Skip to main content
Erschienen in: Journal of Cancer Research and Clinical Oncology 3/2024

Open Access 01.03.2024 | Research

Development of a nomogram to predict the prognosis of patients with secondary bone tumors in the intensive care unit: a retrospective analysis based on the MIMIC IV database

verfasst von: Weikang Li, Jinliang Li, Jinkui Cai

Erschienen in: Journal of Cancer Research and Clinical Oncology | Ausgabe 3/2024

Abstract

Purpose

The present study aimed to develop a nomogram to predict the prognosis of patients with secondary bone tumors in the intensive care unit to facilitate risk stratification and treatment planning.

Methods

We used the MIMIC IV 2.0 (the Medical Information Mart for Intensive Care IV) to retrieve patients with secondary bone tumors as a study cohort. To evaluate the predictive ability of each characteristic on patient mortality, stepwise Cox regression was used to screen variables, and the selected variables were included in the final Cox proportional hazard model. Finally, the performance of the model was tested using the decision curve, calibration curve, and receiver operating characteristic (ROC) curve.

Results

A total of 1028 patients were enrolled after excluding cases with missing information. In the training cohort, albumin, APSIII (Acute Physiology Score III), chemotherapy, lactate, chloride, hepatic metastases, respiratory failure, SAPSII (Simplified Acute Physiology Score II), and total protein were identified as independent risk factors for patient death and then incorporated into the final model. The model showed good and robust prediction performance.

Conclusion

We developed a nomogram prognostic model for patients with secondary bone tumors in the intensive care unit, which provides effective survival prediction information.
Hinweise
Weikang Li and Jinliang Li contributed equally to this work and share first authorship.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Bone is one of the most common sites of metastasis for malignant tumors, affecting many patients with advanced cancer (Coleman et al. 2020a). Bone metastases often lead to skeletal morbidity called skeletal-related events (SREs) (Moos et al. 2019). In general, SREs reduce overall survival and are associated with loss of mobility and social function, decreased quality of life, and substantial increase in medical costs (Coleman et al. 2020b). In most cases, the treatment of bone metastases focuses on preventing disease progression and alleviating symptoms. And within the context of multidisciplinary supportive care, years of disease control and reduction of the impact of metastatic bone disease on physical function can be achieved (Coleman 2006). Cancer patients require ICU (intensive care unit) admission after cancer progression, surgery, radiotherapy-related complications, or complications from severe acute illness (Soares et al. 2010). Patients with bone metastases are more severely ill and more likely to have complications than cancer patients without bone metastases, and an increased need for medical care (Fornetti et al. 2018; Jimenez-Andrade et al. 2010). Therefore, it is important to identify high-risk patients with poor prognosis in the intensive care unit. It helps clinicians to improve treatment strategies in time to improve the prognosis of patients.
Currently, multiple studies have explored the prognostic factors and established models to predict the prognosis of patients with various types of malignant tumors (Baba et al. 2018; Vichapat et al. 2011; Fang et al. 2020; Gurney et al. 2013; Liu et al. 2016; Mao et al. 2018). Other studies have developed models to predict bone metastasis in patients with malignant tumors (Teng et al. 2020; Ellmann et al. 2019; Hou et al. 2021). Bone metastases are common in patients with malignant tumors, whereas few studies have been conducted with bone metastases as research subjects to explore the prognosis of patients (Guo et al. 2008; Abdelazeem et al. 2022).
The nomogram has been widely used as a predictive method for the prognosis of patients with various diseases (Park 2018; Lv et al. 2021; Hess 2021; Yuan and Wu 2021), and its visual interface allows accurate quantification of the risk of independent risk factors by score. Clinicians can calculate scores from the characteristics on the column line graphs to predict the probability of death or illness of a patient. In this study, a nomogram prognostic model based on Cox proportional hazard model was established by employing a large multicenter database MIMIC IV 2.0 as the data source, and patients with secondary bone tumors in the intensive care unit as the research subjects. The aim was to explore the independent risk factors affecting the prognosis of patients and to facilitate clinicians to identify high-risk patients for more accurate clinical decision-making.

