Skip to main content
Erschienen in: Journal of Cancer Research and Clinical Oncology 16/2023

Open Access 23.08.2023 | Research

Expression of four cancer-testis antigens in TNBC indicating potential universal immunotherapeutic targets

verfasst von: Jie Xiao, Fengli Huang, Lin Li, Lianru Zhang, Li Xie, Baorui Liu

Erschienen in: Journal of Cancer Research and Clinical Oncology | Ausgabe 16/2023

Abstract

Objective

Immunotherapy is an attractive treatment for breast cancer. Cancer-testis antigens (CTAs) are potential targets for immunotherapy for their restricted expression. Here, we investigate the expression of CTAs in breast cancer and their value for prognosis. So as to hunt for a potential panel of CTAs for universal immunotherapeutic targets.

Material and methods

A total of 137 breast cancer tissue specimens including 51 triple-negative breast cancer (TNBC) were assessed for MAGE-A4, MAGEA1, NY-ESO-1, KK-LC-1 and PRAME expression by immunohistochemistry. The expression of PD-L1 and TILs was also calculated and correlated with the five CTAs. Clinical data were collected to evaluate the CTA’s value for prognosis. Data from the K-M plotter were used as a validation cohort.

Results

The expression of MAGE-A4, NY-ESO-1 and KK-LC-1 in TNBC was significantly higher than in non-TNBC (P = 0.012, P = 0.005, P < 0.001 respectively). 76.47% of TNBC expressed at least one of the five CTAs. Patients with positive expression of either MAGE-A4 or PRAME had a significantly extended disease-free survival (DFS). Data from the Kaplan–Meier plotter confirm our findings.

Conclusions

MAGE-A4, NY-ESO-1, PRAME and KK-LC-1 are overexpressed in breast cancer, especially in TNBC. Positive expression of MAGE-A4 or PARME may be associated with prolonged DFS. A panel of CTAs is attractive universal targets for immunotherapy.
Hinweise
Jie Xiao, Fengli Huang and Lin Li contributed equally to this work.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Breast cancer (BC) is considered the most common cancer worldwide, with approximately 2.3 million newly diagnosed in 2020 (Lei et al. 27). Breast cancer can be categorized into three major subtypes based on molecular markers, including hormone receptor-positive/HER-2-negative, HER-2-positive and triple-negative breast cancer. Triple-negative breast cancer (TNBC) is more likely to relapse and is not sensitive to endocrine therapy or anti-HER2 therapy. The median overall survival for metastatic triple-negative breast cancer is approximately 12–18 months (Waks and Winer 38). Given the success of immunotherapy in other tumor types(D'Angelo et al. 12; Hont et al. 21), it is essential to identify highly specific targets in TNBC.
Cancer-testis antigens (CTAs) are a type of protein that is exclusively detected in the testis but is aberrantly re-expressed in malignancy, especially high-grade and advanced-stage tumors (Albertsmeier et al. 4). Due to their unique expression profiles, CTAs are appealing targets for immunotherapy. Melanoma-associated antigen-A1 (MAGE-A1), Melanoma-associated antigen-A4 (MAGE-A4), New York Esophageal Squamous Cell Carcinoma-1 (NY-ESO-1) and Preferentially expressed Antigen in Melanoma (PRAME) expression in breast cancers attracted the most attention, but the expression rates reported varied widely (Adams et al. 1; Ademuyiwa et al. 2; Balafoutas et al. 5; Bandić et al. 6; Curigliano et al. 10; Raghavendra et al. 31) Kita-Kyushu lung cancer antigen-1 (KK-LC-1) is another immunogenic CTA considered to be overexpressed in TNBC at mRNA level (Chen et al. 9). A panel of CTAs, including MAGE-A4 and NY-ESO-1, is currently being used as multi-T cell targets for BC (Hoyos et al. 22). However, only patients with antigen-positive observed antigen-specific T cell amplification and induced disease stabilization. A breast cancer peptide vaccine derived from nine CTAs successfully induced an immune response against the vaccine (Dillon et al. 13). Thus, establishing a panel of universal CTAs with high specificity covering as many breast cancer patients as possible will have significant value.
The aim of this study was to detect the protein expression of the five CTAs (MAGE-A1, MAGE-A4, NY-ESO-1, PRAME, KK-LC-1) in breast cancer and find a possible universal target for breast cancer. The secondary objective was to assess the prognostic value of the five CTAs.

Materials and methods

Study population

A total of 137 archived breast cancer tissue specimens were obtained and detected at Drum Tower Hospital Medical School of Nanjing University. All of the enrolled patients have undergone curative resection, and all of the specimens were formalin-fixed and paraffin-embedded in 2018–2021. The histological slides were reviewed, and the diagnosis of breast cancer was confirmed by at least two pathologists. Among the 137 patients, there were 51 triple-negative breast cancer (TNBC) specimens and 86 other types of breast cancer (non-TNBC) specimens. All cases were examined for MAGE-A4, MAGE-A1, NY-ESO-1, KK-LC-1 and PRAME expression by immunohistochemistry (IHC).
Disease-free survival (DFS) was calculated from the time of the primary surgery to the occurrence of the first locoregional recurrence or distant metastasis.

Tissue microarrays

Tissue microarrays (TMA) containing multiple human breast cancer tissues were obtained from the paraffin tissue blocks. Each sample point is 1.5 mm in diameter, and the thickness of the tissue section was 4 μm.

