stimulate release of HMGB1 through CARDS TX, which may lead to pulmonary inflammation.
TNF-α is the earliest inflammatory factor that is secreted under stimulation of various inflammatory factors, and it is mainly produced by monocytes and macrophages. TNF-α can activate production of secondary inflammatory mediators, such as IL-1β, which in turn promotes signal transmission of T cells to initiate the inflammatory response. Studies have shown that MP and CARDS TX stimulate production of pro-inflammatory cytokines, such as TNF-α and IL-1β [11, 12]. TNF-α and IL-1β can also stimulate mononuclear macrophages to actively secrete HMGB1 to the extracellular environment to play a pro-inflammatory role [13]. However, our study showed that TNF-α and IL-1β levels in BALF in the MPP group were significantly lower than those in the control group. This finding may be because TNF-α and IL-1β are early inflammatory factors. The course of disease in the MPP group was longer, and foreign body stimulation in the control group could also have caused production of inflammatory cytokines. Most of the children with foreign bodies were examined by bronchoscopy immediately after foreign bodies were ingested. This further indicated that HMGB1 was a late inflammatory factor.
The typical receptors of HMGB1 are RAGE, TLR2, and TLR4 [14]. TLRs (except for TLR3) can activate the MyD88-dependent pathway and mediate an active inflammatory response [15]. A study on intranasal inoculation of MP in mice showed that macrophages recognized the specific antigen of MP through its surface TLR [16]. This then activated the MyD88-nuclear factor-κB signal pathway, and then cleared the invaded MP from the lungs. A decrease in TLR and MyD88 destroys the ability of macrophages to clear MP, indicating that the TLR-MyD88-nuclear factor-κB signaling pathway is important in the process of macrophages clearing MP in the lungs. Our study also showed that relative expression of TLR2 and MyD88 in BALF of children in the MPP group was significantly higher than that in the control group. Additionally, TLR2 and MyD88 mRNA expression was positively correlated with CARDS TX and HMGB1 mRNA expression. However, there were no significant differences in TLR4 and RAGE mRNA expression between the two groups. These findings suggest that the combination of TLR2 and HMGB1 after MP infection plays a role through the MyD88 pathway and participates in the pathogenesis of MP.
TLR6 is also a member of the TLR family. TLR6 is highly homologous to TLR2 in structure and participates in ligand recognition by forming heterodimers with TLR2 [17]. CD14 is also a co-receptor of many types of TLR. As a co-receptor of TLR2, CD14 can improve the sensitivity to external pathogens and promote binding with ligands [18, 19]. He et al. [20] showed that lipid-associated membrane proteins of Mycoplasma genitalium activated nuclear factor-κB in the MyD88-dependent pathway through TLR1, TLR2, TLR6, and CD14. Our study showed that relative expression of CD14 in BALF in the MPP group was significantly higher than that in the control group. Additionally, CD14 mRNA expression was positively correlated with CARDS TX and HMGB1 mRNA expression. However, relative expression of TLR6 in the MMP group was not different from that in the control group. These findings suggest that CD14, as a co-receptor of TLR2, participates in the pathogenesis of MPP.

Conclusions

In summary, after MP infection, CARDS TX stimulates the release of HMGB1, which depends on the TLR2/CD14/MyD88 pathway to activate various downstream signal pathways. This results in inflammatory and immune responses. However, there are some limitations to this study. The sample size of this study was small, and the cytokines studied were limited. Clinical samples are easily affected by age, immune function, and other individual differences, as well as by treatment and other aspects. In future studies, a larger sample size and basic experimental research are required to investigate the immune pathogenesis of MP infection, especially refractory mycoplasma infection.

Acknowledgements

We thank Ellen Knapp, PhD, from Liwen Bianji, Edanz Group China (www.​liwenbianji.​cn/​ac), for editing the English text of a draft of this manuscript.

Declarations

This study was conducted with the approval of the Institutional Human Ethical Committee of the Children’s Hospital of Soochow University. IAn informed consent was obtained from all of the subjects or guardians who participated in this study.
All authors have read and approved the content, and they agree to submit it for consideration for publication in the journal.

