Skip to main content

08.05.2024 | RESEARCH

Gypenoside XLIX Activates the Sirt1/Nrf2 Signaling Pathway to Inhibit NLRP3 Inflammasome Activation to Alleviate Septic Acute Lung Injury

verfasst von: Kaixin Ping, Rongrong Yang, Huizhen Chen, Shaocheng Xie, Yannan Xiang, Mengxin Li, Yingzhi Lu, Jingquan Dong

Erschienen in: Inflammation

Einloggen, um Zugang zu erhalten

Abstract

Currently, treatment options for acute lung injury (ALI) are limited. Gypenoside XLIX (Gyp-XLIX) is known for its anti-inflammatory properties, but there is a lack of extensive research on its effects against ALI. This study induced ALI in mice through cecal ligation and puncture surgery and investigated the biological activity and potential mechanisms of Gypenoside XLIX (40 mg/kg) by intraperitoneal injection. The in vitro ALI model was established using mouse lung epithelial (MLE-12) cells stimulated with lipopolysaccharide (LPS) and adenosine triphosphate (ATP). Various methods, including Hematoxylin and Eosin (H&E) staining, biochemical assay kits, Quantitative Polymerase Chain Reaction (qPCR) analysis, Western blotting, Terminal deoxynucleotidyl transferase dUTP Nick End Labeling (TUNEL) assay, immunofluorescence, and flow cytometry, were employed for this research. The results indicated that pretreatment with Gypenoside XLIX significantly alleviated pathological damage in mouse lung tissues and reduced the expression levels of inflammatory factors. Additionally, Gypenoside XLIX inhibited ROS levels and NLRP3 inflammasome, possibly mediated by the Sirt1/Nrf2 signaling pathway. Moreover, Gypenoside XLIX significantly inhibited sepsis-induced lung cell apoptosis and excessive autophagy of mitochondria. Specifically, it suppressed mitochondrial pathway apoptosis and the Pink1/Parkin pathway of mitochondrial autophagy. These findings reveal the multifaceted effects of Gypenoside XLIX in anti-inflammatory, antioxidative, and inhibition of cell apoptosis and autophagy. This provides strong support for its therapeutic potential in sepsis-related lung injuries.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Matot, I., and C.L. Sprung. 2001. Definition of sepsis. Intensive Care Medicine 27 (Suppl 1): S3-9.PubMedCrossRef Matot, I., and C.L. Sprung. 2001. Definition of sepsis. Intensive Care Medicine 27 (Suppl 1): S3-9.PubMedCrossRef
2.
Zurück zum Zitat Guo, N.K., H. She, L. Tan, Y.Q. Zhou, C.Q. Tang, X.Y. Peng, C.H. Ma, T. Li, and L.M. Liu. 2023. Nano Parthenolide Improves Intestinal Barrier Function of Sepsis by Inhibiting Apoptosis and ROS via 5-HTR2A. International Journal of Nanomedicine 18: 693–709.PubMedPubMedCentralCrossRef Guo, N.K., H. She, L. Tan, Y.Q. Zhou, C.Q. Tang, X.Y. Peng, C.H. Ma, T. Li, and L.M. Liu. 2023. Nano Parthenolide Improves Intestinal Barrier Function of Sepsis by Inhibiting Apoptosis and ROS via 5-HTR2A. International Journal of Nanomedicine 18: 693–709.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Shen, X.F., K. Cao, J.P. Jiang, W.X. Guan, and J.F. Du. 2017. Neutrophil dysregulation during sepsis: An overview and update. Journal of Cellular and Molecular Medicine 21 (9): 1687–1697.PubMedPubMedCentralCrossRef Shen, X.F., K. Cao, J.P. Jiang, W.X. Guan, and J.F. Du. 2017. Neutrophil dysregulation during sepsis: An overview and update. Journal of Cellular and Molecular Medicine 21 (9): 1687–1697.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Gotts, J.E., and M.A. Matthay. 2016. Sepsis: Pathophysiology and clinical management. BMJ (Clinical Research ed.) 353: i1585.PubMed Gotts, J.E., and M.A. Matthay. 2016. Sepsis: Pathophysiology and clinical management. BMJ (Clinical Research ed.) 353: i1585.PubMed
5.
Zurück zum Zitat Bauernfeind, F.G., G. Horvath, A. Stutz, E.S. Alnemri, K. MacDonald, D. Speert, T. Fernandes-Alnemri, J. Wu, B.G. Monks, K.A. Fitzgerald, V. Hornung, and E. Latz. 2009. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. Journal of Immunology (Baltimore, Md. : 1950) 183 (2): 787–91.PubMedCrossRef Bauernfeind, F.G., G. Horvath, A. Stutz, E.S. Alnemri, K. MacDonald, D. Speert, T. Fernandes-Alnemri, J. Wu, B.G. Monks, K.A. Fitzgerald, V. Hornung, and E. Latz. 2009. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. Journal of Immunology (Baltimore, Md. : 1950) 183 (2): 787–91.PubMedCrossRef
6.
