Skip to main content
Erschienen in: Inflammation 5/2023

14.06.2023 | RESEARCH

Integrated Machine Learning and Bioinformatic Analyses Constructed a Network Between Mitochondrial Dysfunction and Immune Microenvironment of Periodontitis

verfasst von: Hang Chen, Limin Peng, Zhenxiang Wang, Yujuan He, Xiaonan Zhang

Erschienen in: Inflammation | Ausgabe 5/2023

Einloggen, um Zugang zu erhalten

Abstract

Periodontitis is a prevalent and persistent inflammatory condition that impacts the supporting tissues of the teeth, including the gums and bone. Recent research indicates that mitochondrial dysfunction may be involved in the onset and advancement of periodontitis. The current work sought to reveal the interaction between mitochondrial dysfunction and the immune microenvironment in periodontitis. Public data were acquired from MitoCarta 3.0, Mitomap, and GEO databases. Hub markers were screened out by five integrated machine learning algorithms and verified by laboratory experiments. Single-cell sequencing data were utilized to unravel cell-type specific expression levels of hub genes. An artificial neural network model was constructed to discriminate periodontitis from healthy controls. An unsupervised consensus clustering algorithm revealed mitochondrial dysfunction-related periodontitis subtypes. The immune and mitochondrial characteristics were calculated using CIBERSORTx and ssGSEA algorithms. Two hub mitochondria-related markers (CYP24A1 and HINT3) were identified. Single-cell sequencing data revealed that HINT3 was primarily expressed in dendritic cells, while CYP24A1 was mainly expressed in monocytes. The hub genes based artificial neural network model showed robust diagnostic performance. The unsupervised consensus clustering algorithm revealed two distinct mitochondrial phenotypes. The hub genes exhibited a strong correlation with the immune cell infiltration and mitochondrial respiratory chain complexes. The study identified two hub markers that may serve as potential targets for immunotherapy and provided a novel reference for future investigations into the function of mitochondria in periodontitis.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Pihlstrom, B.L., B.S. Michalowicz, and N.W. Johnson. 2005. Periodontal diseases. The Lancet 366 (9499): 1809–1820. Pihlstrom, B.L., B.S. Michalowicz, and N.W. Johnson. 2005. Periodontal diseases. The Lancet 366 (9499): 1809–1820.
2.
Zurück zum Zitat Hajishengallis, G. 2015. Periodontitis: From microbial immune subversion to systemic inflammation. Nature Reviews Immunology 15 (1): 30–44.PubMedPubMedCentral Hajishengallis, G. 2015. Periodontitis: From microbial immune subversion to systemic inflammation. Nature Reviews Immunology 15 (1): 30–44.PubMedPubMedCentral
3.
Zurück zum Zitat Eke, P.I., W.S. Borgnakke, and R.J. Genco. 2020. Recent epidemiologic trends in periodontitis in the USA. Periodontol 2000 82 (1): 257–267. Eke, P.I., W.S. Borgnakke, and R.J. Genco. 2020. Recent epidemiologic trends in periodontitis in the USA. Periodontol 2000 82 (1): 257–267.
4.
5.
Zurück zum Zitat Glancy, B. 2020. Visualizing mitochondrial form and function within the cell. Trends in Molecular Medicine 26 (1): 58–70.PubMed Glancy, B. 2020. Visualizing mitochondrial form and function within the cell. Trends in Molecular Medicine 26 (1): 58–70.PubMed
6.
Zurück zum Zitat Marchi, S., et al. 2022. Mitochondrial control of inflammation. Nature Reviews Immunology 1–15. Marchi, S., et al. 2022. Mitochondrial control of inflammation. Nature Reviews Immunology 1–15.
7.
Zurück zum Zitat Liu, J., et al. 2018. P53 mediates lipopolysaccharide-induced inflammation in human gingival fibroblasts. Journal of Periodontology 89 (9): 1142–1151.PubMed Liu, J., et al. 2018. P53 mediates lipopolysaccharide-induced inflammation in human gingival fibroblasts. Journal of Periodontology 89 (9): 1142–1151.PubMed
8.