Competing interests

The authors declare that they have no competing interests.
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visithttp://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Atkinson TP, Waites KB. Mycoplasma pneumoniae Infections in Childhood[J]. Pediatr Infect Dis J. 2014;33(1):92–4.CrossRef Atkinson TP, Waites KB. Mycoplasma pneumoniae Infections in Childhood[J]. Pediatr Infect Dis J. 2014;33(1):92–4.CrossRef
2.
Zurück zum Zitat Gao LW, Yin J, Hu YH, et al. The epidemiology of paediatric Mycoplasma pneumoniae pneumonia in North China: 2006 to 2016[J]. EPIDEMIOLOGY AND INFECTION. 2019;147:e192.CrossRef Gao LW, Yin J, Hu YH, et al. The epidemiology of paediatric Mycoplasma pneumoniae pneumonia in North China: 2006 to 2016[J]. EPIDEMIOLOGY AND INFECTION. 2019;147:e192.CrossRef
3.
Zurück zum Zitat Kannan TR, Baseman JB. ADP-ribosylating and vacuolating cytotoxin of Mycoplasma pneumoniae represents unique virulence determinant among bacterial pathogens[J]. Proc Natl Acad Sci U S A. 2006;103(17):6724–9.CrossRef Kannan TR, Baseman JB. ADP-ribosylating and vacuolating cytotoxin of Mycoplasma pneumoniae represents unique virulence determinant among bacterial pathogens[J]. Proc Natl Acad Sci U S A. 2006;103(17):6724–9.CrossRef
4.
Zurück zum Zitat Ding Y, Chu C, Li Y, et al. High expression of HMGB1 in children with refractory Mycoplasma pneumoniae pneumonia[J]. BMC Infect Dis. 2018;18(1):439.CrossRef Ding Y, Chu C, Li Y, et al. High expression of HMGB1 in children with refractory Mycoplasma pneumoniae pneumonia[J]. BMC Infect Dis. 2018;18(1):439.CrossRef
5.
Zurück zum Zitat National Health Commission of the People’s Republic of China, National Administration of Traditional Chinese Medicine. Guideline for diagnosis and treatment of community-acquired pneumonia in Children (2019 version)[J]. Chin J Clin Infect Dis. 2019;12(1):6–13. National Health Commission of the People’s Republic of China, National Administration of Traditional Chinese Medicine. Guideline for diagnosis and treatment of community-acquired pneumonia in Children (2019 version)[J]. Chin J Clin Infect Dis. 2019;12(1):6–13.
6.
Zurück zum Zitat Experts Group of Pediatric Respiratory Endoscopy, Talent Exchange Service Centerof National Health Commissio, Endoscopy Committee, et al. Guideline of pediatric flexible bronchoscopy in China (2018 version)[J]. Chin J Appl Clin Pediatr. 2018;33(13):983–9. Experts Group of Pediatric Respiratory Endoscopy, Talent Exchange Service Centerof National Health Commissio, Endoscopy Committee, et al. Guideline of pediatric flexible bronchoscopy in China (2018 version)[J]. Chin J Appl Clin Pediatr. 2018;33(13):983–9.
7.
Zurück zum Zitat Yan Y, Wei Y, Jiang W, Hao C. The clinical characteristics of corticosteroid-resistant refractory Mycoplasma pneumoniae pneumonia in children[J]. Sci Rep. 2016;6:39929.CrossRef Yan Y, Wei Y, Jiang W, Hao C. The clinical characteristics of corticosteroid-resistant refractory Mycoplasma pneumoniae pneumonia in children[J]. Sci Rep. 2016;6:39929.CrossRef
8.
Zurück zum Zitat Park SJ, Pai KS, Kim AR, et al. Fulminant and Fatal Multiple Organ Failure in a 12-Year-Old Boy With Mycoplasma pneumoniae Infection[J]. Allergy Asthma Immunol Res. 2012;4(1):55–7.CrossRef Park SJ, Pai KS, Kim AR, et al. Fulminant and Fatal Multiple Organ Failure in a 12-Year-Old Boy With Mycoplasma pneumoniae Infection[J]. Allergy Asthma Immunol Res. 2012;4(1):55–7.CrossRef
9.
Zurück zum Zitat Zhang Q. Mechanism and Treatment of Refractory Mycoplasma Pneumoniae Pneumonia in Children [J]. J Pediatr Pharm. 2019;25(6):61–3. Zhang Q. Mechanism and Treatment of Refractory Mycoplasma Pneumoniae Pneumonia in Children [J]. J Pediatr Pharm. 2019;25(6):61–3.
10.
Zurück zum Zitat Maselli DJ, Medina JL, Brooks EG, et al. The immunopathologic effects of mycoplasma pneumoniae and community-acquired respiratory distress syndrome toxin. a primate model[J]. Am J Respir Cell Mol Biol. 2018;58(2):253–60.CrossRef Maselli DJ, Medina JL, Brooks EG, et al. The immunopathologic effects of mycoplasma pneumoniae and community-acquired respiratory distress syndrome toxin. a primate model[J]. Am J Respir Cell Mol Biol. 2018;58(2):253–60.CrossRef
11.