Zurück zum Zitat Bai, B., Y. Yang, Q. Wang, M. Li, C. Tian, Y. Liu, L.H.H. Aung, P.F. Li, T. Yu, and X.M. Chu. 2020. NLRP3 inflammasome in endothelial dysfunction. Cell Death & Disease 11 (9): 776.CrossRef Bai, B., Y. Yang, Q. Wang, M. Li, C. Tian, Y. Liu, L.H.H. Aung, P.F. Li, T. Yu, and X.M. Chu. 2020. NLRP3 inflammasome in endothelial dysfunction. Cell Death & Disease 11 (9): 776.CrossRef
7.
Zurück zum Zitat Xie, Z., H. Hou, D. Luo, R. An, Y. Zhao, and C. Qiu. 2021. ROS-dependent lipid peroxidation and reliant antioxidant ferroptosis-suppressor-protein 1 in rheumatoid arthritis: A covert clue for potential therapy. Inflammation 44 (1): 35–47.PubMedCrossRef Xie, Z., H. Hou, D. Luo, R. An, Y. Zhao, and C. Qiu. 2021. ROS-dependent lipid peroxidation and reliant antioxidant ferroptosis-suppressor-protein 1 in rheumatoid arthritis: A covert clue for potential therapy. Inflammation 44 (1): 35–47.PubMedCrossRef
8.
Zurück zum Zitat He, R., B. Liu, R. Xiong, B. Geng, H. Meng, W. Lin, B. Hao, L. Zhang, W. Wang, W. Jiang, N. Li, and Q. Geng. 2022. Itaconate inhibits ferroptosis of macrophage via Nrf2 pathways against sepsis-induced acute lung injury. Cell Death Discovery 8 (1): 43.PubMedPubMedCentralCrossRef He, R., B. Liu, R. Xiong, B. Geng, H. Meng, W. Lin, B. Hao, L. Zhang, W. Wang, W. Jiang, N. Li, and Q. Geng. 2022. Itaconate inhibits ferroptosis of macrophage via Nrf2 pathways against sepsis-induced acute lung injury. Cell Death Discovery 8 (1): 43.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Tang, X., J. Liu, S. Yao, J. Zheng, X. Gong, and B. Xiao. 2022. Ferulic acid alleviates alveolar epithelial barrier dysfunction in sepsis-induced acute lung injury by activating the Nrf2/HO-1 pathway and inhibiting ferroptosis. Pharmaceutical Biology 60 (1): 2286–2294.PubMedPubMedCentralCrossRef Tang, X., J. Liu, S. Yao, J. Zheng, X. Gong, and B. Xiao. 2022. Ferulic acid alleviates alveolar epithelial barrier dysfunction in sepsis-induced acute lung injury by activating the Nrf2/HO-1 pathway and inhibiting ferroptosis. Pharmaceutical Biology 60 (1): 2286–2294.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Tu, Y., J. Liu, D. Kong, X. Guo, J. Li, Z. Long, J. Peng, Z. Wang, H. Wu, P. Liu, R. Liu, W. Yu, and W. Li. 2023. Irisin drives macrophage anti-inflammatory differentiation via JAK2-STAT6-dependent activation of PPARγ and Nrf2 signaling. Free Radical Biology & Medicine 201: 98–110.CrossRef Tu, Y., J. Liu, D. Kong, X. Guo, J. Li, Z. Long, J. Peng, Z. Wang, H. Wu, P. Liu, R. Liu, W. Yu, and W. Li. 2023. Irisin drives macrophage anti-inflammatory differentiation via JAK2-STAT6-dependent activation of PPARγ and Nrf2 signaling. Free Radical Biology & Medicine 201: 98–110.CrossRef
11.
Zurück zum Zitat Luo, J., J. Wang, J. Zhang, A. Sang, X. Ye, Z. Cheng, and X. Li. 2022. Nrf2 deficiency exacerbated CLP-induced pulmonary injury and inflammation through autophagy- and NF-κB/PPARγ-mediated macrophage polarization. Cells 11 (23). Luo, J., J. Wang, J. Zhang, A. Sang, X. Ye, Z. Cheng, and X. Li. 2022. Nrf2 deficiency exacerbated CLP-induced pulmonary injury and inflammation through autophagy- and NF-κB/PPARγ-mediated macrophage polarization. Cells 11 (23).
12.
Zurück zum Zitat Li, X., M. Jamal, P. Guo, Z. Jin, F. Zheng, X. Song, J. Zhan, and H. Wu. 2019. Irisin alleviates pulmonary epithelial barrier dysfunction in sepsis-induced acute lung injury via activation of AMPK/SIRT1 pathways. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 118: 109363. Li, X., M. Jamal, P. Guo, Z. Jin, F. Zheng, X. Song, J. Zhan, and H. Wu. 2019. Irisin alleviates pulmonary epithelial barrier dysfunction in sepsis-induced acute lung injury via activation of AMPK/SIRT1 pathways. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 118: 109363.
