Skip to main content
Erschienen in: Inflammation 3/2023

03.01.2023 | REVIEW

Fibrosis in Liver and Pancreas: a Review on Pathogenic Significance, Diagnostic Options, and Current Management Strategies

verfasst von: Tiasha Dasgupta, Venkatraman Manickam

Erschienen in: Inflammation | Ausgabe 3/2023

Einloggen, um Zugang zu erhalten

Abstract

Inflammation is one of the most natural ways of the body’s biological response against invading foreign pathogens or injured cells which eventually can lead to a chronic or acute productive response. Fibrosis is an end-stage event associated with an inflammatory response addressed with tissue hardening, discoloration, and most importantly overgrowth of associated tissue. Various organs at different diseased conditions are affected by fibrosis including the liver, pancreas, brain, kidney, and lung. Etiological factors including internal like inflammatory cytokines, growth factors, and oxidative stress and external like alcohol and viruses contribute to the development of fibrosis in both the liver and pancreas. More frequently, these organs are associated with pathogenic progression towards fibrosis from acute and chronic conditions and eventually fail in their functions. The pathogenesis of the organ-fibrotic events mainly depends on the activation of residential stellate cells; these cells help to accumulate collagen in respective organs. Various diagnostic options have been developed recently, and various therapeutic options are in trial to tackle fibrosis. In this review, an overview on fibrosis, the pathogenesis of fibrosis in the liver and pancreas, various diagnostic options developed in recent years, and possible present therapeutic measures to overcome options of fibrosis in the liver and pancreas; thus, restoring the functional status of organs is discussed.
Literatur
1.
Zurück zum Zitat Wick, Georg, Cecilia Grundtman, Christina Mayerl, Thomas-Florian Wimpissinger, Johann Feichtinger, Bettina Zelger, Roswitha Sgonc, and Dolores Wolfram. 2013. "The immunology of fibrosis." Annual review of immunology 31, 1: 107–35. Wick, Georg, Cecilia Grundtman, Christina Mayerl, Thomas-Florian Wimpissinger, Johann Feichtinger, Bettina Zelger, Roswitha Sgonc, and Dolores Wolfram. 2013. "The immunology of fibrosis." Annual review of immunology 31, 1: 107–35.
4.
Zurück zum Zitat Liu, Y. 2010. New insights into epithelial-mesenchymal transition in kidney fibrosis. Journal of the American Society of Nephrology 21: 212–222.PubMedCrossRef Liu, Y. 2010. New insights into epithelial-mesenchymal transition in kidney fibrosis. Journal of the American Society of Nephrology 21: 212–222.PubMedCrossRef
6.
Zurück zum Zitat Krenning, G., E.M. Zeisberg, and R. Kalluri. 2010. The origin of fibroblasts and mechanism of cardiac fibrosis. Journal of Cellular Physiology 225: 631–637.PubMedPubMedCentralCrossRef Krenning, G., E.M. Zeisberg, and R. Kalluri. 2010. The origin of fibroblasts and mechanism of cardiac fibrosis. Journal of Cellular Physiology 225: 631–637.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Goldsmith, E.C., et al. 2004. Organization of fibroblasts in the heart. Developmental Dynamics 230: 787–794.PubMedCrossRef Goldsmith, E.C., et al. 2004. Organization of fibroblasts in the heart. Developmental Dynamics 230: 787–794.PubMedCrossRef
8.
Zurück zum Zitat Lakatos, H. F. et al. 2007. The role of PPARs in lung fibrosis. PPAR Research 2007. Lakatos, H. F. et al. 2007. The role of PPARs in lung fibrosis. PPAR Research 2007.
9.
Zurück zum Zitat Hardie, W.D., S.W. Glasser, and J.S. Hagood. 2009. Emerging concepts in the pathogenesis of lung fibrosis. American Journal of Pathology 175: 3–16.PubMedPubMedCentralCrossRef Hardie, W.D., S.W. Glasser, and J.S. Hagood. 2009. Emerging concepts in the pathogenesis of lung fibrosis. American Journal of Pathology 175: 3–16.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Kelly, M., M. Kolb, P. Bonniaud, and J. Gauldie. 2005. Re-evaluation of fibrogenic cytokines in lung fibrosis. Current Pharmaceutical Design 9: 39–49.CrossRef Kelly, M., M. Kolb, P. Bonniaud, and J. Gauldie. 2005. Re-evaluation of fibrogenic cytokines in lung fibrosis. Current Pharmaceutical Design 9: 39–49.CrossRef
12.
Zurück zum Zitat Jinnin, M. 2010. Mechanisms of skin fibrosis in systemic sclerosis. Journal of Dermatology 37: 11–25.PubMedCrossRef Jinnin, M. 2010. Mechanisms of skin fibrosis in systemic sclerosis. Journal of Dermatology 37: 11–25.PubMedCrossRef
13.