Zurück zum Zitat Liu, J., et al. 2022. Mitochondrial DNA efflux maintained in gingival fibroblasts of patients with periodontitis through ROS/mPTP pathway. Oxidative Medicine and Cellular Longevity 2022: 1000213.PubMedPubMedCentral Liu, J., et al. 2022. Mitochondrial DNA efflux maintained in gingival fibroblasts of patients with periodontitis through ROS/mPTP pathway. Oxidative Medicine and Cellular Longevity 2022: 1000213.PubMedPubMedCentral
9.
Zurück zum Zitat Li, A., et al. 2022. Periodontitis and cognitive impairment in older adults: The mediating role of mitochondrial dysfunction. Journal of Periodontology. Li, A., et al. 2022. Periodontitis and cognitive impairment in older adults: The mediating role of mitochondrial dysfunction. Journal of Periodontology.
10.
Zurück zum Zitat Chen, J., et al. 2021. Sirtuin 3 deficiency exacerbates age-related periodontal disease. Journal of Periodontal Research 56 (6): 1163–1173.PubMedPubMedCentral Chen, J., et al. 2021. Sirtuin 3 deficiency exacerbates age-related periodontal disease. Journal of Periodontal Research 56 (6): 1163–1173.PubMedPubMedCentral
11.
Zurück zum Zitat Kam, A.Y.F., et al. 2021. Selective ERBB2 and BCL2 inhibition is synergistic for mitochondrial-mediated apoptosis in MDS and AML cells. Molecular Cancer Research 19 (5): 886–899.PubMed Kam, A.Y.F., et al. 2021. Selective ERBB2 and BCL2 inhibition is synergistic for mitochondrial-mediated apoptosis in MDS and AML cells. Molecular Cancer Research 19 (5): 886–899.PubMed
12.
Zurück zum Zitat Foo, J., et al. 2022. Mitochondria-mediated oxidative stress during viral infection. Trends in Microbiology 30 (7): 679–692.PubMed Foo, J., et al. 2022. Mitochondria-mediated oxidative stress during viral infection. Trends in Microbiology 30 (7): 679–692.PubMed
13.
Zurück zum Zitat Sun, H., et al. 2023. Melatonin promoted osteogenesis of human periodontal ligament cells by regulating mitochondrial functions through the translocase of the outer mitochondrial membrane 20. Journal of Periodontal Research 58 (1): 53–69.PubMed Sun, H., et al. 2023. Melatonin promoted osteogenesis of human periodontal ligament cells by regulating mitochondrial functions through the translocase of the outer mitochondrial membrane 20. Journal of Periodontal Research 58 (1): 53–69.PubMed
14.
Zurück zum Zitat Chen, M., et al. 2019. Oxidative stress-related biomarkers in saliva and gingival crevicular fluid associated with chronic periodontitis: A systematic review and meta-analysis. Journal of Clinical Periodontology 46 (6): 608–622.PubMed Chen, M., et al. 2019. Oxidative stress-related biomarkers in saliva and gingival crevicular fluid associated with chronic periodontitis: A systematic review and meta-analysis. Journal of Clinical Periodontology 46 (6): 608–622.PubMed
15.
Zurück zum Zitat Hyeon, S., et al. 2013. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation. Free Radical Biology & Medicine 65: 789–799. Hyeon, S., et al. 2013. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation. Free Radical Biology & Medicine 65: 789–799.
16.
Zurück zum Zitat Liu, J., et al. 2022. Abnormal mitochondrial structure and function are retained in gingival tissues and human gingival fibroblasts from patients with chronic periodontitis. Journal of Periodontal Research 57 (1): 94–103.PubMed Liu, J., et al. 2022. Abnormal mitochondrial structure and function are retained in gingival tissues and human gingival fibroblasts from patients with chronic periodontitis. Journal of Periodontal Research 57 (1): 94–103.PubMed
17.
Zurück zum Zitat Darveau, R.P. 2010. Periodontitis: A polymicrobial disruption of host homeostasis. Nature Reviews Microbiology 8 (7): 481–490.PubMed Darveau, R.P. 2010. Periodontitis: A polymicrobial disruption of host homeostasis. Nature Reviews Microbiology 8 (7): 481–490.PubMed
18.
Zurück zum Zitat Shen, K.L., et al. 2022. Effects of artificial intelligence-assisted dental monitoring intervention in patients with periodontitis: A randomized controlled trial. Journal of Clinical Periodontology 49 (10): 988–998.PubMed Shen, K.L., et al. 2022. Effects of artificial intelligence-assisted dental monitoring intervention in patients with periodontitis: A randomized controlled trial. Journal of Clinical Periodontology 49 (10): 988–998.PubMed
19.