13.
Zurück zum Zitat Deng, Z., M. Sun, J. Wu, H. Fang, S. Cai, S. An, Q. Huang, Z. Chen, C. Wu, Z. Zhou, H. Hu, and Z. Zeng. 2021. SIRT1 attenuates sepsis-induced acute kidney injury via Beclin1 deacetylation-mediated autophagy activation. Cell Death & Disease 12 (2): 217.CrossRef Deng, Z., M. Sun, J. Wu, H. Fang, S. Cai, S. An, Q. Huang, Z. Chen, C. Wu, Z. Zhou, H. Hu, and Z. Zeng. 2021. SIRT1 attenuates sepsis-induced acute kidney injury via Beclin1 deacetylation-mediated autophagy activation. Cell Death & Disease 12 (2): 217.CrossRef
14.
Zurück zum Zitat Xu, D., L. Liu, Y. Zhao, L. Yang, J. Cheng, R. Hua, Z. Zhang, and Q. Li. 2020. Melatonin protects mouse testes from palmitic acid-induced lipotoxicity by attenuating oxidative stress and DNA damage in a SIRT1-dependent manner. Journal of Pineal Research 69 (4).PubMedCrossRef Xu, D., L. Liu, Y. Zhao, L. Yang, J. Cheng, R. Hua, Z. Zhang, and Q. Li. 2020. Melatonin protects mouse testes from palmitic acid-induced lipotoxicity by attenuating oxidative stress and DNA damage in a SIRT1-dependent manner. Journal of Pineal Research 69 (4).PubMedCrossRef
15.
Zurück zum Zitat Feng, K., Z. Chen, L. Pengcheng, S. Zhang, and X. Wang. 2019. Quercetin attenuates oxidative stress-induced apoptosis via SIRT1/AMPK-mediated inhibition of ER stress in rat chondrocytes and prevents the progression of osteoarthritis in a rat model. Journal of Cellular Physiology 234 (10): 18192–18205.PubMedCrossRef Feng, K., Z. Chen, L. Pengcheng, S. Zhang, and X. Wang. 2019. Quercetin attenuates oxidative stress-induced apoptosis via SIRT1/AMPK-mediated inhibition of ER stress in rat chondrocytes and prevents the progression of osteoarthritis in a rat model. Journal of Cellular Physiology 234 (10): 18192–18205.PubMedCrossRef
16.
Zurück zum Zitat Xie, W., L. Deng, M. Lin, X. Huang, R. Qian, D. Xiong, W. Liu, and S. Tang. 2023. Sirtuin1 mediates the protective effects of echinacoside against sepsis-induced acute lung injury via regulating the NOX4-Nrf2 axis. Antioxidants (Basel, Switzerland) 12 (11). Xie, W., L. Deng, M. Lin, X. Huang, R. Qian, D. Xiong, W. Liu, and S. Tang. 2023. Sirtuin1 mediates the protective effects of echinacoside against sepsis-induced acute lung injury via regulating the NOX4-Nrf2 axis. Antioxidants (Basel, Switzerland) 12 (11).
17.
Zurück zum Zitat Rajendrasozhan, S., S.R. Yang, V.L. Kinnula, and I. Rahman. 2008. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine 177 (8): 861–870.PubMedPubMedCentralCrossRef Rajendrasozhan, S., S.R. Yang, V.L. Kinnula, and I. Rahman. 2008. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine 177 (8): 861–870.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Lin, Q.Q., C.F. Yan, R. Lin, J.Y. Zhang, W.R. Wang, L.N. Yang, and K.F. Zhang. 2012. SIRT1 regulates TNF-α-induced expression of CD40 in 3T3-L1 adipocytes via NF-κB pathway. Cytokine 60 (2): 447–455.PubMedCrossRef Lin, Q.Q., C.F. Yan, R. Lin, J.Y. Zhang, W.R. Wang, L.N. Yang, and K.F. Zhang. 2012. SIRT1 regulates TNF-α-induced expression of CD40 in 3T3-L1 adipocytes via NF-κB pathway. Cytokine 60 (2): 447–455.PubMedCrossRef
19.
Zurück zum Zitat Park, S., J. Shin, J. Bae, D. Han, S.R. Park, J. Shin, S.K. Lee, and H.W. Park. 2020. SIRT1 alleviates LPS-induced IL-1β production by suppressing NLRP3 inflammasome activation and ROS production in trophoblasts. Cells 9 (3). Park, S., J. Shin, J. Bae, D. Han, S.R. Park, J. Shin, S.K. Lee, and H.W. Park. 2020. SIRT1 alleviates LPS-induced IL-1β production by suppressing NLRP3 inflammasome activation and ROS production in trophoblasts. Cells 9 (3).
20.