Methods

Study cohort and data

Data were extracted from the MIMIC IV 2.0 database on patients diagnosed with secondary bone tumors according to the International Classification of Diseases codes, Ninth Revision (198.5) and Tenth Revision (C7B.03, C79.5). To improve usability, we have collected routine, readily accessible clinical indicators. The collected data included patient demographics (age, gender, ethnicity), body mass index, comorbidities (cancers, acute kidney injury, hepatic metastases, pulmonary metastasis, brain metastases, acidosis, respiratory failure, heart failure, atrial fibrillation, hypertension), treatment information (chemotherapy, parenteral nutrition, radiotherapy, mechanical ventilation), laboratory results (hematology: atypical lymphocytes, metamyelocytes, mean corpuscular hemoglobin concentration, mean corpuscular volume, mean hemoglobin content; biochemical test: pO2, calculated total CO2, pCO2, pH, base excess, lactate, free calcium; biochemical test: glutamic-pyruvic transaminase, alkaline phosphatase, glutamic oxaloacetic transaminase, creatinine kinase MB, albumin, total protein, anion gap, bicarbonate, calcium, creatinine, chloride, potassium), and prognosis scores(APSIII, SOFA, SAPSII), with cases with missing data excluded. For patients with multiple ICU admissions, we selected data from the first ICU admission of the patient for analysis. In addition, we used data from patients within 24 h of admission to the ICU for the analysis. If the patient had multiple measurements within 24 h of admission to the ICU, the data from the first measurement were used.

Statistical analysis

Each variable was divided into training and validation data sets, with the categorical variables described by percentage (%), non-normally distributed continuous variables expressed using median and quartiles, and normally distributed continuous variables described using mean and standard error [mean (S.E.)]. The chi-square test was adopted to compare differences in categorical variables, and the t-test or Mann–Whitney U test was used to compare differences between two groups of continuous variables. The starting point for follow-up was defined as the time the patient was admitted to the ICU. The primary outcome indicator for this study was the long-term mortality of the patients. Date of death is extracted from two sources: the hospital information system and the Massachusetts State Registry of Vital Records and Statistics. For the training cohort, feature selection was performed using univariate Cox regression and stepwise Cox regression based on AIC (Akaike Information Criterion) with both selections. Variables with P < 0.05 in the univariate analysis were included in the stepwise Cox regression, while variables with P < 0.05 in the stepwise Cox regression were included in the final Cox proportional hazard model, and the corresponding nomogram was generated. The multicollinearity of the variables in the model was detected by calculating the variance inflation factor (VIF), and a VIF higher than 2 was considered to have multicollinearity among the variables. Overall survival at 1 month, 3 months, 1 year, and 3 years was estimated using the nomograms. The discrimination ability of the model was evaluated by the area under the time-dependent receiver operating characteristic curve (time-dependent AUC). The calibration graph was used to assess the agreement between the predicted and actual values of the model. The survival package (version 3.5-7) was used for univariate Cox regression and stepwise Cox regression, the rms package (version 6.7-0) was used for plotting nomogram and calibration curves, the survivalROC package (version 1.0.3.1) was used for plotting ROC curves, and the dcurves package (version 0.4.0.9) was used for plotting decision curves. All statistical analyses were performed using R 4.2.1., with a bilateral P-value < 0.05 considered statistically significant.