Zurück zum Zitat Lim, Y.S., and W.R. Kim. 2008. The global impact of hepatic fibrosis and end-stage liver disease. Clinics in Liver Disease 12: 733–746.PubMedCrossRef Lim, Y.S., and W.R. Kim. 2008. The global impact of hepatic fibrosis and end-stage liver disease. Clinics in Liver Disease 12: 733–746.PubMedCrossRef
14.
Zurück zum Zitat Bataller, R., and B. Gao. 2015. Liver fibrosis in alcoholic liver disease. Seminars in Liver Disease 35: 146–156.PubMedCrossRef Bataller, R., and B. Gao. 2015. Liver fibrosis in alcoholic liver disease. Seminars in Liver Disease 35: 146–156.PubMedCrossRef
15.
Zurück zum Zitat Aydin, M.M., and K.C. Akcali. 2018. Liver fibrosis. Turkish. Journal of Gastroenterology 29: 14–21. Aydin, M.M., and K.C. Akcali. 2018. Liver fibrosis. Turkish. Journal of Gastroenterology 29: 14–21.
16.
Zurück zum Zitat Abe, H., et al. 2016. Effective prevention of liver fibrosis by liver-targeted hydrodynamic gene delivery of matrix metalloproteinase-13 in a rat liver fibrosis model. Mol. Ther. - Nucleic Acids 5: e276.PubMedPubMedCentralCrossRef Abe, H., et al. 2016. Effective prevention of liver fibrosis by liver-targeted hydrodynamic gene delivery of matrix metalloproteinase-13 in a rat liver fibrosis model. Mol. Ther. - Nucleic Acids 5: e276.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Yang, Y.M., S.Y. Kim, and E. Seki. 2019. Inflammation and liver cancer: Molecular mechanisms and therapeutic targets. Seminars in Liver Disease 39: 26–42.PubMedPubMedCentralCrossRef Yang, Y.M., S.Y. Kim, and E. Seki. 2019. Inflammation and liver cancer: Molecular mechanisms and therapeutic targets. Seminars in Liver Disease 39: 26–42.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Apte, M.V., and J.S. Wilson. 2012. Dangerous liaisons: Pancreatic stellate cells and pancreatic cancer cells. Journal of Gastroenterology and Hepatology 27: 69–74.PubMedCrossRef Apte, M.V., and J.S. Wilson. 2012. Dangerous liaisons: Pancreatic stellate cells and pancreatic cancer cells. Journal of Gastroenterology and Hepatology 27: 69–74.PubMedCrossRef
19.
Zurück zum Zitat Masamune, A., T. Watanabe, K. Kikuta, and T. Shimosegawa. 2009. Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis. Clinical Gastroenterology and Hepatology 7: S48–S54.PubMedCrossRef Masamune, A., T. Watanabe, K. Kikuta, and T. Shimosegawa. 2009. Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis. Clinical Gastroenterology and Hepatology 7: S48–S54.PubMedCrossRef
20.
Zurück zum Zitat Apte, M.V., and J.S. Wilson. 2004. Mechanisms of pancreatic fibrosis. Digestive Diseases 22: 273–279.PubMedCrossRef Apte, M.V., and J.S. Wilson. 2004. Mechanisms of pancreatic fibrosis. Digestive Diseases 22: 273–279.PubMedCrossRef
21.
Zurück zum Zitat Omary, M.B., A. Lugea, A.W. Lowe, and S.J. Pandol. 2007. The pancreatic stellate cell: A star on the rise in pancreatic diseases. The Journal of Clinical Investigation 117: 50–59.PubMedPubMedCentralCrossRef Omary, M.B., A. Lugea, A.W. Lowe, and S.J. Pandol. 2007. The pancreatic stellate cell: A star on the rise in pancreatic diseases. The Journal of Clinical Investigation 117: 50–59.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Tang, D., et al. 2018. Galectin-1 expression in activated pancreatic satellite cells promotes fibrosis in chronic pancreatitis/pancreatic cancer via the TGF-β1/Smad pathway. Oncology Reports 39: 1347–1355.PubMed Tang, D., et al. 2018. Galectin-1 expression in activated pancreatic satellite cells promotes fibrosis in chronic pancreatitis/pancreatic cancer via the TGF-β1/Smad pathway. Oncology Reports 39: 1347–1355.PubMed
23.
24.
Zurück zum Zitat Phillips, P. 2012. Pancreatic stellate cells and fibrosis. In eds. Paul J. Grippo and Hidayatullah G. Munshi. Trivandrum (India). Phillips, P. 2012. Pancreatic stellate cells and fibrosis. In eds. Paul J. Grippo and Hidayatullah G. Munshi. Trivandrum (India).