Zurück zum Zitat Vollmer, A., et al. 2022. Associations between periodontitis and COPD: An artificial intelligence-based analysis of NHANES III. Journal of Clinical Medicine 11(23). Vollmer, A., et al. 2022. Associations between periodontitis and COPD: An artificial intelligence-based analysis of NHANES III. Journal of Clinical Medicine 11(23).
20.
Zurück zum Zitat Wang, Z., et al. 2023. DNER and GNL2 are differentially m6A methylated in periodontitis in comparison with periodontal health revealed by m6A microarray of human gingival tissue and transcriptomic analysis. Journal of Periodontal Research 58 (3): 529–543.PubMed Wang, Z., et al. 2023. DNER and GNL2 are differentially m6A methylated in periodontitis in comparison with periodontal health revealed by m6A microarray of human gingival tissue and transcriptomic analysis. Journal of Periodontal Research 58 (3): 529–543.PubMed
21.
Zurück zum Zitat Kim, H., et al. 2021. Differential DNA methylation and mRNA transcription in gingival tissues in periodontal health and disease. Journal of Clinical Periodontology 48 (9): 1152–1164.PubMedPubMedCentral Kim, H., et al. 2021. Differential DNA methylation and mRNA transcription in gingival tissues in periodontal health and disease. Journal of Clinical Periodontology 48 (9): 1152–1164.PubMedPubMedCentral
22.
Zurück zum Zitat Peng, L., et al. 2022. Identification and validation of a classifier based on hub aging-related genes and aging subtypes correlation with immune microenvironment for periodontitis. Frontiers in Immunology 13: 1042484.PubMedPubMedCentral Peng, L., et al. 2022. Identification and validation of a classifier based on hub aging-related genes and aging subtypes correlation with immune microenvironment for periodontitis. Frontiers in Immunology 13: 1042484.PubMedPubMedCentral
23.
Zurück zum Zitat Chen, H., et al. 2022. Exploration of cross-talk and pyroptosis-related gene signatures and molecular mechanisms between periodontitis and diabetes mellitus via peripheral blood mononuclear cell microarray data analysis. Cytokine 159: 156014.PubMed Chen, H., et al. 2022. Exploration of cross-talk and pyroptosis-related gene signatures and molecular mechanisms between periodontitis and diabetes mellitus via peripheral blood mononuclear cell microarray data analysis. Cytokine 159: 156014.PubMed
24.
Zurück zum Zitat Williams, D.W., et al. 2021. Human oral mucosa cell atlas reveals a stromal-neutrophil axis regulating tissue immunity. Cell 184 (15): 4090-4104.e15.PubMedPubMedCentral Williams, D.W., et al. 2021. Human oral mucosa cell atlas reveals a stromal-neutrophil axis regulating tissue immunity. Cell 184 (15): 4090-4104.e15.PubMedPubMedCentral
25.
Zurück zum Zitat Caetano, A.J., et al. 2021. Defining human mesenchymal and epithelial heterogeneity in response to oral inflammatory disease. Elife 10. Caetano, A.J., et al. 2021. Defining human mesenchymal and epithelial heterogeneity in response to oral inflammatory disease. Elife 10.
26.
Zurück zum Zitat Caetano, A.J., et al. 2023. Spatially resolved transcriptomics reveals pro-inflammatory fibroblast involved in lymphocyte recruitment through CXCL8 and CXCL10. Elife 12. Caetano, A.J., et al. 2023. Spatially resolved transcriptomics reveals pro-inflammatory fibroblast involved in lymphocyte recruitment through CXCL8 and CXCL10. Elife 12.
27.
Zurück zum Zitat Lundmark, A., et al. 2018. Gene expression profiling of periodontitis-affected gingival tissue by spatial transcriptomics. Science and Reports 8 (1): 9370. Lundmark, A., et al. 2018. Gene expression profiling of periodontitis-affected gingival tissue by spatial transcriptomics. Science and Reports 8 (1): 9370.
28.
Zurück zum Zitat Tonetti, M.S., H. Greenwell, and K.S. Kornman. 2018. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. Journal of Periodontology 89 (Suppl 1): S159-s172.PubMed Tonetti, M.S., H. Greenwell, and K.S. Kornman. 2018. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. Journal of Periodontology 89 (Suppl 1): S159-s172.PubMed
29.