Results

Study cohort

A total of 1357 patients with bone metastases admitted to the ICU were identified from the database, and after excluding patients with missing information (N = 329), a total of 1028 patients were finally included in the study (median survival time: 642.50 days). Including 720 in the training cohort (median survival time: 624.00 days) and 308 in the validation cohort (median survival time: 695.50 days) (Table 1).
Table 1
Description of all characteristics
Factors
Overall
Training set
Validation set
P-value
N
1028
720
308
 
 
Survival time (Days)
642.50 [94.00, 2385.00]
624.00 [96.75, 2259.25]
695.50 [80.75, 2562.75]
0.641
Status = Dead (%)
325 (31.6)
229 (31.8)
96 (31.2)
0.898
Gender = Male (%)
583 (56.7)
402 (55.8)
181 (58.8)
0.423
Age (Years)
65.00 [56.00, 74.00]
66.00 [56.00, 75.00]
64.00 [54.75, 73.00]
0.234
Ethnicity (%)
   
0.415
Asian
54 (5.3)
41 (5.7)
13 (4.2)
 
Black
123 (12.0)
91 (12.6)
32 (10.4)
 
Other
114 (11.1)
75 (10.4)
39 (12.7)
 
White
737 (71.7)
513 (71.2)
224 (72.7)
 
BMI (kg/m2)
27.80 [24.40, 31.60]
27.67 [24.40, 31.67]
28.00 [24.48, 31.05]
0.972
Type of cancer (%)
   
0.165
Respiratory system
144 (14.0)
101 (14.0)
43 (14.0)
 
Digestive system
75 (7.3)
47 (6.5)
28 (9.1)
 
Reproductive organ of the male
57 (5.5)
39 (5.4)
18 (5.8)
 
Urinary system
48 (4.7)
38 (5.3)
10 (3.2)
 
Breast
35 (3.4)
27 (3.8)
8 (2.6)
 
Lymphatic and hematopoietic systems
21 (2.0)
19 (2.6)
2 (0.6)
 
Skin and soft tissue
15 (1.5)
10 (1.4)
5 (1.6)
 
Reproductive organ of the female
5 (0.5)
4 (0.6)
1 (0.3)
 
Ill-defined, unspecified sites
509 (49.5)
361 (50.1)
148 (48.1)
 
Other
119 (11.6)
74 (10.3)
45 (14.6)
 
Treatment
Mechanical ventilation = Yes (%)
92 (8.9)
64 (8.9)
28 (9.1)
1
Radiotherapy = Yes (%)
79 (7.7)
58 (8.1)
21 (6.8)
0.579
Parenteral nutrition = Yes (%)
88 (8.6)
67 (9.3)
21 (6.8)
0.236
Chemotherapy = Yes (%)
389 (37.8)
273 (37.9)
116 (37.7)
0.995
Complications
AKI = Yes (%)
485 (47.2)
340 (47.2)
145 (47.1)
1
Hepatic metastases = Yes (%)
384 (37.4)
260 (36.1)
124 (40.3)
0.234
Pulmonary metastasis = Yes (%)
266 (25.9)
179 (24.9)
87 (28.2)
0.29
Brain metastases = Yes (%)
230 (22.4)
167 (23.2)
63 (20.5)
0.377
Acidosis = Yes (%)
288 (28.0)
202 (28.1)
86 (27.9)
1
RF = Yes (%)
365 (35.5)
252 (35.0)
113 (36.7)
0.655
Heart failure = Yes (%)
221 (21.5)
155 (21.5)
66 (21.4)
1
Blood count
MCH (%)
29.90 [28.20, 31.50]
29.90 [28.20, 31.50]
30.00 [28.30, 31.50]
0.701
MCHC (%)
33.30 [32.30, 34.20]
33.30 [32.30, 34.20]
33.35 [32.38, 34.20]
0.723
MCV (%)
90.00 [85.00, 94.00]
90.00 [85.00, 93.00]
89.50 [85.00, 94.00]
0.789
Atypical lymphocytes (%)
0.26 [0.00, 0.91]
0.24 [0.00, 0.83]
0.35 [0.00, 1.00]
0.097
Bands (%)
1.90 [0.00, 3.67]
1.83 [0.00, 3.64]
2.00 [0.00, 3.72]
0.758
Metamyelocytes (%)
0.44 [0.00, 1.02]
0.46 [0.00, 1.00]
0.39 [0.00, 1.02]
0.918
Biochemical
ALT
   
0.418
 < 40 U/L
859 (83.6)
596 (82.8)
263 (85.4)
 