Zurück zum Zitat Arioz, B.I., B. Tastan, E. Tarakcioglu, K.U. Tufekci, M. Olcum, N. Ersoy, A. Bagriyanik, K. Genc, and S. Genc. 2019. Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Frontiers in Immunology 10: 1511.PubMedPubMedCentralCrossRef Arioz, B.I., B. Tastan, E. Tarakcioglu, K.U. Tufekci, M. Olcum, N. Ersoy, A. Bagriyanik, K. Genc, and S. Genc. 2019. Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Frontiers in Immunology 10: 1511.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Duangjan, C., P. Rangsinth, S. Zhang, M. Wink, and T. Tencomnao. 2021. anacardium occidentale L. leaf extracts protect against glutamate/H(2)O(2)-induced oxidative toxicity and induce neurite outgrowth: The involvement of SIRT1/Nrf2 signaling pathway and teneurin 4 transmembrane protein. Frontiers in Pharmacology 12: 627738.PubMedPubMedCentralCrossRef Duangjan, C., P. Rangsinth, S. Zhang, M. Wink, and T. Tencomnao. 2021. anacardium occidentale L. leaf extracts protect against glutamate/H(2)O(2)-induced oxidative toxicity and induce neurite outgrowth: The involvement of SIRT1/Nrf2 signaling pathway and teneurin 4 transmembrane protein. Frontiers in Pharmacology 12: 627738.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Patruno, A., E. Costantini, A. Ferrone, M. Pesce, F. Diomede, O. Trubiani, and M. Reale. 2020. Short ELF-EMF Exposure Targets SIRT1/Nrf2/HO-1 Signaling in THP-1 Cells. International journal of Molecular Sciences 21 (19). Patruno, A., E. Costantini, A. Ferrone, M. Pesce, F. Diomede, O. Trubiani, and M. Reale. 2020. Short ELF-EMF Exposure Targets SIRT1/Nrf2/HO-1 Signaling in THP-1 Cells. International journal of Molecular Sciences 21 (19).
23.
Zurück zum Zitat Cai, H., Q. Liang, and G. Ge. 2016. Gypenoside Attenuates β Amyloid-Induced Inflammation in N9 Microglial Cells via SOCS1 Signaling. Neural plasticity 2016: 6362707.PubMedPubMedCentralCrossRef Cai, H., Q. Liang, and G. Ge. 2016. Gypenoside Attenuates β Amyloid-Induced Inflammation in N9 Microglial Cells via SOCS1 Signaling. Neural plasticity 2016: 6362707.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Yang, Q., H.M. Zang, T. Xing, S.F. Zhang, C. Li, Y. Zhang, Y.H. Dong, X.W. Hu, J.T. Yu, J.G. Wen, J. Jin, J. Li, R. Zhao, T.T. Ma, and X.M. Meng. 2021. Gypenoside XLIX protects against acute kidney injury by suppressing IGFBP7/IGF1R-mediated programmed cell death and inflammation. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 85.PubMedCrossRef Yang, Q., H.M. Zang, T. Xing, S.F. Zhang, C. Li, Y. Zhang, Y.H. Dong, X.W. Hu, J.T. Yu, J.G. Wen, J. Jin, J. Li, R. Zhao, T.T. Ma, and X.M. Meng. 2021. Gypenoside XLIX protects against acute kidney injury by suppressing IGFBP7/IGF1R-mediated programmed cell death and inflammation. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 85.PubMedCrossRef
25.
Zurück zum Zitat Hui, B., X. Hou, R. Liu, X.H. Liu, and Z. Hu. 2021. Gypenoside inhibits ox-LDL uptake and foam cell formation through enhancing Sirt1-FOXO1 mediated autophagy flux restoration. Life Sciences 264.PubMedCrossRef Hui, B., X. Hou, R. Liu, X.H. Liu, and Z. Hu. 2021. Gypenoside inhibits ox-LDL uptake and foam cell formation through enhancing Sirt1-FOXO1 mediated autophagy flux restoration. Life Sciences 264.PubMedCrossRef
26.
Zurück zum Zitat Alhasani, R.H., L. Biswas, A.M. Tohari, X. Zhou, J. Reilly, J.F. He, and X. Shu. 2018. Gypenosides protect retinal pigment epithelium cells from oxidative stress. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 112: 76–85.PubMedCrossRef Alhasani, R.H., L. Biswas, A.M. Tohari, X. Zhou, J. Reilly, J.F. He, and X. Shu. 2018. Gypenosides protect retinal pigment epithelium cells from oxidative stress. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 112: 76–85.PubMedCrossRef
27.