Immunohistochemistry

Five cancer-testis antigens were analyzed by IHC, including MAGE-A4, MAGE-A1, NY-ESO-1, KK-LC-1 and PRAME. Hematoxylin and eosin (H&E) staining was performed to calculate TILs as well as to outline the tumor tissue location for TMA sampling. Slices were placed in Tris–EDTA buffer (pH = 9.0) for antigen repair in a microwave. Primary antibodies were used to probe the samples at 4 °C overnight. After being washed with PBS, the slices were incubated with a secondary antibody at room temperature for 30 min. Then, the slices were stained with diaminobenzidine and counterstained with hematoxylin. The following antibodies were used: NY-ESO-1 monoclonal antibody (1:1600, E978, Santa Cruz); MAGE-A1 monoclonal antibody (1:100, MA511338, Thermo Fisher); MAGE-A4 monoclonal antibody (1:200, Ab139297, Abcam); PRAME monoclonal antibody (1:16,000, Ab219650, Abcam); and KK-LC-1 monoclonal antibody (1:400, MA524711, Thermo Fisher). Archived normal human testis tissue was used as a positive control.

Immunohistochemical scoring of CTAs

The protein expression of CTAs was estimated using a semiquantitative scoring system described as immunohistochemical score (Domfeh et al. 14). Both the degree of staining and the proportion of stained cells were assessed. The degree of staining (0 = negative staining,1 +  = weak staining, 2 +  = moderate staining, 3 +  = strong staining) is then multiplied by the proportion of stained cells (1 =  ≤ 10% positive, 2 =  > 10% and ≤ 50% positive, 3 =  > 50% and ≤ 80% positive and 4 =  > 80% positive). The final score was ranked as follows: 0 + IHC stain(≤ 3), 1 + IHC stain(> 3 and ≤ 6), 2 + IHC stain(> 6 and ≤ 9), 3 + IHC stain(> 9 and ≤ 12). 3 + IHC stain represented high expression, 2 + IHC stain represented moderate expression, 1 + IHC stain represented weak expression, and 0 + IHC stain represented negative expression.

Evaluation of the expression of PD-L1 and TILs

Programmed death ligand 1 (PD-L1) on tumor cells (TC) and immune cells (IC) of the 137 breast cancer specimens was evaluated on SP142 assay by the department of Pathology. The assessment of tumor-infiltrating lymphocytes (TILs) was performed and calculated on H&E according to the previously described method (0 ~ 10% stromal TILs as low TILs, 10 ~ 50% as moderate TILs, 50 ~ 100% as high TILs) (Salgado et al. 34).

Kaplan–Meier survival curve analysis

GSE16446 containing the information of 120 BRCA patients was assessed using the Kaplan–Meier plotter (kmplot.com/analysis) up to May 23, 2023. Log-rank P values were determined on the webpage.

Statistical analysis

All the statistical analyses were performed using the SPSS 26 software package. CTA expression among groups was evaluated using the corrected chi-square test or Pearson chi square test. The Tau-b test was used for evaluation of the relationships between CTA expression and clinicopathological characteristics, PD-L1 and TILs. Survival probabilities were calculated by the Kaplan–Meir method. P values that were less than 0.05 were considered to be statistically significant. All tests were two-sided.

Results

Patient characteristics

From 2018 to 2021, a total of 137 pT1-3 pN0-3 M0 early breast cancer patients were enrolled. The descriptive characteristics are tabulated (Table 1). Tumor stages were pT1-2 for 132 patients and pT3-4 for 5 patients. Nodal invasion was detected in 77 patients, while 60 were examined as pN0. According to the WHO grades, 73 tumors were classified as grade III, 54 were grade II, and 10 were grade I (Table 1).
Table 1
Baseline pathological characteristics of all patients
 
TNBC
Non-TNBC
Gender
 Female
51
100.0%
86
100.0%
 Male
0
0.0%
0
0.0%
Age
  > 51
31
60.8%
49
57.0%
  ≤ 50
20
39.2%
37
43.0%
WHO grade
 I
0
0.0%
10
11.6%
 II
11
21.6%
43
50.0%
 III
40
78.4%
33
38.4%
AJCC 8th
T
 I–II
50
98.0%
82
95.3%
 III–IV
1
2.0%
4
4.7%
N
 –
27
52.9%
33
38.4%
 + 
24
47.1%
53
61.6%
M
 0
51
100.0%
85
98.8%
 1
0
0.0%
0
0.0%
 Unknown
0
0.0%
1
1.2%
Neuroinvasion
 –
48
94.1%
72
83.7%
 + 
3
5.9%
14
16.3%
Lymphovascular invasion
 –
30
58.8%
56
65.1%
 + 
21
41.2%
30
34.9%
ER
 –
51
100.0%
12
14.0%
 + 
0
0.0%
74
86.0%
PR
 –
51
100.0%
23
26.7%
 + 
0
0.0%
53
61.6%
Her-2
 –
51
100.0%
60
69.8%
 + 
0
0.0%
26
30.2%