25.
Zurück zum Zitat Phillips, P.A., et al. 2003. Rat pancreatic stellate cells secrete matrix metalloproteinases: Implications for extracellular matrix turnover. Gut 52: 275–282.PubMedPubMedCentralCrossRef Phillips, P.A., et al. 2003. Rat pancreatic stellate cells secrete matrix metalloproteinases: Implications for extracellular matrix turnover. Gut 52: 275–282.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Seki, E., and D.A. Brenner. 2015. Recent advancement of molecular mechanisms of liver fibrosis. Journal of Hepato-Biliary-Pancreatic Sciences 22: 512–518.PubMedPubMedCentralCrossRef Seki, E., and D.A. Brenner. 2015. Recent advancement of molecular mechanisms of liver fibrosis. Journal of Hepato-Biliary-Pancreatic Sciences 22: 512–518.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Masamune, A. et al. 2008. Hypoxia stimulates pancreatic stellate cells to induce fibrosis and angiogenesis in pancreatic cancer. American Journal of Physiology - Gastrointestinal and Liver Physiology 295: 709–717. Masamune, A. et al. 2008. Hypoxia stimulates pancreatic stellate cells to induce fibrosis and angiogenesis in pancreatic cancer. American Journal of Physiology - Gastrointestinal and Liver Physiology 295: 709–717.
30.
Zurück zum Zitat Shimizu, K. 2008. Mechanisms of pancreatic fibrosis and applications to the treatment of chronic pancreatitis. Journal of Gastroenterology 43: 823–832.PubMedCrossRef Shimizu, K. 2008. Mechanisms of pancreatic fibrosis and applications to the treatment of chronic pancreatitis. Journal of Gastroenterology 43: 823–832.PubMedCrossRef
31.
Zurück zum Zitat Zhang, J.-M., and J. An. 2009. Cytokines, inflammation and pain. Int Anesth. Clin. 69: 482–489. Zhang, J.-M., and J. An. 2009. Cytokines, inflammation and pain. Int Anesth. Clin. 69: 482–489.
32.
Zurück zum Zitat Meyer-Ingold, W., and W. Eichner. 1995. Platelet-derived growth factor. Cell Biology International 19: 389–398.PubMedCrossRef Meyer-Ingold, W., and W. Eichner. 1995. Platelet-derived growth factor. Cell Biology International 19: 389–398.PubMedCrossRef
33.
Zurück zum Zitat Poole, K.E.S., and J. Reeve. 2005. Parathyroid hormone – a bone anabolic and catabolic agent. Current Opinion in Pharmacology 5: 612–617.PubMedCrossRef Poole, K.E.S., and J. Reeve. 2005. Parathyroid hormone – a bone anabolic and catabolic agent. Current Opinion in Pharmacology 5: 612–617.PubMedCrossRef
34.
Zurück zum Zitat Chen, P.H., X. Chen, and X. He. 2013. Platelet-derived growth factors and their receptors: Structural and functional perspectives. Biochimica et Biophysica Acta 1834: 2176–2186.PubMedCrossRef Chen, P.H., X. Chen, and X. He. 2013. Platelet-derived growth factors and their receptors: Structural and functional perspectives. Biochimica et Biophysica Acta 1834: 2176–2186.PubMedCrossRef
35.
Zurück zum Zitat Xue, J., et al. 2015. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nature Communications 6: 1–11.CrossRef Xue, J., et al. 2015. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nature Communications 6: 1–11.CrossRef
36.
Zurück zum Zitat Apte, M.V., et al. 1999. Pancreatic stellate cells are activated by proinflammatory cytokines: Implications for pancreatic fibrogenesis. Gut 44: 534–541.PubMedPubMedCentralCrossRef Apte, M.V., et al. 1999. Pancreatic stellate cells are activated by proinflammatory cytokines: Implications for pancreatic fibrogenesis. Gut 44: 534–541.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Borkham-Kamphorst, E., and R. Weiskirchen. 2016. The PDGF system and its antagonists in liver fibrosis. Cytokine & Growth Factor Reviews 28: 53–61.CrossRef Borkham-Kamphorst, E., and R. Weiskirchen. 2016. The PDGF system and its antagonists in liver fibrosis. Cytokine & Growth Factor Reviews 28: 53–61.CrossRef
38.
Zurück zum Zitat Kordes, C., S. Brookmann, D. Häussinger, and H. Klonowski-Stumpe. 2005. Differential and synergistic effects of platelet-derived growth factor-BB and transforming growth factor-β1 on activated pancreatic stellate cells. Pancreas 31: 156–167.PubMedCrossRef Kordes, C., S. Brookmann, D. Häussinger, and H. Klonowski-Stumpe. 2005. Differential and synergistic effects of platelet-derived growth factor-BB and transforming growth factor-β1 on activated pancreatic stellate cells. Pancreas 31: 156–167.PubMedCrossRef
39.