Zurück zum Zitat Zhang, H., X. Chen, B. Zong, H. Yuan, Z. Wang, Y. Wei, X. Wang, G. Liu, J. Zhang, S. Li, G. Cheng, Y. Wang, and Y. Ma. 2018. Gypenosides improve diabetic cardiomyopathy by inhibiting ROS-mediated NLRP3 inflammasome activation. Journal of Cellular and Molecular Medicine 22 (9): 4437–4448.PubMedPubMedCentralCrossRef Zhang, H., X. Chen, B. Zong, H. Yuan, Z. Wang, Y. Wei, X. Wang, G. Liu, J. Zhang, S. Li, G. Cheng, Y. Wang, and Y. Ma. 2018. Gypenosides improve diabetic cardiomyopathy by inhibiting ROS-mediated NLRP3 inflammasome activation. Journal of Cellular and Molecular Medicine 22 (9): 4437–4448.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Fan, H., J. Cui, F. Liu, W. Zhang, H. Yang, N. He, Z. Dong, and J. Dong. 2022. Malvidin protects against lipopolysaccharide-induced acute liver injury in mice via regulating Nrf2 and NLRP3 pathways and suppressing apoptosis and autophagy. European Journal of Pharmacology 933.PubMedCrossRef Fan, H., J. Cui, F. Liu, W. Zhang, H. Yang, N. He, Z. Dong, and J. Dong. 2022. Malvidin protects against lipopolysaccharide-induced acute liver injury in mice via regulating Nrf2 and NLRP3 pathways and suppressing apoptosis and autophagy. European Journal of Pharmacology 933.PubMedCrossRef
29.
Zurück zum Zitat Schmittgen, T.D., and K.J. Livak. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols 3 (6): 1101–1108.PubMedCrossRef Schmittgen, T.D., and K.J. Livak. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols 3 (6): 1101–1108.PubMedCrossRef
30.
Zurück zum Zitat Li, G., C. Hu, Y. Liu, and H. Lin. 2023. Ligustilide, a novel SIRT1 agonist, alleviates lipopolysaccharide-induced acute lung injury through deacetylation of NICD. International Immunopharmacology 121.PubMedCrossRef Li, G., C. Hu, Y. Liu, and H. Lin. 2023. Ligustilide, a novel SIRT1 agonist, alleviates lipopolysaccharide-induced acute lung injury through deacetylation of NICD. International Immunopharmacology 121.PubMedCrossRef
31.
Zurück zum Zitat Qiu, Y.B., B.B. Wan, G. Liu, Y.X. Wu, D. Chen, M.D. Lu, J.L. Chen, R.Q. Yu, D.Z. Chen, and Q.F. Pang. 2020. Nrf2 protects against seawater drowning-induced acute lung injury via inhibiting ferroptosis. Respiratory Research 21 (1): 232.PubMedPubMedCentralCrossRef Qiu, Y.B., B.B. Wan, G. Liu, Y.X. Wu, D. Chen, M.D. Lu, J.L. Chen, R.Q. Yu, D.Z. Chen, and Q.F. Pang. 2020. Nrf2 protects against seawater drowning-induced acute lung injury via inhibiting ferroptosis. Respiratory Research 21 (1): 232.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Guo, Y., H. Zhang, Z. Lv, Y. Du, D. Li, H. Fang, J. You, L. Yu, and R. Li. 2023. Up-regulated CD38 by daphnetin alleviates lipopolysaccharide-induced lung injury via inhibiting MAPK/NF-κB/NLRP3 pathway. Cell Communication and Signaling : CCS 21 (1): 66.PubMedPubMedCentralCrossRef Guo, Y., H. Zhang, Z. Lv, Y. Du, D. Li, H. Fang, J. You, L. Yu, and R. Li. 2023. Up-regulated CD38 by daphnetin alleviates lipopolysaccharide-induced lung injury via inhibiting MAPK/NF-κB/NLRP3 pathway. Cell Communication and Signaling : CCS 21 (1): 66.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Deng, S., J. Li, L. Li, S. Lin, Y. Yang, T. Liu, T. Zhang, G. Xie, D. Wu, and Y. Xu. 2023. Quercetin alleviates lipopolysaccharide-induced acute lung injury by inhibiting ferroptosis via the Sirt1/Nrf2/Gpx4 pathway. International Journal of Molecular Medicine 52 (6). Deng, S., J. Li, L. Li, S. Lin, Y. Yang, T. Liu, T. Zhang, G. Xie, D. Wu, and Y. Xu. 2023. Quercetin alleviates lipopolysaccharide-induced acute lung injury by inhibiting ferroptosis via the Sirt1/Nrf2/Gpx4 pathway. International Journal of Molecular Medicine 52 (6).
34.
Zurück zum Zitat Ye, J., M. Guan, Y. Lu, D. Zhang, C. Li, and C. Zhou. 2019. Arbutin attenuates LPS-induced lung injury via Sirt1/ Nrf2/ NF-κBp65 pathway. Pulmonary Pharmacology & Therapeutics 54: 53–59.CrossRef Ye, J., M. Guan, Y. Lu, D. Zhang, C. Li, and C. Zhou. 2019. Arbutin attenuates LPS-induced lung injury via Sirt1/ Nrf2/ NF-κBp65 pathway. Pulmonary Pharmacology & Therapeutics 54: 53–59.CrossRef
35.