Zurück zum Zitat Caton, J.G., et al. 2018. A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification. Journal of Clinical Periodontology 45 (Suppl 20): S1–s8.PubMed Caton, J.G., et al. 2018. A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification. Journal of Clinical Periodontology 45 (Suppl 20): S1–s8.PubMed
30.
Zurück zum Zitat Kowaltowski, A.J., A.E. Vercesi, and G. Fiskum. 2000. Bcl-2 prevents mitochondrial permeability transition and cytochrome c release via maintenance of reduced pyridine nucleotides. Cell Death and Differentiation 7 (10): 903–910.PubMed Kowaltowski, A.J., A.E. Vercesi, and G. Fiskum. 2000. Bcl-2 prevents mitochondrial permeability transition and cytochrome c release via maintenance of reduced pyridine nucleotides. Cell Death and Differentiation 7 (10): 903–910.PubMed
31.
Zurück zum Zitat Chen, H., et al. 2022. Pyroptosis may play a crucial role in modifications of the immune microenvironment in periodontitis. Journal of Periodontal Research 57 (5): 977–990.PubMed Chen, H., et al. 2022. Pyroptosis may play a crucial role in modifications of the immune microenvironment in periodontitis. Journal of Periodontal Research 57 (5): 977–990.PubMed
32.
Zurück zum Zitat Kebschull, M., et al. 2014. Gingival tissue transcriptomes identify distinct periodontitis phenotypes. Journal of Dental Research 93 (5): 459–468.PubMedPubMedCentral Kebschull, M., et al. 2014. Gingival tissue transcriptomes identify distinct periodontitis phenotypes. Journal of Dental Research 93 (5): 459–468.PubMedPubMedCentral
33.
Zurück zum Zitat Abe, D., et al. 2011. Altered gene expression in leukocyte transendothelial migration and cell communication pathways in periodontitis-affected gingival tissues. Journal of Periodontal Research 46 (3): 345–353.PubMed Abe, D., et al. 2011. Altered gene expression in leukocyte transendothelial migration and cell communication pathways in periodontitis-affected gingival tissues. Journal of Periodontal Research 46 (3): 345–353.PubMed
34.
Zurück zum Zitat Demmer, R.T., et al. 2008. Transcriptomes in healthy and diseased gingival tissues. Journal of Periodontology 79 (11): 2112–2124.PubMedPubMedCentral Demmer, R.T., et al. 2008. Transcriptomes in healthy and diseased gingival tissues. Journal of Periodontology 79 (11): 2112–2124.PubMedPubMedCentral
35.
Zurück zum Zitat Liu, Y., et al. 2020. Long non-coding RNA and mRNA expression profiles in peri-implantitis vs periodontitis. Journal of Periodontal Research 55 (3): 342–353.PubMed Liu, Y., et al. 2020. Long non-coding RNA and mRNA expression profiles in peri-implantitis vs periodontitis. Journal of Periodontal Research 55 (3): 342–353.PubMed
36.
Zurück zum Zitat Taminau, J., et al. 2012. Unlocking the potential of publicly available microarray data using inSilicoDb and inSilicoMerging R/Bioconductor packages. BMC Bioinformatics 13 (1): 335.PubMedPubMedCentral Taminau, J., et al. 2012. Unlocking the potential of publicly available microarray data using inSilicoDb and inSilicoMerging R/Bioconductor packages. BMC Bioinformatics 13 (1): 335.PubMedPubMedCentral
37.
Zurück zum Zitat Chen, C., et al. 2011. Removing batch effects in analysis of expression microarray data: An evaluation of six batch adjustment methods. PLoS ONE 6 (2): e17238.PubMedPubMedCentral Chen, C., et al. 2011. Removing batch effects in analysis of expression microarray data: An evaluation of six batch adjustment methods. PLoS ONE 6 (2): e17238.PubMedPubMedCentral
38.
39.