Zurück zum Zitat Haber, P.S., et al. 1999. Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis. American Journal of Pathology 155: 1087–1095.PubMedPubMedCentralCrossRef Haber, P.S., et al. 1999. Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis. American Journal of Pathology 155: 1087–1095.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Ramadori, G., and T. Armbrust. 2001. Cytokines in the liver. European Journal of Gastroenterology and Hepatology 13: 777–784.PubMedCrossRef Ramadori, G., and T. Armbrust. 2001. Cytokines in the liver. European Journal of Gastroenterology and Hepatology 13: 777–784.PubMedCrossRef
41.
42.
43.
Zurück zum Zitat Formela, L.J., S.W. Galloway, and A.N. Kingsnorth. 1995. Inflammatory mediators in acute pancreatitis. British Journal of Surgery 82: 6–13.PubMedCrossRef Formela, L.J., S.W. Galloway, and A.N. Kingsnorth. 1995. Inflammatory mediators in acute pancreatitis. British Journal of Surgery 82: 6–13.PubMedCrossRef
44.
Zurück zum Zitat Norman, J. 1998. The role of cytokines in the pathogenesis of acute pancreatitis. American Journal of Surgery 175: 76–83.PubMedCrossRef Norman, J. 1998. The role of cytokines in the pathogenesis of acute pancreatitis. American Journal of Surgery 175: 76–83.PubMedCrossRef
45.
Zurück zum Zitat Vaccaro, M.I., et al. 2000. Pancreatic acinar cells submitted to stress activate TNF-alpha gene expression. Biochemical and Biophysical Research Communications 268: 485–490.PubMedCrossRef Vaccaro, M.I., et al. 2000. Pancreatic acinar cells submitted to stress activate TNF-alpha gene expression. Biochemical and Biophysical Research Communications 268: 485–490.PubMedCrossRef
46.
Zurück zum Zitat Matsuoka, M., N.T. Pham, and H. Tsukamoto. 1989. Differential effects of interleukin-1 alpha, tumor necrosis factor alpha, and transforming growth factor beta 1 on cell proliferation and collagen formation by cultured fat-storing cells. Liver 9: 71–78.PubMedCrossRef Matsuoka, M., N.T. Pham, and H. Tsukamoto. 1989. Differential effects of interleukin-1 alpha, tumor necrosis factor alpha, and transforming growth factor beta 1 on cell proliferation and collagen formation by cultured fat-storing cells. Liver 9: 71–78.PubMedCrossRef
47.
Zurück zum Zitat Zheng, M., H. Li, L. Sun, D.R. Brigstock, and R. Gao. 2021. Interleukin-6 participates in human pancreatic stellate cell activation and collagen I production via TGF-β1/Smad pathway. Cytokine 143: 155536.PubMedCrossRef Zheng, M., H. Li, L. Sun, D.R. Brigstock, and R. Gao. 2021. Interleukin-6 participates in human pancreatic stellate cell activation and collagen I production via TGF-β1/Smad pathway. Cytokine 143: 155536.PubMedCrossRef
49.
Zurück zum Zitat Xiang, D.-M., et al. 2018. The HLF/IL-6/STAT3 feedforward circuit drives hepatic stellate cell activation to promote liver fibrosis. Gut 67: 1704–1715.PubMedCrossRef Xiang, D.-M., et al. 2018. The HLF/IL-6/STAT3 feedforward circuit drives hepatic stellate cell activation to promote liver fibrosis. Gut 67: 1704–1715.PubMedCrossRef
50.
Zurück zum Zitat McCarroll, J.A., et al. 2004. Pancreatic stellate cell migration: Role of the phosphatidylinositol 3-kinase (PI3-kinase) pathway. Biochemical Pharmacology 67: 1215–1225.PubMedCrossRef McCarroll, J.A., et al. 2004. Pancreatic stellate cell migration: Role of the phosphatidylinositol 3-kinase (PI3-kinase) pathway. Biochemical Pharmacology 67: 1215–1225.PubMedCrossRef
51.
Zurück zum Zitat Masamune, A., M. Satoh, K. Kikuta, N. Suzuki, and T. Shimosegawa. 2005. Activation of JAK-STAT pathway is required for platelet-derived growth factor-induced proliferation of pancreatic stellate cells. World Journal of Gastroenterology 11: 3385–3391.PubMedPubMedCentralCrossRef Masamune, A., M. Satoh, K. Kikuta, N. Suzuki, and T. Shimosegawa. 2005. Activation of JAK-STAT pathway is required for platelet-derived growth factor-induced proliferation of pancreatic stellate cells. World Journal of Gastroenterology 11: 3385–3391.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Dooley, S., and P. Ten Dijke. 2012. TGF-β in progression of liver disease. Cell and Tissue Research 347: 245–256.PubMedCrossRef Dooley, S., and P. Ten Dijke. 2012. TGF-β in progression of liver disease. Cell and Tissue Research 347: 245–256.PubMedCrossRef
53.