Zurück zum Zitat Han, B., S. Li, Y. Lv, D. Yang, J. Li, Q. Yang, P. Wu, Z. Lv, and Z. Zhang. 2019. Dietary melatonin attenuates chromium-induced lung injury via activating the Sirt1/Pgc-1α/Nrf2 pathway. Food & Function 10 (9): 5555–5565.CrossRef Han, B., S. Li, Y. Lv, D. Yang, J. Li, Q. Yang, P. Wu, Z. Lv, and Z. Zhang. 2019. Dietary melatonin attenuates chromium-induced lung injury via activating the Sirt1/Pgc-1α/Nrf2 pathway. Food & Function 10 (9): 5555–5565.CrossRef
37.
Zurück zum Zitat Tanner, M.A., X. Bu, J.A. Steimle, and P.R. Myers. 1999. The direct release of nitric oxide by gypenosides derived from the herb gynostemma pentaphyllum. Nitric Oxide : Biology and Chemistry 3 (5): 359–365.PubMedCrossRef Tanner, M.A., X. Bu, J.A. Steimle, and P.R. Myers. 1999. The direct release of nitric oxide by gypenosides derived from the herb gynostemma pentaphyllum. Nitric Oxide : Biology and Chemistry 3 (5): 359–365.PubMedCrossRef
38.
Zurück zum Zitat Huang, T.H., V.H. Tran, B.D. Roufogalis, and Y. Li. 2007. Gypenoside XLIX, a naturally occurring gynosaponin, PPAR-alpha dependently inhibits LPS-induced tissue factor expression and activity in human THP-1 monocytic cells. Toxicology and Applied Pharmacology 218 (1): 30–36.PubMedCrossRef Huang, T.H., V.H. Tran, B.D. Roufogalis, and Y. Li. 2007. Gypenoside XLIX, a naturally occurring gynosaponin, PPAR-alpha dependently inhibits LPS-induced tissue factor expression and activity in human THP-1 monocytic cells. Toxicology and Applied Pharmacology 218 (1): 30–36.PubMedCrossRef
39.
Zurück zum Zitat Aktan, F., S. Henness, B.D. Roufogalis, and A.J. Ammit. 2003. Gypenosides derived from Gynostemma pentaphyllum suppress NO synthesis in murine macrophages by inhibiting iNOS enzymatic activity and attenuating NF-kappaB-mediated iNOS protein expression. Nitric Oxide : Biology and Chemistry 8 (4): 235–242.PubMedCrossRef Aktan, F., S. Henness, B.D. Roufogalis, and A.J. Ammit. 2003. Gypenosides derived from Gynostemma pentaphyllum suppress NO synthesis in murine macrophages by inhibiting iNOS enzymatic activity and attenuating NF-kappaB-mediated iNOS protein expression. Nitric Oxide : Biology and Chemistry 8 (4): 235–242.PubMedCrossRef
40.
Zurück zum Zitat Jiao, Y., T. Zhang, C. Zhang, H. Ji, X. Tong, R. Xia, W. Wang, Z. Ma, and X. Shi. 2021. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury. Critical Care (London, England) 25 (1): 356.PubMedCrossRef Jiao, Y., T. Zhang, C. Zhang, H. Ji, X. Tong, R. Xia, W. Wang, Z. Ma, and X. Shi. 2021. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury. Critical Care (London, England) 25 (1): 356.PubMedCrossRef
41.
Zurück zum Zitat Shah, H.K., T. Sharma, and B.D. Banerjee. 2020. Organochlorine pesticides induce inflammation, ROS production, and DNA damage in human epithelial ovary cells: An in vitro study. Chemosphere 246: 125691.PubMedCrossRef Shah, H.K., T. Sharma, and B.D. Banerjee. 2020. Organochlorine pesticides induce inflammation, ROS production, and DNA damage in human epithelial ovary cells: An in vitro study. Chemosphere 246: 125691.PubMedCrossRef
42.
Zurück zum Zitat Kang, R., R. Li, P. Dai, Z. Li, Y. Li, and C. Li. 1987. Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells by promoting ROS production, Environmental pollution (Barking. Essex 251 (2019): 689–698. Kang, R., R. Li, P. Dai, Z. Li, Y. Li, and C. Li. 1987. Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells by promoting ROS production, Environmental pollution (Barking. Essex 251 (2019): 689–698.
43.
Zurück zum Zitat Kasai, S., S. Shimizu, Y. Tatara, J. Mimura, and K. Itoh. 2020. Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology. Biomolecules 10 (2). Kasai, S., S. Shimizu, Y. Tatara, J. Mimura, and K. Itoh. 2020. Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology. Biomolecules 10 (2).
44.