Immunohistochemical expression of CTAs in breast cancer

Expression levels of MAGE-A1, MAGE-A4, NY-ESO-1, KK-LC-1 and PRAME were examined by IHC. The expression pattern was heterogeneous, ranging from 0 + to 3 + (Fig. 1). The expression of CTAs in TNBC and non-TNBC is summarized and analyzed in Table 2, and the heat map shows the immunohistochemical scoring for each one of the samples (Fig. 2). MAGE-A4 expression (immunohistochemical scoring > 0) was found in 15 (29.41%) TNBCs, but only in 10 (11.63%) non-TNBCs (P = 0.012). NY-ESO-1 was documented in 6 (11.76%) in TNBC while 0 in non-TNBC (P = 0.005). KK-LC-1 was expressed in 30 (58.82%) in TNBC but only in 1 (1.16%) in non-TNBC (P < 0.001). MAGE-A1 and PRAME were non-significantly different between the two groups with 2.92% and 27.01% in breast cancer, respectively. All TNBC tissues did not express MAGE-A1 and only four non-TNBC expressed MAGE-A1. Among the five CTAs, 49.64% of breast tumors expressed at least one. There were 76.47% TNBC tumors expressing at least one CTA compared to 33.72% in non-TNBC (P < 0.001). There were 7 TNBC tumors that expressed more than 3 CTAs, compared to only one case of non-TNBC expressing three CTAs at the same time (P = 0.008). Overall, the expression frequency of CTAs in TNBC was higher than that detected in non-TNBC. A panel of four CTAs (MAGE-A4, NY-ESO-1, KK-LC-1 and PRAME) covers 76.47% of TNBC tumors at the protein level.
Table 2
Expression of the five CTAs in TNBC and non-TNBC tumors
 
BC
TNBC
Non-TNBC
P
N
%
N
%
N
%
MAGE-A4
25
18.25%
15
29.41%
10
11.63%
0.012*
MAGE-A1
4
2.92%
0
0.00%
4
4.65%
0.299
NY-ESO-1
6
4.38%
6
11.76%
0
0.00%
0.005**
KK-LC-1
31
22.63%
30
58.82%
1
1.16%
 < 0.001***
PRAME
37
27.01%
12
23.53%
25
29.07%
0.553
CTA ≥ 1
68
49.64%
39
76.47%
29
33.72%
 < 0.001***
CTA ≥ 2
27
19.71%
17
33.33%
10
11.63%
0.003**
CTA ≥ 3
8
5.84%
7
13.73%
1
1.16%
0.008**
P values were calculated by two-tailed unpaired Student’s t tests. *P < 0.05, **P < 0.01, ***P < 0.001

Correlation between CTAs expression and biomarkers for immunotherapy

The relationship between every two CTA expressions was compared. MAGE-A4 and NY-ESO-1 protein expression levels demonstrated a positive correlation (r = 0.303 p < 0.001). There was also a correlation between the expression of MAGEA4 and PRAME (r = 0.303 p < 0.001) (Table 3). We further provide insight into the co-expression between CTA expression, PD-L1 expression and TILs. Unfortunately, we failed to find any statistically significant relationship between CTAs and PD-L1/TILs.
Table 3
Correlation among CTAs and PD-L1/TILs
 
MAGE-A4
MAGE-A1
NY-ESO-1
KK-LC-1
PRAME
PD-L1 TC
PD-L1 IC
TILs
MAGE-A4
R = 1.000
R = 0.020, P = 0.812
R = 0.303, P < 0.001***
R = 0.081, P = 0.314
R = 0.303, P < 0.001***
R = 0.226, P = 0.007**
R = 0.094, P = 0.257
R = − 0.023, P = 0.784
MAGE-A1
 
R = 1.000
R = − 0.036, P = 0.665
R =− 0.089, P = 0.279
R = 0.185, P = 0.025*
R = 0.036, P = 0.669
R = − 0.058, P = 0.497
R = 0.066, P = 0.438
NY-ESO-1
  
R = 1.000
R = 0.077, P = 0.35
R = 0.013, P = 0.871
R = − 0.003, P = 0.968
R = 0.075, P = 0.379
R = 0.162, P = 0.058
KK-LC-1
   
R = 1.000
R = 0.051, P = 0.525
R = 0.229, P = 0.006**
R = 0.194, P = 0.019*
R = 0.094, P = 0.258
PRAME
    
R = 1.000
R = 0.233, P = 0.005**
R = − 0.015, P = 0.854
R = 0.005, P = 0.950
*P < 0.05, **P < 0.01, ***P < 0.001

Expression of CTAs indicates higher grade of pathology

Our studies have shown that MAGE-A4, MAGE-A1, NY-ESO-1 and KK-LC-1 expression was associated with WHO grades (P = 0.041, P = 0.023, P = 0.023 and P < 0.001, respectively). Positive expression of MAGE-A4, NY-ESO-1 and KK-LC-1 suggested a higher histological grade of breast cancer (Table 4). However, there was no significant relationship between the CTA expression and other clinical factors, including age, lymph node status, tumor size, lymphovascular invasion, or neuroinvasion.
Table 4
CTAs expression in subgroups
Characteristic
Patients
MAGE-A4
P
MAGE-A1
P
NY-ESO-1
P
KK-LC-1
P
PRAME
P
 + 
 + 
 + 
 + 
 + 
Age
   
0.185
  
0.748
  
0.198
  
0.328
  
0.670
  > 51
40
18
62
2
78
5
75
16
64
21
59
  ≤ 50
57
7
50
2
55
1
56
15
42
16
41
WHO grade
   
0.041*
  
0.023*
  
0.023*
  
< 0.001***
  
0.935
 I
10
0
10
1
9
0
10
0
10
2
8
 II
54
8
46
3
51
0
54
4
50
16
38
 III
73
17
56
0
73
6
67
27
46
19
54
T
   
0.980
  
0.694
  
0.627
  
0.224
  
0.653
 I–II
132
24
108
4
128
6
126
31
101
36
96
 III–IV
5
1
4
0
5
0
5
0
5
1
4
N
   
0.501
  
0.430
  
0.260
  
0.081
  
0.770
 –
60
12
48
1
59
4
56
18
42
17
43
 + 
77
13
64
3
74
2
75
13
64
20
57
Neuroinvasion
   