Zurück zum Zitat Reif, S., et al. 2003. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-Akt signaling in hepatic stellate cell proliferation and type I collagen expression. Journal of Biological Chemistry 278: 8083–8090.PubMedCrossRef Reif, S., et al. 2003. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-Akt signaling in hepatic stellate cell proliferation and type I collagen expression. Journal of Biological Chemistry 278: 8083–8090.PubMedCrossRef
54.
Zurück zum Zitat Shek, F.W., and R.C. Benyon. 2004. How can transforming growth factor beta be targeted usefully to combat liver fibrosis? European Journal of Gastroenterology and Hepatology 16: 123–126.PubMedCrossRef Shek, F.W., and R.C. Benyon. 2004. How can transforming growth factor beta be targeted usefully to combat liver fibrosis? European Journal of Gastroenterology and Hepatology 16: 123–126.PubMedCrossRef
55.
Zurück zum Zitat Molina, M. F., Abdelnabi, M. N., Fabre, T. and Shoukry, N. H. 2019. Type 3 cytokines in liver fibrosis and liver cancer. Cytokine 124: 0–1. Molina, M. F., Abdelnabi, M. N., Fabre, T. and Shoukry, N. H. 2019. Type 3 cytokines in liver fibrosis and liver cancer. Cytokine 124: 0–1.
56.
Zurück zum Zitat Ninomiya-Tsuji, J., et al. 1999. The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398: 252–256.PubMedCrossRef Ninomiya-Tsuji, J., et al. 1999. The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398: 252–256.PubMedCrossRef
57.
Zurück zum Zitat Tsukamoto, H. 1999. Cytokine regulation of hepatic stellate cells in liver fibrosis. Alcoholism, Clinical and Experimental Research 23: 911–916.PubMedCrossRef Tsukamoto, H. 1999. Cytokine regulation of hepatic stellate cells in liver fibrosis. Alcoholism, Clinical and Experimental Research 23: 911–916.PubMedCrossRef
58.
Zurück zum Zitat Zelová, H., and J. Hošek. 2013. TNF-α signalling and inflammation: Interactions between old acquaintances. Inflammation Research 62: 641–651.PubMedCrossRef Zelová, H., and J. Hošek. 2013. TNF-α signalling and inflammation: Interactions between old acquaintances. Inflammation Research 62: 641–651.PubMedCrossRef
59.
Zurück zum Zitat Apte, M.V., R.C. Pirola, and J.S. Wilson. 2006. Battle-scarred pancreas: Role of alcohol and pancreatic stellate cells in pancreatic fibrosis. Journal of Gastroenterology and Hepatology 21: 97–101.CrossRef Apte, M.V., R.C. Pirola, and J.S. Wilson. 2006. Battle-scarred pancreas: Role of alcohol and pancreatic stellate cells in pancreatic fibrosis. Journal of Gastroenterology and Hepatology 21: 97–101.CrossRef
60.
Zurück zum Zitat Manning, D. S. 2008. Diagnosis and quantitation of fibrosis. 1670–1681. Manning, D. S. 2008. Diagnosis and quantitation of fibrosis. 1670–1681.
61.
Zurück zum Zitat Castera, L., and M. Pinzani. 2010. Biopsy and non-invasive methods for the diagnosis of liver fibrosis: Does it take two to tango? Gut 59: 861–866.PubMedCrossRef Castera, L., and M. Pinzani. 2010. Biopsy and non-invasive methods for the diagnosis of liver fibrosis: Does it take two to tango? Gut 59: 861–866.PubMedCrossRef
62.
Zurück zum Zitat Afdhal, N.H., and D. Nunes. 2004. Evaluation of liver fibrosis: A concise review. American Journal of Gastroenterology 99: 1160–1174.PubMedCrossRef Afdhal, N.H., and D. Nunes. 2004. Evaluation of liver fibrosis: A concise review. American Journal of Gastroenterology 99: 1160–1174.PubMedCrossRef
63.
Zurück zum Zitat Patel, K., P. Bedossa, and L. Castera. 2015. Diagnosis of liver fibrosis: Present and future. Seminars in Liver Disease 35: 166–183.PubMedCrossRef Patel, K., P. Bedossa, and L. Castera. 2015. Diagnosis of liver fibrosis: Present and future. Seminars in Liver Disease 35: 166–183.PubMedCrossRef
64.