Zurück zum Zitat Aran, D., A.P. Looney, L. Liu, E. Wu, V. Fong, A. Hsu, S. Chak, R.P. Naikawadi, P.J. Wolters, A.R. Abate, A.J. Butte, and M. Bhattacharya. 2019. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nature Immunology 20 (2): 163–172. https://doi.org/10.1038/s41590-018-0276-y. Epub 2019 Jan 14. PMID: 30643263; PMCID: PMC6340744.CrossRefPubMedPubMedCentral Aran, D., A.P. Looney, L. Liu, E. Wu, V. Fong, A. Hsu, S. Chak, R.P. Naikawadi, P.J. Wolters, A.R. Abate, A.J. Butte, and M. Bhattacharya. 2019. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nature Immunology 20 (2): 163–172. https://​doi.​org/​10.​1038/​s41590-018-0276-y. Epub 2019 Jan 14. PMID: 30643263; PMCID: PMC6340744.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Monaco, G., et al. 2019. RNA-Seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Reports 26 (6): 1627-1640.e7.PubMed Monaco, G., et al. 2019. RNA-Seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Reports 26 (6): 1627-1640.e7.PubMed
41.
Zurück zum Zitat Rath, S., et al. 2021. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Research 49 (D1): D1541–d1547. Rath, S., et al. 2021. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Research 49 (D1): D1541–d1547.
42.
Zurück zum Zitat Shen, W., et al. 2022. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform. Imeta 1 (3): e36. Shen, W., et al. 2022. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform. Imeta 1 (3): e36.
43.
Zurück zum Zitat Tolles, J., and W.J. Meurer. 2016. Logistic regression: Relating patient characteristics to outcomes. JAMA 316 (5): 533–534.PubMed Tolles, J., and W.J. Meurer. 2016. Logistic regression: Relating patient characteristics to outcomes. JAMA 316 (5): 533–534.PubMed
44.
Zurück zum Zitat Hänzelmann, S., R. Castelo, and J. Guinney. 2013. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14: 7.PubMedPubMedCentral Hänzelmann, S., R. Castelo, and J. Guinney. 2013. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14: 7.PubMedPubMedCentral
45.
Zurück zum Zitat Sanz, H., et al. 2018. SVM-RFE: Selection and visualization of the most relevant features through non-linear kernels. BMC Bioinformatics 19 (1): 432.PubMedPubMedCentral Sanz, H., et al. 2018. SVM-RFE: Selection and visualization of the most relevant features through non-linear kernels. BMC Bioinformatics 19 (1): 432.PubMedPubMedCentral
46.
Zurück zum Zitat Li, W., et al. 2019. Gene expression value prediction based on XGBoost algorithm. Frontiers in Genetics 10: 1077.PubMedPubMedCentral Li, W., et al. 2019. Gene expression value prediction based on XGBoost algorithm. Frontiers in Genetics 10: 1077.PubMedPubMedCentral
47.
Zurück zum Zitat Chen, X., and H. Ishwaran. 2012. Random forests for genomic data analysis. Genomics 99 (6): 323–329.PubMed Chen, X., and H. Ishwaran. 2012. Random forests for genomic data analysis. Genomics 99 (6): 323–329.PubMed
48.
Zurück zum Zitat Beck, M.W. 2018. NeuralNetTools: Visualization and analysis tools for neural networks. Journal of Statistical Software 85 (11): 1–20.PubMedPubMedCentral Beck, M.W. 2018. NeuralNetTools: Visualization and analysis tools for neural networks. Journal of Statistical Software 85 (11): 1–20.PubMedPubMedCentral
49.
Zurück zum Zitat Nachid, M., and M. Boussiala. 2021. Machine Learning_Iris_caret~Package. Nachid, M., and M. Boussiala. 2021. Machine Learning_Iris_caret~Package. 
50.
Zurück zum Zitat Vickers, A.J., and E.B. Elkin. 2006. Decision curve analysis: A novel method for evaluating prediction models. Medical Decision Making 26 (6): 565–574.PubMedPubMedCentral Vickers, A.J., and E.B. Elkin. 2006. Decision curve analysis: A novel method for evaluating prediction models. Medical Decision Making 26 (6): 565–574.PubMedPubMedCentral
51.
Zurück zum Zitat Newman, A.M., et al. 2019. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nature Biotechnology 37 (7): 773–782.PubMedPubMedCentral Newman, A.M., et al. 2019. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nature Biotechnology 37 (7): 773–782.PubMedPubMedCentral
52.
Zurück zum Zitat Yu, G., et al. 2012. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology 16 (5): 284–287.PubMed Yu, G., et al. 2012. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology 16 (5): 284–287.PubMed
53.