Zurück zum Zitat Yang, H., H. Lv, H. Li, X. Ci, and L. Peng. 2019. Oridonin protects LPS-induced acute lung injury by modulating Nrf2-mediated oxidative stress and Nrf2-independent NLRP3 and NF-κB pathways. Cell Communication and Signaling : CCS 17 (1): 62.PubMedPubMedCentralCrossRef Yang, H., H. Lv, H. Li, X. Ci, and L. Peng. 2019. Oridonin protects LPS-induced acute lung injury by modulating Nrf2-mediated oxidative stress and Nrf2-independent NLRP3 and NF-κB pathways. Cell Communication and Signaling : CCS 17 (1): 62.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Liu, Q., Y. Gao, and X. Ci. 2019. Role of Nrf2 and its activators in respiratory diseases. Oxidative Medicine and Cellular Longevity 2019: 7090534.PubMedPubMedCentral Liu, Q., Y. Gao, and X. Ci. 2019. Role of Nrf2 and its activators in respiratory diseases. Oxidative Medicine and Cellular Longevity 2019: 7090534.PubMedPubMedCentral
46.
Zurück zum Zitat Nguyen, T., P. Nioi, and C.B. Pickett. 2009. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. The Journal of Biological Chemistry 284 (20): 13291–13295.PubMedPubMedCentralCrossRef Nguyen, T., P. Nioi, and C.B. Pickett. 2009. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. The Journal of Biological Chemistry 284 (20): 13291–13295.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Cannavò, L., S. Perrone, V. Viola, L. Marseglia, G. Di Rosa, and E. Gitto. 2021. Oxidative stress and respiratory diseases in preterm newborns. International Journal of Molecular Sciences 22 (22). Cannavò, L., S. Perrone, V. Viola, L. Marseglia, G. Di Rosa, and E. Gitto. 2021. Oxidative stress and respiratory diseases in preterm newborns. International Journal of Molecular Sciences 22 (22).
48.
Zurück zum Zitat Li, J., K. Lu, F. Sun, S. Tan, X. Zhang, W. Sheng, W. Hao, M. Liu, W. Lv, and W. Han. 2021. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway. Journal of Translational Medicine 19 (1): 96.PubMedPubMedCentralCrossRef Li, J., K. Lu, F. Sun, S. Tan, X. Zhang, W. Sheng, W. Hao, M. Liu, W. Lv, and W. Han. 2021. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway. Journal of Translational Medicine 19 (1): 96.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Li, J., S.H. Deng, J. Li, L. Li, F. Zhang, Y. Zou, D.M. Wu, and Y. Xu. 2022. Obacunone alleviates ferroptosis during lipopolysaccharide-induced acute lung injury by upregulating Nrf2-dependent antioxidant responses. Cellular & Molecular Biology Letters 27 (1): 29.CrossRef Li, J., S.H. Deng, J. Li, L. Li, F. Zhang, Y. Zou, D.M. Wu, and Y. Xu. 2022. Obacunone alleviates ferroptosis during lipopolysaccharide-induced acute lung injury by upregulating Nrf2-dependent antioxidant responses. Cellular & Molecular Biology Letters 27 (1): 29.CrossRef
50.
Zurück zum Zitat Leung, P.S., and Y.C. Chan. 2009. Role of oxidative stress in pancreatic inflammation. Antioxidants & Redox Signaling 11 (1): 135–165.CrossRef Leung, P.S., and Y.C. Chan. 2009. Role of oxidative stress in pancreatic inflammation. Antioxidants & Redox Signaling 11 (1): 135–165.CrossRef
51.
Zurück zum Zitat Hackert, T., and J. Werner. 2011. Antioxidant therapy in acute pancreatitis: Experimental and clinical evidence. Antioxidants & Redox Signaling 15 (10): 2767–2777.CrossRef Hackert, T., and J. Werner. 2011. Antioxidant therapy in acute pancreatitis: Experimental and clinical evidence. Antioxidants & Redox Signaling 15 (10): 2767–2777.CrossRef
52.
Zurück zum Zitat Fu, C., S. Hao, X. Xu, J. Zhou, Z. Liu, H. Lu, L. Wang, W. Jin, and S. Li. 2019. Activation of SIRT1 ameliorates LPS-induced lung injury in mice via decreasing endothelial tight junction permeability. Acta Pharmacologica Sinica 40 (5): 630–641.PubMedCrossRef Fu, C., S. Hao, X. Xu, J. Zhou, Z. Liu, H. Lu, L. Wang, W. Jin, and S. Li. 2019. Activation of SIRT1 ameliorates LPS-induced lung injury in mice via decreasing endothelial tight junction permeability. Acta Pharmacologica Sinica 40 (5): 630–641.PubMedCrossRef
53.
Zurück zum Zitat Singh, V., and S. Ubaid. 2020. Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation. Inflammation 43 (5): 1589–1598.PubMedCrossRef Singh, V., and S. Ubaid. 2020. Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation. Inflammation 43 (5): 1589–1598.PubMedCrossRef
54.