Zurück zum Zitat Lurie, Y., M. Webb, R. Cytter-Kuint, S. Shteingart, and G.Z. Lederkremer. 2015. Non-invasive diagnosis of liver fibrosis and cirrhosis. World Journal of Gastroenterology 21: 11567–11583.PubMedPubMedCentralCrossRef Lurie, Y., M. Webb, R. Cytter-Kuint, S. Shteingart, and G.Z. Lederkremer. 2015. Non-invasive diagnosis of liver fibrosis and cirrhosis. World Journal of Gastroenterology 21: 11567–11583.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Chen, Z., et al. 2022. Serum biomarkers for liver fibrosis. Clinica Chimica Acta 537: 16–25.CrossRef Chen, Z., et al. 2022. Serum biomarkers for liver fibrosis. Clinica Chimica Acta 537: 16–25.CrossRef
66.
Zurück zum Zitat Inadomi, C., et al. 2020. Accuracy of the Enhanced Liver Fibrosis test, and combination of the Enhanced Liver Fibrosis and non-invasive tests for the diagnosis of advanced liver fibrosis in patients with non-alcoholic fatty liver disease. Hepatology Research 50: 682–692.PubMedCrossRef Inadomi, C., et al. 2020. Accuracy of the Enhanced Liver Fibrosis test, and combination of the Enhanced Liver Fibrosis and non-invasive tests for the diagnosis of advanced liver fibrosis in patients with non-alcoholic fatty liver disease. Hepatology Research 50: 682–692.PubMedCrossRef
67.
Zurück zum Zitat Vali, Y., et al. 2020. Enhanced liver fibrosis test for the non-invasive diagnosis of fibrosis in patients with NAFLD: A systematic review and meta-analysis. Journal of Hepatology 73: 252–262.PubMedCrossRef Vali, Y., et al. 2020. Enhanced liver fibrosis test for the non-invasive diagnosis of fibrosis in patients with NAFLD: A systematic review and meta-analysis. Journal of Hepatology 73: 252–262.PubMedCrossRef
68.
Zurück zum Zitat Morling, J.R., and I.N. Guha. 2016. Biomarkers of liver fibrosis. Clinics in Liver Disease 7: 139–142.CrossRef Morling, J.R., and I.N. Guha. 2016. Biomarkers of liver fibrosis. Clinics in Liver Disease 7: 139–142.CrossRef
69.
Zurück zum Zitat De Carli, M.A.L., et al. 2020. Performance of noninvasive scores for the diagnosis of advanced liver fibrosis in morbidly obese with nonalcoholic fatty liver disease. European Journal of Gastroenterology and Hepatology 32: 420–425.PubMedCrossRef De Carli, M.A.L., et al. 2020. Performance of noninvasive scores for the diagnosis of advanced liver fibrosis in morbidly obese with nonalcoholic fatty liver disease. European Journal of Gastroenterology and Hepatology 32: 420–425.PubMedCrossRef
70.
Zurück zum Zitat Huang, C.T., C.K. Lin, T.H. Lee, and Y.J. Liang. 2020. Pancreatic fibrosis and chronic pancreatitis: Mini-review of non-histologic diagnosis for clinical applications. Diagnostics 10: 1–6.CrossRef Huang, C.T., C.K. Lin, T.H. Lee, and Y.J. Liang. 2020. Pancreatic fibrosis and chronic pancreatitis: Mini-review of non-histologic diagnosis for clinical applications. Diagnostics 10: 1–6.CrossRef
71.
Zurück zum Zitat Tajiri, K., K. Kawai, and T. Sugiyama. 2017. Strain elastography for assessment of liver fibrosis and prognosis in patients with chronic liver diseases. Journal of Gastroenterology 52: 724–733.PubMedCrossRef Tajiri, K., K. Kawai, and T. Sugiyama. 2017. Strain elastography for assessment of liver fibrosis and prognosis in patients with chronic liver diseases. Journal of Gastroenterology 52: 724–733.PubMedCrossRef
72.
Zurück zum Zitat Lin, Y., H. Li, C. Jin, H. Wang, and B. Jiang. 2020. The diagnostic accuracy of liver fibrosis in non-viral liver diseases using acoustic radiation force impulse elastography: A systematic review and meta-analysis. PLoS ONE 15: 1–20. Lin, Y., H. Li, C. Jin, H. Wang, and B. Jiang. 2020. The diagnostic accuracy of liver fibrosis in non-viral liver diseases using acoustic radiation force impulse elastography: A systematic review and meta-analysis. PLoS ONE 15: 1–20.
73.
