Skip to main content
Erschienen in: European Journal of Epidemiology 1/2024

10.01.2024 | ESSAY

Higher-order evidence

verfasst von: Stephen R. Cole, Bonnie E. Shook-Sa, Paul N. Zivich, Jessie K. Edwards, David B. Richardson, Michael G. Hudgens

Erschienen in: European Journal of Epidemiology | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

Higher-order evidence is evidence about evidence. Epidemiologic examples of higher-order evidence include the settings where the study data constitute first-order evidence and estimates of misclassification comprise the second-order evidence (e.g., sensitivity, specificity) of a binary exposure or outcome collected in the main study. While sampling variability in higher-order evidence is typically acknowledged, higher-order evidence is often assumed to be free of measurement error (e.g., gold standard measures). Here we provide two examples, each with multiple scenarios where second-order evidence is imperfectly measured, and this measurement error can either amplify or attenuate standard corrections to first-order evidence. We propose a way to account for such imperfections that requires third-order evidence. Further illustrations and exploration of how higher-order evidence impacts results of epidemiologic studies is warranted.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Christensen D. Higher-order evidence. Philos Phenomenol Res. 2010;81:185–215.CrossRef Christensen D. Higher-order evidence. Philos Phenomenol Res. 2010;81:185–215.CrossRef
2.
Zurück zum Zitat Christensen D (2021) Rationality for the self-aware. Proceedings and Addresses of the American Philosophical Association 2021 Christensen D (2021) Rationality for the self-aware. Proceedings and Addresses of the American Philosophical Association 2021
3.
Zurück zum Zitat Greenland S. Basic methods for sensitivity analysis of biases. Int J Epidemiol. 1996;25(6):1107–16.CrossRefPubMed Greenland S. Basic methods for sensitivity analysis of biases. Int J Epidemiol. 1996;25(6):1107–16.CrossRefPubMed
4.
Zurück zum Zitat Carroll RJ, Ruppert D, Stefanski LA, et al. Measurement Error in Nonlinear Models: A Modern Perspective. 2nd ed. New York: Chapman and Hall; 2006.CrossRef Carroll RJ, Ruppert D, Stefanski LA, et al. Measurement Error in Nonlinear Models: A Modern Perspective. 2nd ed. New York: Chapman and Hall; 2006.CrossRef
6.
Zurück zum Zitat Keogh RH, Shaw PA, Gustafson P, et al. STRATOS guidance document on measurement error and misclassification of variables in observational epidemiology: Part 1-Basic theory and simple methods of adjustment. Stat Med. 2020;39(16):2197–231.CrossRefPubMedPubMedCentral Keogh RH, Shaw PA, Gustafson P, et al. STRATOS guidance document on measurement error and misclassification of variables in observational epidemiology: Part 1-Basic theory and simple methods of adjustment. Stat Med. 2020;39(16):2197–231.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Shaw PA, Gustafson P, Carroll RJ, et al. STRATOS guidance document on measurement error and misclassification of variables in observational epidemiology: Part 2-More complex methods of adjustment and advanced topics. Stat Med. 2020;39(16):2232–63.CrossRefPubMedPubMedCentral Shaw PA, Gustafson P, Carroll RJ, et al. STRATOS guidance document on measurement error and misclassification of variables in observational epidemiology: Part 2-More complex methods of adjustment and advanced topics. Stat Med. 2020;39(16):2232–63.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Greenland S. Bayesian perspectives for epidemiologic research: III Bias analysis via missing-data methods. Int J Epidemiol. 2009;38(6):1662–73.CrossRefPubMed Greenland S. Bayesian perspectives for epidemiologic research: III Bias analysis via missing-data methods. Int J Epidemiol. 2009;38(6):1662–73.CrossRefPubMed
9.
Zurück zum Zitat Cole SR, Edwards JK, Breskin A, et al. Illustration of 2 Fusion Designs and Estimators. Am J Epidemiol. 2023;192(3):467–74.CrossRefPubMed Cole SR, Edwards JK, Breskin A, et al. Illustration of 2 Fusion Designs and Estimators. Am J Epidemiol. 2023;192(3):467–74.CrossRefPubMed
10.
Zurück zum Zitat Neyman J. Polish original by Dabrowska DM and Speed T On the application of probability theory to agricultural experiments: essay on principles. Section 9. Translated from 1923 Polish original by Dabrowska DM and Speed TP. Stat Sci. 1990;1990(5):465–72. Neyman J. Polish original by Dabrowska DM and Speed T On the application of probability theory to agricultural experiments: essay on principles. Section 9. Translated from 1923 Polish original by Dabrowska DM and Speed TP. Stat Sci. 1990;1990(5):465–72.
11.