Zurück zum Zitat Singh, L.N., et al. 2021. MitoScape: A big-data, machine-learning platform for obtaining mitochondrial DNA from next-generation sequencing data. PLoS Computational Biology 17 (11): e1009594.PubMedPubMedCentral Singh, L.N., et al. 2021. MitoScape: A big-data, machine-learning platform for obtaining mitochondrial DNA from next-generation sequencing data. PLoS Computational Biology 17 (11): e1009594.PubMedPubMedCentral
54.
Zurück zum Zitat Langfelder, P., and S. Horvath. 2008. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 9: 559.PubMedPubMedCentral Langfelder, P., and S. Horvath. 2008. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 9: 559.PubMedPubMedCentral
55.
Zurück zum Zitat Wilkerson, M.D., and D.N. Hayes. 2010. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics 26 (12): 1572–1573.PubMedPubMedCentral Wilkerson, M.D., and D.N. Hayes. 2010. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics 26 (12): 1572–1573.PubMedPubMedCentral
56.
Zurück zum Zitat Zhang, B., et al. 2020. m(6)A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer. Molecular Cancer 19 (1): 53.PubMedPubMedCentral Zhang, B., et al. 2020. m(6)A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer. Molecular Cancer 19 (1): 53.PubMedPubMedCentral
57.
Zurück zum Zitat Chan-Seng-Yue, M., et al. 2020. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nature Genetics 52 (2): 231–240.PubMed Chan-Seng-Yue, M., et al. 2020. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nature Genetics 52 (2): 231–240.PubMed
58.
Zurück zum Zitat Zindel, J., and P. Kubes. 2020. DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation. Annual Review of Pathology: Mechanisms of Disease 15: 493–518. Zindel, J., and P. Kubes. 2020. DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation. Annual Review of Pathology: Mechanisms of Disease 15: 493–518.
59.
Zurück zum Zitat Grazioli, S., and J. Pugin. 2018. Mitochondrial damage-associated molecular patterns: From inflammatory signaling to human diseases. Frontiers in Immunology 9: 832.PubMedPubMedCentral Grazioli, S., and J. Pugin. 2018. Mitochondrial damage-associated molecular patterns: From inflammatory signaling to human diseases. Frontiers in Immunology 9: 832.PubMedPubMedCentral
60.
Zurück zum Zitat Lin, M.M., et al. 2022. Mitochondrial-derived damage-associated molecular patterns amplify neuroinflammation in neurodegenerative diseases. Acta Pharmacologica Sinica. Lin, M.M., et al. 2022. Mitochondrial-derived damage-associated molecular patterns amplify neuroinflammation in neurodegenerative diseases. Acta Pharmacologica Sinica.
61.
Zurück zum Zitat Scazzone, C., et al. 2021. Vitamin D and Genetic Susceptibility to Multiple Sclerosis. Biochemical Genetics 59 (1): 1–30.PubMed Scazzone, C., et al. 2021. Vitamin D and Genetic Susceptibility to Multiple Sclerosis. Biochemical Genetics 59 (1): 1–30.PubMed
62.
Zurück zum Zitat Tuckey, R.C., et al. 2023. Analysis of the ability of vitamin D3-metabolizing cytochromes P450 to act on vitamin D3 sulfate and 25-hydroxyvitamin D3 3-sulfate. Journal of Steroid Biochemistry and Molecular Biology 227: 106229.PubMed Tuckey, R.C., et al. 2023. Analysis of the ability of vitamin D3-metabolizing cytochromes P450 to act on vitamin D3 sulfate and 25-hydroxyvitamin D3 3-sulfate. Journal of Steroid Biochemistry and Molecular Biology 227: 106229.PubMed
63.
Zurück zum Zitat Al-Zahrani, M.S. 2006. Increased intake of dairy products is related to lower periodontitis prevalence. Journal of Periodontology 77 (2): 289–294.PubMed Al-Zahrani, M.S. 2006. Increased intake of dairy products is related to lower periodontitis prevalence. Journal of Periodontology 77 (2): 289–294.PubMed
64.
Zurück zum Zitat Zihni Korkmaz, M., et al. 2022. The effects of vitamin D deficiency on mandibular bone structure: a retrospective radiological study. Oral Radiology 1–8. Zihni Korkmaz, M., et al. 2022. The effects of vitamin D deficiency on mandibular bone structure: a retrospective radiological study. Oral Radiology 1–8.
65.