Zurück zum Zitat De Lédinghen, V., and J. Vergniol. 2010. Transient elastography for the diagnosis of liver fibrosis. Expert Review of Medical Devices 7: 811–823.PubMedCrossRef De Lédinghen, V., and J. Vergniol. 2010. Transient elastography for the diagnosis of liver fibrosis. Expert Review of Medical Devices 7: 811–823.PubMedCrossRef
74.
Zurück zum Zitat Andersen, E.S., P.B. Christensen, and N. Weis. 2009. Transient elastography for liver fibrosis diagnosis. European Journal of Internal Medicine 20: 339–342.PubMedCrossRef Andersen, E.S., P.B. Christensen, and N. Weis. 2009. Transient elastography for liver fibrosis diagnosis. European Journal of Internal Medicine 20: 339–342.PubMedCrossRef
75.
Zurück zum Zitat Kuwahara, T., et al. 2016. Quantitative evaluation of pancreatic tumor fibrosis using shear wave elastography. Pancreatology 16: 1063–1068.PubMedCrossRef Kuwahara, T., et al. 2016. Quantitative evaluation of pancreatic tumor fibrosis using shear wave elastography. Pancreatology 16: 1063–1068.PubMedCrossRef
76.
Zurück zum Zitat Singh, V.K., D. Yadav, and P.K. Garg. 2019. Diagnosis and management of chronic pancreatitis: A review. JAMA - J. Am. Med. Assoc. 322: 2422–2434.CrossRef Singh, V.K., D. Yadav, and P.K. Garg. 2019. Diagnosis and management of chronic pancreatitis: A review. JAMA - J. Am. Med. Assoc. 322: 2422–2434.CrossRef
77.
Zurück zum Zitat Bieliuniene, E., et al. 2019. Magnetic resonance imaging as a valid noninvasive tool for the assessment of pancreatic fibrosis. Pancreas 48: 85–93.PubMedCrossRef Bieliuniene, E., et al. 2019. Magnetic resonance imaging as a valid noninvasive tool for the assessment of pancreatic fibrosis. Pancreas 48: 85–93.PubMedCrossRef
78.
Zurück zum Zitat Petitclerc, L., G. Sebastiani, G. Gilbert, G. Cloutier, and A. Tang. 2017. Liver fibrosis: Review of current imaging and MRI quantification techniques. Journal of Magnetic Resonance Imaging 45: 1276–1295.PubMedCrossRef Petitclerc, L., G. Sebastiani, G. Gilbert, G. Cloutier, and A. Tang. 2017. Liver fibrosis: Review of current imaging and MRI quantification techniques. Journal of Magnetic Resonance Imaging 45: 1276–1295.PubMedCrossRef
79.
Zurück zum Zitat Zhou, I.Y., et al. 2020. Advanced MRI of liver fibrosis and treatment response in a rat model of nonalcoholic steatohepatitis. Radiology 296: 67–75.PubMedCrossRef Zhou, I.Y., et al. 2020. Advanced MRI of liver fibrosis and treatment response in a rat model of nonalcoholic steatohepatitis. Radiology 296: 67–75.PubMedCrossRef
80.
Zurück zum Zitat Gilbert, Ã. G., Nguyen, Ã. B. N. and Tang, A. 2017. Liver fibrosis quantification by magnetic resonance imaging. XX: 1–13. Gilbert, Ã. G., Nguyen, Ã. B. N. and Tang, A. 2017. Liver fibrosis quantification by magnetic resonance imaging. XX: 1–13.
81.
Zurück zum Zitat Itoh, Y., et al. 2014. Quantitative analysis of diagnosing pancreatic fibrosis using EUS-elastography (comparison with surgical specimens). Journal of Gastroenterology 49: 1183–1192.PubMedCrossRef Itoh, Y., et al. 2014. Quantitative analysis of diagnosing pancreatic fibrosis using EUS-elastography (comparison with surgical specimens). Journal of Gastroenterology 49: 1183–1192.PubMedCrossRef
82.
Zurück zum Zitat Schrader, H., et al. 2012. Diagnostic value of quantitative EUS elastography for malignant pancreatic tumors: Relationship with pancreatic fibrosis. Ultraschall der Medizin 33: 196–201.CrossRef Schrader, H., et al. 2012. Diagnostic value of quantitative EUS elastography for malignant pancreatic tumors: Relationship with pancreatic fibrosis. Ultraschall der Medizin 33: 196–201.CrossRef
83.
Zurück zum Zitat Kikuyama, M., et al. 2018. Early diagnosis to improve the poor prognosis of pancreatic cancer. Cancers (Basel). 10: 1–9.CrossRef Kikuyama, M., et al. 2018. Early diagnosis to improve the poor prognosis of pancreatic cancer. Cancers (Basel). 10: 1–9.CrossRef
84.