Zurück zum Zitat Li G, Fan L, Wang Y, et al. High co-expression of TNF-alpha and CARDS toxin is a good predictor for refractory Mycoplasma pneumoniae pneumonia[J]. Mol Med. 2019;25(1):38.CrossRef Li G, Fan L, Wang Y, et al. High co-expression of TNF-alpha and CARDS toxin is a good predictor for refractory Mycoplasma pneumoniae pneumonia[J]. Mol Med. 2019;25(1):38.CrossRef
12.
Zurück zum Zitat Shimizu T, Kida Y, Kuwano K. Cytoadherence-dependent induction of inflammatory responses by Mycoplasma pneumoniae[J]. Immunology. 2011;133(1):51–61.CrossRef Shimizu T, Kida Y, Kuwano K. Cytoadherence-dependent induction of inflammatory responses by Mycoplasma pneumoniae[J]. Immunology. 2011;133(1):51–61.CrossRef
13.
Zurück zum Zitat Andersson U, Wang H, Palmblad K, et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes[J]. J Exp Med. 2000;192(4):565–70.CrossRef Andersson U, Wang H, Palmblad K, et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes[J]. J Exp Med. 2000;192(4):565–70.CrossRef
14.
Zurück zum Zitat Kang R, Chen R, Zhang Q, et al. HMGB1 in health and disease[J]. Mol Aspects Med. 2014;40:1–116.CrossRef Kang R, Chen R, Zhang Q, et al. HMGB1 in health and disease[J]. Mol Aspects Med. 2014;40:1–116.CrossRef
15.
Zurück zum Zitat Afkham A, Eghbal-Fard S, Heydarlou H, et al. Toll-like receptors signaling network in pre-eclampsia: An updated review[J]. J Cell Physiol. 2019;234(3):2229–40.CrossRef Afkham A, Eghbal-Fard S, Heydarlou H, et al. Toll-like receptors signaling network in pre-eclampsia: An updated review[J]. J Cell Physiol. 2019;234(3):2229–40.CrossRef
16.
Zurück zum Zitat Lai JF, Zindl CL, Duffy LB, et al. Critical role of macrophages and their activation via MyD88-NFkappaB signaling in lung innate immunity to Mycoplasma pneumoniae[J]. PLoS One. 2010;5(12):e14417.CrossRef Lai JF, Zindl CL, Duffy LB, et al. Critical role of macrophages and their activation via MyD88-NFkappaB signaling in lung innate immunity to Mycoplasma pneumoniae[J]. PLoS One. 2010;5(12):e14417.CrossRef
17.
Zurück zum Zitat Takeda K, Takeuchi O, Akira S. Recognition of lipopeptides by Toll-like receptors[J]. J Endotoxin Res. 2002;8(6):459–63.CrossRef Takeda K, Takeuchi O, Akira S. Recognition of lipopeptides by Toll-like receptors[J]. J Endotoxin Res. 2002;8(6):459–63.CrossRef
18.
Zurück zum Zitat Manukyan M, Triantafilou K, Triantafilou M, et al. Binding of lipopeptide to CD14 induces physical proximity of CD14, TLR2 and TLR1[J]. Eur J Immunol. 2005;35(3):911–21.CrossRef Manukyan M, Triantafilou K, Triantafilou M, et al. Binding of lipopeptide to CD14 induces physical proximity of CD14, TLR2 and TLR1[J]. Eur J Immunol. 2005;35(3):911–21.CrossRef
19.
Zurück zum Zitat Nakata T, Yasuda M, Fujita M, et al. CD14 directly binds to triacylated lipopeptides and facilitates recognition of the lipopeptides by the receptor complex of Toll-like receptors 2 and 1 without binding to the complex[J]. Cell Microbiol. 2006;8(12):1899–909.CrossRef Nakata T, Yasuda M, Fujita M, et al. CD14 directly binds to triacylated lipopeptides and facilitates recognition of the lipopeptides by the receptor complex of Toll-like receptors 2 and 1 without binding to the complex[J]. Cell Microbiol. 2006;8(12):1899–909.CrossRef
20.
Zurück zum Zitat He J, You X, Zeng Y, et al. Mycoplasma genitalium-derived lipid-associated membrane proteins activate NF-kappaB through toll-like receptors 1, 2, and 6 and CD14 in a MyD88-dependent pathway[J]. Clin Vaccine Immunol. 2009;16(12):1750–7.CrossRef He J, You X, Zeng Y, et al. Mycoplasma genitalium-derived lipid-associated membrane proteins activate NF-kappaB through toll-like receptors 1, 2, and 6 and CD14 in a MyD88-dependent pathway[J]. Clin Vaccine Immunol. 2009;16(12):1750–7.CrossRef
Metadaten
Titel
Investigation of the relationship between community-acquired respiratory distress syndrome toxin and the high-mobility group box protein 1-toll-like receptors-myeloid differentiation factor 88 signaling pathway in Mycoplasma pneumoniae pneumonia
verfasst von
Yujie Fan
Ying Ding
Yuqin Li
Dandan Zhang
Min Yu
Wei-fang Zhou
Xiaoxing Kong
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
Italian Journal of Pediatrics / Ausgabe 1/2022
Elektronische ISSN: 1824-7288
DOI
https://doi.org/10.1186/s13052-022-01254-1