40–120 U/L
135 (13.1)
97 (13.5)
38 (12.3)
 
121–400 U/L
23 (2.2)
17 (2.4)
6 (1.9)
 
 > 400 U/L
11 (1.1)
10 (1.4)
1 (0.3)
 
ALP
   
0.79
< 40 U/L
15 (1.5)
12 (1.7)
3 (1.0)
 
40–100 U/L
597 (58.1)
414 (57.5)
183 (59.4)
 
101–400 U/L
375 (36.5)
266 (36.9)
109 (35.4)
 
> 400 U/L
41 (4.0)
28 (3.9)
13 (4.2)
 
AST
   
0.135
\(\le\) 40 U/L
891 (86.7)
632 (87.8)
259 (84.1)
 
> 40 U/L
137 (13.3)
88 (12.2)
49 (15.9)
 
Creatinine (mg/dL)
0.90 [0.70, 1.20]
0.90 [0.70, 1.20]
0.90 [0.70, 1.20]
0.962
Potassium (mmol/L)
4.09 [3.87, 4.30]
4.10 [3.88, 4.30]
4.06 [3.84, 4.26]
0.182
Creatinine kinase MB (ng/mL)
4.00 [2.46, 7.00]
4.00 [2.00, 6.85]
4.00 [3.00, 7.00]
0.149
Albumin (g/dL)
3.80 [3.30, 4.20]
3.80 [3.30, 4.20]
3.80 [3.27, 4.30]
0.848
Total protein (g/dL)
6.51 [6.18, 6.93]
6.52 [6.18, 6.97]
6.50 [6.18, 6.89]
0.65
Calcium (mg/dL)
9.10 [8.60, 9.60]
9.10 [8.60, 9.60]
9.20 [8.60, 9.51]
0.831
Chloride (mmol/L)
102.00 [99.00, 104.00]
102.00 [99.00, 104.00]
102.00 [99.00, 104.00]
0.17
Blood gas
pO2 > 80 (%)
71 (6.9)
58 (8.1)
13 (4.2)
0.037
pCO2 (mmHg)
40.00 [35.00, 44.89]
40.00 [35.00, 45.00]
41.00 [36.00, 44.26]
0.363
Base excess (mmol/L)
0.00 [-3.00, 1.00]
0.00 [-3.02, 1.00]
− 0.16 [− 3.00, 1.00]
0.8
Calculated total CO2 (mEq/L)
25.00 [22.10, 28.00]
25.00 [22.00, 28.00]
25.00 [23.00, 27.00]
0.945
Free calcium (mmol/L)
1.12 [1.10, 1.16]
1.13 [1.10, 1.16]
1.12 [1.10, 1.16]
0.942
Lactate (mmol/L)
1.61 [1.30, 1.96]
1.60 [1.30, 1.97]
1.62 [1.30, 1.95]
0.554
pH
7.38 [7.35, 7.43]
7.38 [7.35, 7.43]
7.38 [7.35, 7.43]
0.484
Anion gap (mmol/L)
15.00 [13.00, 17.00]
15.00 [13.00, 17.00]
15.00 [13.00, 17.00]
0.428
Bicarbonate (mmol/L)
26.00 [24.00, 28.00]
26.00 [24.00, 28.00]
26.00 [24.00, 28.00]
0.875
Scores
APSIII
41.00 [31.00, 53.00]
40.00 [31.00, 53.00]
41.50 [32.00, 53.00]
0.438
SOFA
3.00 [2.00, 6.00]
3.00 [2.00, 6.00]
3.00 [2.00, 6.00]
0.359
SAPSII
41.00 [33.00, 48.00]
41.00 [33.00, 48.00]
40.00 [32.00, 49.00]
0.734
AKI acute kidney injury, RF respiratory failure, ALT glutamic-pyruvic transaminase, ALP alkaline phosphatase, MCV mean corpuscular volume, HF heart failure, AF atrial fibrillation, AST aspartate aminotransferase, Creatinine kinase MB muscle and brain fraction of creatinine kinase, MCH mean corpuscular hemoglobin, MCHC medium corpuscular hemoglobin concentration, BMI body mass index, APSIII Acute Physiology Score III, SOFA Sequential Organ Failure Assessment, SAPSII Simplified Acute Physiology Score II