Zurück zum Zitat Weiskirchen, R., and F. Tacke. 2016. Liver fibrosis: From pathogenesis to novel therapies. Digestive Diseases 34: 410–422.PubMedCrossRef Weiskirchen, R., and F. Tacke. 2016. Liver fibrosis: From pathogenesis to novel therapies. Digestive Diseases 34: 410–422.PubMedCrossRef
85.
86.
Zurück zum Zitat Kisseleva, T. and Brenner, D. A. 2006. Hepatic stellate cells and the reversal of fibrosis. Journal of Gastroenterology and Hepatology 2. Kisseleva, T. and Brenner, D. A. 2006. Hepatic stellate cells and the reversal of fibrosis. Journal of Gastroenterology and Hepatology 2.
87.
Zurück zum Zitat Iredale, J.P. 2001. Hepatic stellate cell behavior during resolution of liver injury. Seminars in Liver Disease 21: 427–436.PubMedCrossRef Iredale, J.P. 2001. Hepatic stellate cell behavior during resolution of liver injury. Seminars in Liver Disease 21: 427–436.PubMedCrossRef
88.
Zurück zum Zitat Kisseleva, T., and D.A. Brenner. 2008. Mechanisms of fibrogenesis. Experimental Biology and Medicine 233: 109–122.PubMedCrossRef Kisseleva, T., and D.A. Brenner. 2008. Mechanisms of fibrogenesis. Experimental Biology and Medicine 233: 109–122.PubMedCrossRef
89.
Zurück zum Zitat Gao, B., S. Radaeva, and O. Park. 2009. Liver natural killer and natural killer T cells: Immunobiology and emerging roles in liver diseases. Journal of Leukocyte Biology 86: 513–528.PubMedPubMedCentralCrossRef Gao, B., S. Radaeva, and O. Park. 2009. Liver natural killer and natural killer T cells: Immunobiology and emerging roles in liver diseases. Journal of Leukocyte Biology 86: 513–528.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Giannitrapani, L., et al. 2014. Nanotechnology applications for the therapy of liver fibrosis. 20: 7242–7251. Giannitrapani, L., et al. 2014. Nanotechnology applications for the therapy of liver fibrosis. 20: 7242–7251.
92.
Zurück zum Zitat McCarroll, J.A., et al. 2006. Vitamin A inhibits pancreatic stellate cell activation: Implications for treatment of pancreatic fibrosis. Gut 55: 79–89.PubMedPubMedCentralCrossRef McCarroll, J.A., et al. 2006. Vitamin A inhibits pancreatic stellate cell activation: Implications for treatment of pancreatic fibrosis. Gut 55: 79–89.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Rickmann, M., E.C. Vaquero, J.R. Malagelada, and X. Molero. 2007. Tocotrienols induce apoptosis and autophagy in rat pancreatic stellate cells through the mitochondrial death pathway. Gastroenterology 132: 2518–2532.PubMedCrossRef Rickmann, M., E.C. Vaquero, J.R. Malagelada, and X. Molero. 2007. Tocotrienols induce apoptosis and autophagy in rat pancreatic stellate cells through the mitochondrial death pathway. Gastroenterology 132: 2518–2532.PubMedCrossRef
94.
Zurück zum Zitat Shimizu, K., K. Shiratori, M. Kobayashi, and H. Kawamata. 2004. Troglitazone inhibits the progression of chronic pancreatitis and the profibrogenic activity of pancreatic stellate cells via a PPARγ- independent mechanism. Pancreas 29: 67–74.PubMedCrossRef Shimizu, K., K. Shiratori, M. Kobayashi, and H. Kawamata. 2004. Troglitazone inhibits the progression of chronic pancreatitis and the profibrogenic activity of pancreatic stellate cells via a PPARγ- independent mechanism. Pancreas 29: 67–74.PubMedCrossRef
95.
Zurück zum Zitat Zeisberg, M., and R. Kalluri. 2013. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. American Journal of Physiology. Cell Physiology 304: C216–C225 Zeisberg, M., and R. Kalluri. 2013. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. American Journal of Physiology. Cell Physiology 304: C216–C225
96.
Zurück zum Zitat Masamune, A., et al. 2006. Curcumin blocks activation of pancreatic stellate cells. Journal of Cellular Biochemistry 97: 1080–1093.PubMedCrossRef Masamune, A., et al. 2006. Curcumin blocks activation of pancreatic stellate cells. Journal of Cellular Biochemistry 97: 1080–1093.PubMedCrossRef
Metadaten
Titel
Fibrosis in Liver and Pancreas: a Review on Pathogenic Significance, Diagnostic Options, and Current Management Strategies
verfasst von
Tiasha Dasgupta
Venkatraman Manickam
Publikationsdatum
03.01.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01776-0

Weitere Artikel der Ausgabe 3/2023

Inflammation 3/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.