0.814
  
0.443
  
0.343
  
0.215
  
0.684
 –
118
22
96
4
114
6
112
29
89
32
86
 + 
19
3
16
0
19
0
19
2
17
5
14
Lymphovascular invasion
   
0.468
  
0.586
  
0.820
  
0.215
  
0.487
 –
85
14
71
2
83
4
81
17
68
24
61
 + 
52
11
41
2
50
2
50
14
38
13
39
P values were calculated by two-tailed unpaired Student’s t tests. *P < 0.05, ***P < 0.001

Prognostic effect of CTA expression

All 137 patients were followed up for a median of 27.9 months, and no single CTA has been found to be related to disease-free survival. Further analysis identified that positive expression of MAGE-A4 or PRAME significantly extended DFS (23.13 months vs 21.83 months P = 0.047, Fig. 3A). No significant correlation with other prognostically relevant markers was observed in this subset. Data generated by Kaplan–Meier plotter (kmplot.com) also confirm our findings (Fig. 3B). The expression on the mRNA level of either MAGE-A4 or PRAME may indicate a longer DFS (P = 0.044). Moreover, 176 TNBC patients with high RNA expression for either of the 4 CTAs (all except for MAGE-A1) from the Kaplan–Meier plotter tended to have a longer DFS (57 months vs 30.42 months) (Fig. 3C). Therefore, these results motivated us to further evaluate CTAs as a potential prognostic biomarker in TNBC.

Discussion

In this study, CTAs expression was assessed in 137 breast cancer samples by IHC. Our results showed that MAGE-A4, NY-ESO-1 and KK-LC-1 were overexpressed in TNBC at the protein level, which is consistent with the results of several other studies (Chen et al. 9; Curigliano et al. 10; Kondo et al. 24; Raghavendra et al. 31). In contrast, we did not find a significantly higher expression of PRAME in TNBC as reported in the previous study (Curigliano et al. 10). Such differences can be partly explained by the heterogeneity of tumors and the limited size of the TMA sample. The low detection of MAGE-A1 differed from the 31% positive reported by Fujie et al. (18). This may be caused by differences in gene expression at the RNA and protein levels. The expression of NY-ESO-1 was found to be correlated with a higher level of tumor-infiltrating lymphocytes (Lee et al. 26), which was not confirmed in our study, probably due to the few positive cases. Further research is required because the expression of the CTAs was only identified at the protein level. An additional detection route for CTAs expression would be interesting.
Critical factors that affect the treatment efficacy of cancer immunotherapy comprise issues like the nature of tumor antigens, the quality of immune responses, and the immune microenvironment (Benvenuto et al. 7). In terms of enhancing the incidence and extent of the response while decreasing the likelihood of cancer progression in TNBC patients, ICBs have demonstrated potential efficacy when combined with chemotherapy (Qi et al. 30). Major challenges associated with ICBs are the primary resistance with only a few patients responding to this treatment, and the secondary resistance which resulted in a few patients experiencing long-lasting benefits as a consequence of the treatment (Dammeijer et al. 11). Therapeutic cancer vaccines demonstrated a potential effect to reverse resistance against ICBs in tumors like melanoma and lung cancer, which indicates a promising treatment model that combines both ICBs and vaccines (Fourcade et al. 17; Hannani et al. 20). Adoptive cell therapy is another important type of targeted immunotherapy. T-cell receptor (TCR)-transduced T cells targeting KRAS G12D also demonstrated great potential in tumor control (Leidner et al. 28). An antigen targeted T cell therapy against CTAs demonstrates promising results in antigen positive breast cancer patients (Hoyos et al. 22). Thus, a panel of universal tumor specific targets with high specificity and immunogenicity covering as many breast cancer patients as possible will have great application prospects.
CTAs expression is normally mainly restricted to the testis and placenta (Fan et al. 16; Simpson et al. 36). Among these CTAs, MAGE-A4 and NY-ESO-1 were most successfully applied for their excellent immunogenicity (Ebert et al. 15; Maxfield et al. 29; Saito et al. 33). The immunogenicity of PRAME has long been found in melanoma (LaVoy et al. 25), while the immunogenic KK-LC-1 peptide restricted by HLA-B62 and HLA-A2 was discovered in lung adenocarcinoma (Fukuyama et al. 19). The tumor specificity and immunogenicity of CTAs warrant us to explore the feasibility of designing a universal panel of CTAs to be immunotherapy targets. Our results indicated that 76.47% of TNBC expressed at least one CTA from MAGE-A4, NY-ESO-1, KK-LC-1 and PRAME.
Besides, CTAs are also found to be potential biomarkers for prognosis. A previous study suggests that PRAME positivity may be associated with a lower risk of early metastasis of TNBC (See et al. 35). Sun et al. found PRAME inhibits the growth of breast cancer in a mouse model (Sun et al. 37). NY-ESO-1 is associated with a better prognosis in 1234 TNBC samples (Lee et al. 26). Mirko Samija et al. observed patients with MAGE-A4-positive owned a significantly longer survival in women diagnosed as invasive ductal breast cancer (Bandić et al. 6). Few researches have been conducted on KK-LC-1, and a bioinformatic analysis showed that high KK-LC-1 expression was associated with poorer overall survival (Chen et al. 9). Our results did not suggest a statistically significant association of these CTAs with prognosis, probably due to the fact that the follow-up was not long enough. However, PRAME combined with MAGE-A4 seems to be inversely correlated with recurrence. Our study also showed a trend toward better DFS in patients with any CTAs positive for MAGE-A4, NY-ESO-1, KK-LC-1 and PRAME. No studies have proven CTAs expression as a driver event in tumorigenesis. The positive expression of CTAs may be the result of coordinated gene expression as it signals poor tumor differentiation (Brightwell et al. 8; Curigliano et al. 10). This is consistent with our finding that CTAs expression is associated with a higher pathological grade.
The suppressive cells and cytokines in the tumor microenvironment, as well as checkpoint molecules expressed on the tumor and infiltrating immune cells, eventually affect the long-term survival of the tumor (Hui and Chen 23). PD-L1 positivity is a recognized biomarker for current immunotherapy in clinical practice (Ahn and Kim 3; Reis et al. 32). Here, we attempted to explore the association between CTAs expression and PD-L1 in the tumor microenvironment and failed to documented a positive interlink. We further explored the association between CTAs expression and TILs, but unfortunately, no significant relationship was observed.
It could prospect that further research will focus on vaccines covering the epitopes of the four CTAs. On the other hand, universal TCR-T cell therapy targeting the four CTAs could also be a candidate treatment for TNBC.