Zurück zum Zitat Hu, Z., F. Zhou, and H. Xu. 2022. Circulating vitamin C and D concentrations and risk of dental caries and periodontitis: A Mendelian randomization study. Journal of Clinical Periodontology 49 (4): 335–344.PubMed Hu, Z., F. Zhou, and H. Xu. 2022. Circulating vitamin C and D concentrations and risk of dental caries and periodontitis: A Mendelian randomization study. Journal of Clinical Periodontology 49 (4): 335–344.PubMed
66.
Zurück zum Zitat Shahijanian, F., et al. 2014. The CYP27B1 variant associated with an increased risk of autoimmune disease is underexpressed in tolerizing dendritic cells. Human Molecular Genetics 23 (6): 1425–1434.PubMed Shahijanian, F., et al. 2014. The CYP27B1 variant associated with an increased risk of autoimmune disease is underexpressed in tolerizing dendritic cells. Human Molecular Genetics 23 (6): 1425–1434.PubMed
67.
Zurück zum Zitat Kundu, R., et al. 2014. Regulation of CYP27B1 and CYP24A1 hydroxylases limits cell-autonomous activation of vitamin D in dendritic cells. European Journal of Immunology 44 (6): 1781–1790.PubMed Kundu, R., et al. 2014. Regulation of CYP27B1 and CYP24A1 hydroxylases limits cell-autonomous activation of vitamin D in dendritic cells. European Journal of Immunology 44 (6): 1781–1790.PubMed
68.
Zurück zum Zitat Brenner, C. 2002. Hint, Fhit, and GalT: Function, structure, evolution, and mechanism of three branches of the histidine triad superfamily of nucleotide hydrolases and transferases. Biochemistry 41 (29): 9003–9014.PubMed Brenner, C. 2002. Hint, Fhit, and GalT: Function, structure, evolution, and mechanism of three branches of the histidine triad superfamily of nucleotide hydrolases and transferases. Biochemistry 41 (29): 9003–9014.PubMed
69.
Zurück zum Zitat Wang, W., et al. 2013. All-trans retinoic acid protects hepatocellular carcinoma cells against serum-starvation-induced cell death by upregulating collagen 8A2. FEBS Journal 280 (5): 1308–1319.PubMed Wang, W., et al. 2013. All-trans retinoic acid protects hepatocellular carcinoma cells against serum-starvation-induced cell death by upregulating collagen 8A2. FEBS Journal 280 (5): 1308–1319.PubMed
70.
Zurück zum Zitat Derakhshani, A., et al. 2021. The role of hemoglobin subunit delta in the immunopathy of multiple sclerosis: Mitochondria matters. Frontiers in Immunology 12: 709173.PubMedPubMedCentral Derakhshani, A., et al. 2021. The role of hemoglobin subunit delta in the immunopathy of multiple sclerosis: Mitochondria matters. Frontiers in Immunology 12: 709173.PubMedPubMedCentral
71.
Zurück zum Zitat Vercellino, I., and L.A. Sazanov. 2022. The assembly, regulation and function of the mitochondrial respiratory chain. Nature Reviews Molecular Cell Biology 23 (2): 141–161.PubMed Vercellino, I., and L.A. Sazanov. 2022. The assembly, regulation and function of the mitochondrial respiratory chain. Nature Reviews Molecular Cell Biology 23 (2): 141–161.PubMed
72.
Zurück zum Zitat Ledderose, C., et al. 2015. Novel method for real-time monitoring of ATP release reveals multiple phases of autocrine purinergic signalling during immune cell activation. Acta Psychologica 213 (2): 334–345. Ledderose, C., et al. 2015. Novel method for real-time monitoring of ATP release reveals multiple phases of autocrine purinergic signalling during immune cell activation. Acta Psychologica 213 (2): 334–345.
73.
Zurück zum Zitat González-Arzola, K., et al. 2019. New moonlighting functions of mitochondrial cytochrome c in the cytoplasm and nucleus. FEBS Letters 593 (22): 3101–3119.PubMed González-Arzola, K., et al. 2019. New moonlighting functions of mitochondrial cytochrome c in the cytoplasm and nucleus. FEBS Letters 593 (22): 3101–3119.PubMed
74.
Zurück zum Zitat Santucci, R., et al. 2019. Cytochrome c: An extreme multifunctional protein with a key role in cell fate. International Journal of Biological Macromolecules 136: 1237–1246.PubMed Santucci, R., et al. 2019. Cytochrome c: An extreme multifunctional protein with a key role in cell fate. International Journal of Biological Macromolecules 136: 1237–1246.PubMed
75.