Zurück zum Zitat Zhao, W., L. Ma, C. Cai, and X. Gong. 2019. Caffeine inhibits NLRP3 inflammasome activation by suppressing MAPK/NF-κB and A2aR signaling in LPS-Induced THP-1 macrophages. International Journal of Biological Sciences 15 (8): 1571–1581.PubMedPubMedCentralCrossRef Zhao, W., L. Ma, C. Cai, and X. Gong. 2019. Caffeine inhibits NLRP3 inflammasome activation by suppressing MAPK/NF-κB and A2aR signaling in LPS-Induced THP-1 macrophages. International Journal of Biological Sciences 15 (8): 1571–1581.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Wang, Z., G. Xu, Y. Gao, X. Zhan, N. Qin, S. Fu, R. Li, M. Niu, J. Wang, Y. Liu, X. Xiao, and Z. Bai. 2019. Cardamonin from a medicinal herb protects against LPS-induced septic shock by suppressing NLRP3 inflammasome. Acta Pharmaceutica Sinica B 9 (4): 734–744.PubMedPubMedCentralCrossRef Wang, Z., G. Xu, Y. Gao, X. Zhan, N. Qin, S. Fu, R. Li, M. Niu, J. Wang, Y. Liu, X. Xiao, and Z. Bai. 2019. Cardamonin from a medicinal herb protects against LPS-induced septic shock by suppressing NLRP3 inflammasome. Acta Pharmaceutica Sinica B 9 (4): 734–744.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Ives, A., J. Nomura, F. Martinon, T. Roger, D. LeRoy, J.N. Miner, G. Simon, N. Busso, and A. So. 2015. Xanthine oxidoreductase regulates macrophage IL1β secretion upon NLRP3 inflammasome activation. Nature Communications 6: 6555.PubMedCrossRef Ives, A., J. Nomura, F. Martinon, T. Roger, D. LeRoy, J.N. Miner, G. Simon, N. Busso, and A. So. 2015. Xanthine oxidoreductase regulates macrophage IL1β secretion upon NLRP3 inflammasome activation. Nature Communications 6: 6555.PubMedCrossRef
57.
Zurück zum Zitat Tang, K.K., X.Y. Liu, Z.Y. Wang, K.C. Qu, and R.F. Fan. 2019. Trehalose alleviates cadmium-induced brain damage by ameliorating oxidative stress, autophagy inhibition, and apoptosis. Metallomics : Integrated Biometal Science 11 (12): 2043–2051.PubMedCrossRef Tang, K.K., X.Y. Liu, Z.Y. Wang, K.C. Qu, and R.F. Fan. 2019. Trehalose alleviates cadmium-induced brain damage by ameliorating oxidative stress, autophagy inhibition, and apoptosis. Metallomics : Integrated Biometal Science 11 (12): 2043–2051.PubMedCrossRef
58.
Zurück zum Zitat Redza-Dutordoir, M., and D.A. Averill-Bates. 2016. Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta 1863 (12): 2977–2992.PubMedCrossRef Redza-Dutordoir, M., and D.A. Averill-Bates. 2016. Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta 1863 (12): 2977–2992.PubMedCrossRef
59.
Zurück zum Zitat Würstle, M.L., M.A. Laussmann, and M. Rehm. 2012. The central role of initiator caspase-9 in apoptosis signal transduction and the regulation of its activation and activity on the apoptosome. Experimental Cell Research 318 (11): 1213–1220.PubMedCrossRef Würstle, M.L., M.A. Laussmann, and M. Rehm. 2012. The central role of initiator caspase-9 in apoptosis signal transduction and the regulation of its activation and activity on the apoptosome. Experimental Cell Research 318 (11): 1213–1220.PubMedCrossRef
62.
Zurück zum Zitat Ho, J., J. Yu, S.H. Wong, L. Zhang, X. Liu, W.T. Wong, C.C. Leung, G. Choi, M.H. Wang, T. Gin, M.T. Chan, and W.K. Wu. 2016. Autophagy in sepsis: Degradation into exhaustion? Autophagy 12 (7): 1073–1082.PubMedPubMedCentralCrossRef Ho, J., J. Yu, S.H. Wong, L. Zhang, X. Liu, W.T. Wong, C.C. Leung, G. Choi, M.H. Wang, T. Gin, M.T. Chan, and W.K. Wu. 2016. Autophagy in sepsis: Degradation into exhaustion? Autophagy 12 (7): 1073–1082.PubMedPubMedCentralCrossRef
Metadaten
Titel
Gypenoside XLIX Activates the Sirt1/Nrf2 Signaling Pathway to Inhibit NLRP3 Inflammasome Activation to Alleviate Septic Acute Lung Injury
verfasst von
Kaixin Ping
Rongrong Yang
Huizhen Chen
Shaocheng Xie
Yannan Xiang
Mengxin Li
Yingzhi Lu
Jingquan Dong
Publikationsdatum
08.05.2024
Verlag
Springer US
Erschienen in
Inflammation
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-024-02041-2

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.