Conclusion

In this study, we detected the five CTAs protein expression in BC and found that TNBC had a higher frequency of expression. On top of this, we identified a panel of four CTAs, MAGE-A4, NY-ESO-1, PRAME and KK-LC-1, expressed in 76.47% of TNBC tumors. Breast cancer patients with positive expression for either MAGE-A4 or PRAME have extended disease-free survival. It could be presumed that vaccines or adoptive immune cells targeting the four CTAs may shed new light on the future TNBC treatment.

Acknowledgements

This study was funded by the National Youth Science Foundation of China. (No. 82002783) The funder played no role in study design, data collection, analysis and interpretation of data, or the writing of this manuscript.

Declarations

Conflict of interest

All authors declare no financial or non-financial competing interests.
All authors declare that this work has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki). The Medical Ethics Committee of Drum Tower Hospital Affiliated to Nanjing University Medical School approved the study’s research protocol (2023-152-01). Informed consent and authorization were obtained from the patients for the use of their tumor tissues for research purposes.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Jetzt bestellen und 100 € sparen!

Literatur
Zurück zum Zitat Adams S, Greeder L, Reich E, Shao Y, Fosina D et al (2011) Expression of cancer testis antigens in human BRCA-associated breast cancers: potential targets for immunoprevention? Cancer Immunol Immunother 60:999–1007CrossRefPubMedPubMedCentral Adams S, Greeder L, Reich E, Shao Y, Fosina D et al (2011) Expression of cancer testis antigens in human BRCA-associated breast cancers: potential targets for immunoprevention? Cancer Immunol Immunother 60:999–1007CrossRefPubMedPubMedCentral
Zurück zum Zitat Ademuyiwa FO, Bshara W, Attwood K, Morrison C, Edge SB et al (2012) NY-ESO-1 cancer testis antigen demonstrates high immunogenicity in triple negative breast cancer. PLoS ONE 7:e38783CrossRefPubMedPubMedCentral Ademuyiwa FO, Bshara W, Attwood K, Morrison C, Edge SB et al (2012) NY-ESO-1 cancer testis antigen demonstrates high immunogenicity in triple negative breast cancer. PLoS ONE 7:e38783CrossRefPubMedPubMedCentral
Zurück zum Zitat Ahn S, Kim KM (2021) PD-L1 expression in gastric cancer: interchangeability of 22C3 and 28–8 pharmDx assays for responses to immunotherapy. Mod Pathol 34:1719–1727CrossRefPubMed Ahn S, Kim KM (2021) PD-L1 expression in gastric cancer: interchangeability of 22C3 and 28–8 pharmDx assays for responses to immunotherapy. Mod Pathol 34:1719–1727CrossRefPubMed
Zurück zum Zitat Albertsmeier M, Altendorf-Hofmann A, Lindner LH, Issels RD, Kampmann E et al (2020) Cancer testis antigens and immunotherapy: expression of PRAME is associated with prognosis in soft tissue sarcoma. Cancers (basel) 12(12):3612CrossRefPubMed Albertsmeier M, Altendorf-Hofmann A, Lindner LH, Issels RD, Kampmann E et al (2020) Cancer testis antigens and immunotherapy: expression of PRAME is associated with prognosis in soft tissue sarcoma. Cancers (basel) 12(12):3612CrossRefPubMed
Zurück zum Zitat Balafoutas D, zur Hausen A, Mayer S, Hirschfeld M, Jaeger M et al (2013) Cancer testis antigens and NY-BR-1 expression in primary breast cancer: prognostic and therapeutic implications. BMC Cancer 13:271CrossRefPubMedPubMedCentral Balafoutas D, zur Hausen A, Mayer S, Hirschfeld M, Jaeger M et al (2013) Cancer testis antigens and NY-BR-1 expression in primary breast cancer: prognostic and therapeutic implications. BMC Cancer 13:271CrossRefPubMedPubMedCentral
Zurück zum Zitat Bandić D, Juretić A, Sarcević B, Separović V, Kujundzić-Tiljak M et al (2006) Expression and possible prognostic role of MAGE-A4, NY-ESO-1, and HER-2 antigens in women with relapsing invasive ductal breast cancer: retrospective immunohistochemical study. Croat Med J 47:32–41PubMedPubMedCentral Bandić D, Juretić A, Sarcević B, Separović V, Kujundzić-Tiljak M et al (2006) Expression and possible prognostic role of MAGE-A4, NY-ESO-1, and HER-2 antigens in women with relapsing invasive ductal breast cancer: retrospective immunohistochemical study. Croat Med J 47:32–41PubMedPubMedCentral