Zurück zum Zitat Barrera, M.J., et al. 2021. Dysfunctional mitochondria as critical players in the inflammation of autoimmune diseases: Potential role in Sjögren’s syndrome. Autoimmunity Reviews 20 (8): 102867.PubMed Barrera, M.J., et al. 2021. Dysfunctional mitochondria as critical players in the inflammation of autoimmune diseases: Potential role in Sjögren’s syndrome. Autoimmunity Reviews 20 (8): 102867.PubMed
76.
Zurück zum Zitat Gogvadze, V., S. Orrenius, and B. Zhivotovsky. 2006. Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochimica et Biophysica Acta 1757 (5–6): 639–647.PubMed Gogvadze, V., S. Orrenius, and B. Zhivotovsky. 2006. Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochimica et Biophysica Acta 1757 (5–6): 639–647.PubMed
77.
Zurück zum Zitat Jiang, X., and X. Wang. 2004. Cytochrome C-mediated apoptosis. Annual Review of Biochemistry 73: 87–106.PubMed Jiang, X., and X. Wang. 2004. Cytochrome C-mediated apoptosis. Annual Review of Biochemistry 73: 87–106.PubMed
78.
Zurück zum Zitat Liu, Q., et al. 2022. Inhibition of TRPA1 ameliorates periodontitis by reducing periodontal ligament cell oxidative stress and apoptosis via PERK/eIF2α/ATF-4/CHOP signal pathway. Oxidative Medicine and Cellular Longevity 2022: 4107915.PubMedPubMedCentral Liu, Q., et al. 2022. Inhibition of TRPA1 ameliorates periodontitis by reducing periodontal ligament cell oxidative stress and apoptosis via PERK/eIF2α/ATF-4/CHOP signal pathway. Oxidative Medicine and Cellular Longevity 2022: 4107915.PubMedPubMedCentral
79.
Zurück zum Zitat Lucas, H., et al. 2010. Inhibition of apoptosis in periodontitis. Journal of Dental Research 89 (1): 29–33.PubMed Lucas, H., et al. 2010. Inhibition of apoptosis in periodontitis. Journal of Dental Research 89 (1): 29–33.PubMed
80.
Zurück zum Zitat Quiles, J.M., and B. Gustafsson Å. 2022. The role of mitochondrial fission in cardiovascular health and disease. Nature Reviews Cardiology. Quiles, J.M., and B. Gustafsson Å. 2022. The role of mitochondrial fission in cardiovascular health and disease. Nature Reviews Cardiology.
81.
Zurück zum Zitat Gillette, M.A., et al. 2020. Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell 182 (1): 200-225.e35.PubMedPubMedCentral Gillette, M.A., et al. 2020. Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell 182 (1): 200-225.e35.PubMedPubMedCentral
82.
Zurück zum Zitat Kovalev, E.V., and S.A. Gusev. 1988. Age-related changes in the ultrastructural organization of the human gingival epithelium. Arkhiv Anatomii, Gistologii i Émbriologii 94 (4): 44–47.PubMed Kovalev, E.V., and S.A. Gusev. 1988. Age-related changes in the ultrastructural organization of the human gingival epithelium. Arkhiv Anatomii, Gistologii i Émbriologii 94 (4): 44–47.PubMed
83.
Zurück zum Zitat Varela-Lopez, A., et al. 2016. Coenzyme Q protects against age-related alveolar bone loss associated to n-6 polyunsaturated fatty acid rich-diets by modulating mitochondrial mechanisms. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 71 (5): 593–600.PubMed Varela-Lopez, A., et al. 2016. Coenzyme Q protects against age-related alveolar bone loss associated to n-6 polyunsaturated fatty acid rich-diets by modulating mitochondrial mechanisms. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 71 (5): 593–600.PubMed
Metadaten
Titel
Integrated Machine Learning and Bioinformatic Analyses Constructed a Network Between Mitochondrial Dysfunction and Immune Microenvironment of Periodontitis
verfasst von
Hang Chen
Limin Peng
Zhenxiang Wang
Yujuan He
Xiaonan Zhang
Publikationsdatum
14.06.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01851-0

Weitere Artikel der Ausgabe 5/2023

Inflammation 5/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.