Weitere Artikel der Ausgabe 1/2022

Italian Journal of Pediatrics 1/2022 Zur Ausgabe

Mit dem Seitenschneider gegen das Reißverschluss-Malheur

03.06.2024 Urologische Notfallmedizin Nachrichten

Wer ihn je erlebt hat, wird ihn nicht vergessen: den Schmerz, den die beim Öffnen oder Schließen des Reißverschlusses am Hosenschlitz eingeklemmte Haut am Penis oder Skrotum verursacht. Eine neue Methode für rasche Abhilfe hat ein US-Team getestet.

Ähnliche Überlebensraten nach Reanimation während des Transports bzw. vor Ort

29.05.2024 Reanimation im Kindesalter Nachrichten

Laut einer Studie aus den USA und Kanada scheint es bei der Reanimation von Kindern außerhalb einer Klinik keinen Unterschied für das Überleben zu machen, ob die Wiederbelebungsmaßnahmen während des Transports in die Klinik stattfinden oder vor Ort ausgeführt werden. Jedoch gibt es dabei einige Einschränkungen und eine wichtige Ausnahme.

Alter der Mutter beeinflusst Risiko für kongenitale Anomalie

28.05.2024 Kinder- und Jugendgynäkologie Nachrichten

Welchen Einfluss das Alter ihrer Mutter auf das Risiko hat, dass Kinder mit nicht chromosomal bedingter Malformation zur Welt kommen, hat eine ungarische Studie untersucht. Sie zeigt: Nicht nur fortgeschrittenes Alter ist riskant.

Begünstigt Bettruhe der Mutter doch das fetale Wachstum?

Ob ungeborene Kinder, die kleiner als die meisten Gleichaltrigen sind, schneller wachsen, wenn die Mutter sich mehr ausruht, wird diskutiert. Die Ergebnisse einer US-Studie sprechen dafür.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.