Zurück zum Zitat Benvenuto M, Focaccetti C, Izzi V, Masuelli L, Modesti A et al (2021) Tumor antigens heterogeneity and immune response-targeting neoantigens in breast cancer. Semin Cancer Biol 72:65–75CrossRefPubMed Benvenuto M, Focaccetti C, Izzi V, Masuelli L, Modesti A et al (2021) Tumor antigens heterogeneity and immune response-targeting neoantigens in breast cancer. Semin Cancer Biol 72:65–75CrossRefPubMed
Zurück zum Zitat Brightwell RM, Grzankowski KS, Lele S, Eng K, Arshad M et al (2016) The CD47 “don’t eat me signal” is highly expressed in human ovarian cancer. Gynecol Oncol 143:393–397CrossRefPubMedPubMedCentral Brightwell RM, Grzankowski KS, Lele S, Eng K, Arshad M et al (2016) The CD47 “don’t eat me signal” is highly expressed in human ovarian cancer. Gynecol Oncol 143:393–397CrossRefPubMedPubMedCentral
Zurück zum Zitat Chen C, Gao D, Huo J, Qu R, Guo Y et al (2021) Multiomics analysis reveals CT83 is the most specific gene for triple negative breast cancer and its hypomethylation is oncogenic in breast cancer. Sci Rep 11:12172CrossRefPubMedPubMedCentral Chen C, Gao D, Huo J, Qu R, Guo Y et al (2021) Multiomics analysis reveals CT83 is the most specific gene for triple negative breast cancer and its hypomethylation is oncogenic in breast cancer. Sci Rep 11:12172CrossRefPubMedPubMedCentral
Zurück zum Zitat Curigliano G, Bagnardi V, Ghioni M, Louahed J, Brichard V et al (2020) Expression of tumor-associated antigens in breast cancer subtypes. Breast 49:202–209CrossRefPubMed Curigliano G, Bagnardi V, Ghioni M, Louahed J, Brichard V et al (2020) Expression of tumor-associated antigens in breast cancer subtypes. Breast 49:202–209CrossRefPubMed
Zurück zum Zitat Dammeijer F, Lau SP, van Eijck CHJ, van der Burg SH, Aerts J (2017) Rationally combining immunotherapies to improve efficacy of immune checkpoint blockade in solid tumors. Cytokine Growth Factor Rev 36:5–15CrossRefPubMed Dammeijer F, Lau SP, van Eijck CHJ, van der Burg SH, Aerts J (2017) Rationally combining immunotherapies to improve efficacy of immune checkpoint blockade in solid tumors. Cytokine Growth Factor Rev 36:5–15CrossRefPubMed
Zurück zum Zitat D’Angelo SP, Melchiori L, Merchant MS, Bernstein D, Glod J et al (2018) Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 (c259)T cells in synovial sarcoma. Cancer Discov 8:944–957CrossRefPubMedPubMedCentral D’Angelo SP, Melchiori L, Merchant MS, Bernstein D, Glod J et al (2018) Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 (c259)T cells in synovial sarcoma. Cancer Discov 8:944–957CrossRefPubMedPubMedCentral
Zurück zum Zitat Dillon PM, Petroni GR, Smolkin ME, Brenin DR, Chianese-Bullock KA et al (2017) A pilot study of the immunogenicity of a 9-peptide breast cancer vaccine plus poly-ICLC in early stage breast cancer. J Immunother Cancer 5:92CrossRefPubMedPubMedCentral Dillon PM, Petroni GR, Smolkin ME, Brenin DR, Chianese-Bullock KA et al (2017) A pilot study of the immunogenicity of a 9-peptide breast cancer vaccine plus poly-ICLC in early stage breast cancer. J Immunother Cancer 5:92CrossRefPubMedPubMedCentral
Zurück zum Zitat Domfeh AB, Carley AL, Striebel JM, Karabakhtsian RG, Florea AV et al (2008) WT1 immunoreactivity in breast carcinoma: selective expression in pure and mixed mucinous subtypes. Mod Pathol 21:1217–1223CrossRefPubMed Domfeh AB, Carley AL, Striebel JM, Karabakhtsian RG, Florea AV et al (2008) WT1 immunoreactivity in breast carcinoma: selective expression in pure and mixed mucinous subtypes. Mod Pathol 21:1217–1223CrossRefPubMed
Zurück zum Zitat Ebert LM, Liu YC, Clements CS, Robson NC, Jackson HM et al (2009) A long, naturally presented immunodominant epitope from NY-ESO-1 tumor antigen: implications for cancer vaccine design. Cancer Res 69:1046–1054CrossRefPubMed Ebert LM, Liu YC, Clements CS, Robson NC, Jackson HM et al (2009) A long, naturally presented immunodominant epitope from NY-ESO-1 tumor antigen: implications for cancer vaccine design. Cancer Res 69:1046–1054CrossRefPubMed
Zurück zum Zitat Fan C, Qu H, Wang X, Sobhani N, Wang L et al (2021) Cancer/testis antigens: from serology to mRNA cancer vaccine. Semin Cancer Biol 76:218–231CrossRefPubMed Fan C, Qu H, Wang X, Sobhani N, Wang L et al (2021) Cancer/testis antigens: from serology to mRNA cancer vaccine. Semin Cancer Biol 76:218–231CrossRefPubMed
Zurück zum Zitat Fourcade J, Sun Z, Pagliano O, Chauvin JM, Sander C et al (2014) PD-1 and Tim-3 regulate the expansion of tumor antigen-specific CD8+ T cells induced by melanoma vaccines. Cancer Res 74:1045–1055CrossRefPubMed Fourcade J, Sun Z, Pagliano O, Chauvin JM, Sander C et al (2014) PD-1 and Tim-3 regulate the expansion of tumor antigen-specific CD8+ T cells induced by melanoma vaccines. Cancer Res 74:1045–1055CrossRefPubMed