Zurück zum Zitat Rogan WJ, Gladen B. Estimating prevalence from the results of a screening test. Am J Epidemiol. 1978;107(1):71–6.CrossRefPubMed Rogan WJ, Gladen B. Estimating prevalence from the results of a screening test. Am J Epidemiol. 1978;107(1):71–6.CrossRefPubMed
12.
Zurück zum Zitat Yuan KH, Jennrich RI. Asymptotics of estimating equations under natural conditions. J Multivar Anal. 1998;65:245–60.CrossRef Yuan KH, Jennrich RI. Asymptotics of estimating equations under natural conditions. J Multivar Anal. 1998;65:245–60.CrossRef
13.
Zurück zum Zitat Zivich PN, Klose M, Cole SR, et al. Delicatessen: M-estimation in Python. arXiv 2022;2203.11300 Zivich PN, Klose M, Cole SR, et al. Delicatessen: M-estimation in Python. arXiv 2022;2203.11300
14.
Zurück zum Zitat Lyles RH. A note on estimating crude odds ratios in case-control studies with differentially misclassified exposure. Biometrics. 2002;58(4):1034–6.CrossRefPubMed Lyles RH. A note on estimating crude odds ratios in case-control studies with differentially misclassified exposure. Biometrics. 2002;58(4):1034–6.CrossRefPubMed
15.
Zurück zum Zitat Fay MP, Graubard BI. Small-sample adjustments for Wald-type tests using sandwich estimators. Biometrics. 2001;57(4):1198–206.CrossRefPubMed Fay MP, Graubard BI. Small-sample adjustments for Wald-type tests using sandwich estimators. Biometrics. 2001;57(4):1198–206.CrossRefPubMed
16.
Zurück zum Zitat Geyer CJ (2013) Asymptotics of maximum likelihood without the LLN or CLT or sample size going to infinity. Advances in Modern Statistical Theory and Applications: A Festschrift in honor of Morris L Eaton: Institute of Mathematical Statistics, 1–25. Geyer CJ (2013) Asymptotics of maximum likelihood without the LLN or CLT or sample size going to infinity. Advances in Modern Statistical Theory and Applications: A Festschrift in honor of Morris L Eaton: Institute of Mathematical Statistics, 1–25.
17.
Zurück zum Zitat Haack S. Evidence Matters: Science, Truth, and Proof in the Law. New York, NY: Cambridge University Press; 2014.CrossRef Haack S. Evidence Matters: Science, Truth, and Proof in the Law. New York, NY: Cambridge University Press; 2014.CrossRef
18.
Zurück zum Zitat Quine WV, Ullian JS. The Web of Belief. 2nd ed. New York, NY: McGraw-Hill; 1978. Quine WV, Ullian JS. The Web of Belief. 2nd ed. New York, NY: McGraw-Hill; 1978.
19.
Zurück zum Zitat Kelly T (2016) Evidence. In: Zalta EN, ed. The Stanford Encyclopedia of Philosophy Kelly T (2016) Evidence. In: Zalta EN, ed. The Stanford Encyclopedia of Philosophy
20.
Zurück zum Zitat Piantadosi S. Clinical trials: a methodologic perspective. 3rd ed. New York: Wiley-Interscience; 2017. Piantadosi S. Clinical trials: a methodologic perspective. 3rd ed. New York: Wiley-Interscience; 2017.
21.
Zurück zum Zitat Royall RM. Statistical evidence: a likelihood paradigm. New York: Chapman & Hall; 1997. Royall RM. Statistical evidence: a likelihood paradigm. New York: Chapman & Hall; 1997.
22.
Zurück zum Zitat Jaynes ET. Probability theory: the logic of science. Cambridge: Cambridge University Press; 2003.CrossRef Jaynes ET. Probability theory: the logic of science. Cambridge: Cambridge University Press; 2003.CrossRef
23.
Zurück zum Zitat Good IJ. Good Thinking. Minneapolis, MN: University of Minneapolis Press; 1983. Good IJ. Good Thinking. Minneapolis, MN: University of Minneapolis Press; 1983.
26.
Zurück zum Zitat Fox MP, MacLehose RF, Lash TL. Applying quantitative bias analysis to epidemiologic data. New York: Springer; 2021.CrossRef Fox MP, MacLehose RF, Lash TL. Applying quantitative bias analysis to epidemiologic data. New York: Springer; 2021.CrossRef
27.
Zurück zum Zitat Robins JM, Hernán MA, et al. Estimation of the causal effects of time-varying exposures. In: Fitzmaurice G, Davidian M, Verbeke G, et al., editors. Longitudinal Data Analysis. New York: Chapman and Hall; 2008. p. 553–97.CrossRef Robins JM, Hernán MA, et al. Estimation of the causal effects of time-varying exposures. In: Fitzmaurice G, Davidian M, Verbeke G, et al., editors. Longitudinal Data Analysis. New York: Chapman and Hall; 2008. p. 553–97.CrossRef
28.
Zurück zum Zitat Levenberg K. A method for the solution of certain non-linear problems in least squares. Q Appl Math. 1944;2:164–8.CrossRef Levenberg K. A method for the solution of certain non-linear problems in least squares. Q Appl Math. 1944;2:164–8.CrossRef
Metadaten
Titel
Higher-order evidence
verfasst von
Stephen R. Cole
Bonnie E. Shook-Sa
Paul N. Zivich
Jessie K. Edwards
David B. Richardson
Michael G. Hudgens
Publikationsdatum
10.01.2024
Verlag
Springer Netherlands
Erschienen in
European Journal of Epidemiology / Ausgabe 1/2024
Print ISSN: 0393-2990
Elektronische ISSN: 1573-7284
DOI
https://doi.org/10.1007/s10654-023-01062-9

Weitere Artikel der Ausgabe 1/2024

European Journal of Epidemiology 1/2024 Zur Ausgabe