Zurück zum Zitat Fujie T, Mori M, Ueo H, Sugimachi K, Akiyoshi T (1997) Expression of MAGE and BAGE genes in Japanese breast cancers. Ann Oncol 8:369–372CrossRefPubMed Fujie T, Mori M, Ueo H, Sugimachi K, Akiyoshi T (1997) Expression of MAGE and BAGE genes in Japanese breast cancers. Ann Oncol 8:369–372CrossRefPubMed
Zurück zum Zitat Fukuyama T, Hanagiri T, Takenoyama M, Ichiki Y, Mizukami M et al (2006) Identification of a new cancer/germline gene, KK-LC-1, encoding an antigen recognized by autologous CTL induced on human lung adenocarcinoma. Cancer Res 66:4922–4928CrossRefPubMed Fukuyama T, Hanagiri T, Takenoyama M, Ichiki Y, Mizukami M et al (2006) Identification of a new cancer/germline gene, KK-LC-1, encoding an antigen recognized by autologous CTL induced on human lung adenocarcinoma. Cancer Res 66:4922–4928CrossRefPubMed
Zurück zum Zitat Hannani D, Leplus E, Laurin D, Caulier B, Aspord C et al (2023) A new plasmacytoid dendritic cell-based vaccine in combination with anti-PD-1 expands the tumor-specific CD8+ T cells of lung cancer patients. Int J Mol Sci 24(3):1897CrossRefPubMedPubMedCentral Hannani D, Leplus E, Laurin D, Caulier B, Aspord C et al (2023) A new plasmacytoid dendritic cell-based vaccine in combination with anti-PD-1 expands the tumor-specific CD8+ T cells of lung cancer patients. Int J Mol Sci 24(3):1897CrossRefPubMedPubMedCentral
Zurück zum Zitat Hont AB, Cruz CR, Ulrey R, O’Brien B, Stanojevic M et al (2019) Immunotherapy of relapsed and refractory solid tumors with ex vivo expanded multi-tumor associated antigen specific cytotoxic T lymphocytes: a phase I study. J Clin Oncol 37:2349–2359CrossRefPubMedPubMedCentral Hont AB, Cruz CR, Ulrey R, O’Brien B, Stanojevic M et al (2019) Immunotherapy of relapsed and refractory solid tumors with ex vivo expanded multi-tumor associated antigen specific cytotoxic T lymphocytes: a phase I study. J Clin Oncol 37:2349–2359CrossRefPubMedPubMedCentral
Zurück zum Zitat Hoyos V, Vasileiou S, Kuvalekar M, Watanabe A, Tzannou I et al (2022) Multi-antigen-targeted T-cell therapy to treat patients with relapsed/refractory breast cancer. Ther Adv Med Oncol 14:17588359221107112CrossRefPubMedPubMedCentral Hoyos V, Vasileiou S, Kuvalekar M, Watanabe A, Tzannou I et al (2022) Multi-antigen-targeted T-cell therapy to treat patients with relapsed/refractory breast cancer. Ther Adv Med Oncol 14:17588359221107112CrossRefPubMedPubMedCentral
Zurück zum Zitat Kondo Y, Fukuyama T, Yamamura R, Futawatari N, Ichiki Y et al (2018) Detection of KK-LC-1 protein, a cancer/testis antigen, in patients with breast cancer. Anticancer Res 38:5923–5928CrossRefPubMed Kondo Y, Fukuyama T, Yamamura R, Futawatari N, Ichiki Y et al (2018) Detection of KK-LC-1 protein, a cancer/testis antigen, in patients with breast cancer. Anticancer Res 38:5923–5928CrossRefPubMed
Zurück zum Zitat LaVoy EC, Bollard CM, Hanley PJ, Blaney JW, O’Connor DP et al (2015) A single bout of dynamic exercise enhances the expansion of MAGE-A4 and PRAME-specific cytotoxic T-cells from healthy adults. Exerc Immunol Rev 21:144–153PubMed LaVoy EC, Bollard CM, Hanley PJ, Blaney JW, O’Connor DP et al (2015) A single bout of dynamic exercise enhances the expansion of MAGE-A4 and PRAME-specific cytotoxic T-cells from healthy adults. Exerc Immunol Rev 21:144–153PubMed
Zurück zum Zitat Lee HJ, Kim JY, Song IH, Park IA, Yu JH et al (2015) Expression of NY-ESO-1 in triple-negative breast cancer is associated with tumor-infiltrating lymphocytes and a good prognosis. Oncology 89:337–344CrossRefPubMed Lee HJ, Kim JY, Song IH, Park IA, Yu JH et al (2015) Expression of NY-ESO-1 in triple-negative breast cancer is associated with tumor-infiltrating lymphocytes and a good prognosis. Oncology 89:337–344CrossRefPubMed
Zurück zum Zitat Leidner R, Sanjuan Silva N, Huang H, Sprott D, Zheng C et al (2022) Neoantigen T-cell receptor gene therapy in pancreatic cancer. N Engl J Med 386:2112–2119CrossRefPubMedPubMedCentral Leidner R, Sanjuan Silva N, Huang H, Sprott D, Zheng C et al (2022) Neoantigen T-cell receptor gene therapy in pancreatic cancer. N Engl J Med 386:2112–2119CrossRefPubMedPubMedCentral
Zurück zum Zitat Maxfield KE, Taus PJ, Corcoran K, Wooten J, Macion J et al (2015) Comprehensive functional characterization of cancer-testis antigens defines obligate participation in multiple hallmarks of cancer. Nat Commun 6:8840CrossRefPubMed Maxfield KE, Taus PJ, Corcoran K, Wooten J, Macion J et al (2015) Comprehensive functional characterization of cancer-testis antigens defines obligate participation in multiple hallmarks of cancer. Nat Commun 6:8840CrossRefPubMed
Zurück zum Zitat Qi Y, Zhang W, Jiang R, Xu O, Kong X et al (2022) Efficacy and safety of PD-1 and PD-L1 inhibitors combined with chemotherapy in randomized clinical trials among triple-negative breast cancer. Front Pharmacol 13:960323CrossRefPubMedPubMedCentral Qi Y, Zhang W, Jiang R, Xu O, Kong X et al (2022) Efficacy and safety of PD-1 and PD-L1 inhibitors combined with chemotherapy in randomized clinical trials among triple-negative breast cancer. Front Pharmacol 13:960323CrossRefPubMedPubMedCentral
Zurück zum Zitat Raghavendra A, Kalita-de Croft P, Vargas AC, Smart CE, Simpson PT et al (2018) Expression of MAGE-A and NY-ESO-1 cancer/testis antigens is enriched in triple-negative invasive breast cancers. Histopathology 73:68–80CrossRefPubMedPubMedCentral Raghavendra A, Kalita-de Croft P, Vargas AC, Smart CE, Simpson PT et al (2018) Expression of MAGE-A and NY-ESO-1 cancer/testis antigens is enriched in triple-negative invasive breast cancers. Histopathology 73:68–80CrossRefPubMedPubMedCentral
Zurück zum Zitat Reis H, Serrette R, Posada J, Lu V, Chen YB et al (2019) PD-L1 expression in urothelial carcinoma with predominant or pure variant histology: concordance among 3 commonly used and commercially available antibodies. Am J Surg Pathol 43:920–927CrossRefPubMedPubMedCentral Reis H, Serrette R, Posada J, Lu V, Chen YB et al (2019) PD-L1 expression in urothelial carcinoma with predominant or pure variant histology: concordance among 3 commonly used and commercially available antibodies. Am J Surg Pathol 43:920–927CrossRefPubMedPubMedCentral
Zurück zum Zitat Saito T, Wada H, Yamasaki M, Miyata H, Nishikawa H et al (2014) High expression of MAGE-A4 and MHC class I antigens in tumor cells and induction of MAGE-A4 immune responses are prognostic markers of CHP-MAGE-A4 cancer vaccine. Vaccine 32:5901–5907CrossRefPubMed Saito T, Wada H, Yamasaki M, Miyata H, Nishikawa H et al (2014) High expression of MAGE-A4 and MHC class I antigens in tumor cells and induction of MAGE-A4 immune responses are prognostic markers of CHP-MAGE-A4 cancer vaccine. Vaccine 32:5901–5907CrossRefPubMed
Zurück zum Zitat Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F et al (2015) The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 26:259–271CrossRefPubMed Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F et al (2015) The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 26:259–271CrossRefPubMed
Zurück zum Zitat See SHC, Smith SH, Finkelman BS, LaBoy C, Novo JE et al (2023) The role of PRAME and NY-ESO-1 as potential therapeutic and prognostic biomarkers in triple-negative breast carcinomas. Pathol Res Pract 241:154299CrossRefPubMed See SHC, Smith SH, Finkelman BS, LaBoy C, Novo JE et al (2023) The role of PRAME and NY-ESO-1 as potential therapeutic and prognostic biomarkers in triple-negative breast carcinomas. Pathol Res Pract 241:154299CrossRefPubMed
Zurück zum Zitat Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ (2005) Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 5:615–625CrossRefPubMed Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ (2005) Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 5:615–625CrossRefPubMed
Zurück zum Zitat Sun Z, Wu Z, Zhang F, Guo Q, Li L et al (2016) PRAME is critical for breast cancer growth and metastasis. Gene 594:160–164CrossRefPubMed Sun Z, Wu Z, Zhang F, Guo Q, Li L et al (2016) PRAME is critical for breast cancer growth and metastasis. Gene 594:160–164CrossRefPubMed
Metadaten
Titel
Expression of four cancer-testis antigens in TNBC indicating potential universal immunotherapeutic targets
verfasst von
Jie Xiao
Fengli Huang
Lin Li
Lianru Zhang
Li Xie
Baorui Liu
Publikationsdatum
23.08.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Cancer Research and Clinical Oncology / Ausgabe 16/2023
Print ISSN: 0171-5216
Elektronische ISSN: 1432-1335
DOI
https://doi.org/10.1007/s00432-023-05274-0

Weitere Artikel der Ausgabe 16/2023

Journal of Cancer Research and Clinical Oncology 16/2023 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.