Feature selection and model building

Feature selection by univariate Cox regression and stepwise Cox regression showed that nine features, including albumin, APSIII, chemotherapy, lactate, chloride, hepatic metastases, respiratory failure, SAPSIII, total protein, were independent predictors of prognosis in patients with secondary bone tumors in the intensive care unit (Table 2). The VIF of the variables in the model was calculated and the results were all below 2 (albumin: 1.166, APSIII: 1.705, chemotherapy: 1.107, chloride: 1.080, hepatic metastases: 1.084, lactate: 1.129, respiratory failure: 1.079, SAPSII: 1.733, total protein: 1.181), showing no multicollinearity. The Cox proportional hazard model was established based on the above characteristics, and the nomogram was drawn as shown in Fig. 1. In the nomogram, the total score (Total Points) for each patient is calculated by adding the scores corresponding to each feature (Points), and the total score corresponds vertically to the scale on the predictor (1-month, 3-month, 1-year, and 3-year survival probability), i.e., the patient’s survival probability. If a patient’s ultimate total score (Total Points) is 300, then the patient’s probability of survival at 1 month, 3 months, 1 year, and 3 years is 90–95%, 80%, 60%, and 40%, respectively. In addition, for the categorical variables included in the model, we plotted Kaplan–Meier curves according to their grouping (Fig. 2).
Table 2
The results of the feature selection
Factors
Levels
Univariate analysis
Multivariate analysis
HR (95% CI)
P-value
HR (95% CI)
P-value
Demography
Age (Years)
 
1.01 (1.00–1.02)
0.0628
  
Gender
Female (Reference)
    
Male
1.10 (0.85–1.43)
0.4718
  
Ethnicity
Asian (Reference)
    
Black
0.79 (0.45–1.37)
0.4017
  
Other
0.69 (0.37–1.29)
0.2412
  
White
0.68 (0.42–1.1)
0.1136
  
 
BMI (kg/m2)
 
1.00 (1.00–1.00)
0.9116
  
Cancers
Breast (Reference)
    
Digestive system
2.09 (0.78–5.64)
0.1438
  
Reproductive organ of the female
0 (0–Inf)
0.9926
  
Ill-defined, unspecified sites
1.96 (0.80–4.79)
0.1403
  
Lymphatic and hematopoietic systems
1.27 (0.40–4.03)
0.6818
  
Other
1.49 (0.55–4.03)
0.4353
  
Reproductive organ of the male
1.32 (0.44–3.94)
0.6195
  
Respiratory system
2.14 (0.84–5.47)
0.1127
  
Skin and soft tissue
0.45 (0.05–3.84)
0.4648
  
Urinary system
0.96 (0.31–2.96)
0.9503
  
Complications
Acidosis
No (Reference)
    
Yes
0.82 (0.62–1.08)
0.1581
  
AKI
No (Reference)
    
Yes
0.96 (0.74–1.25)
0.7829
  
HF
No (Reference)
    
Yes
0.75 (0.55–1.04)
0.084
  
RF
No (Reference)
    
Yes
2.85 (2.18–3.72)
< 0.0001*
2.08 (1.58–2.75)
< 0.0001*
Pulmonary metastasis
No (Reference)
    
Yes
1.08 (0.81–1.45)
0.5838
  
Hepatic metastases
No (Reference)
    
Yes
1.76 (1.36–2.29)
< 0.0001*
1.88 (1.43–2.48)
< 0.0001*
Brain metastases
No (Reference)
    
Yes
1.30 (0.96–1.75)
0.0902
  
Treatments
Chemotherapy
No (Reference)
    
Yes
0.61 (0.47–0.80)
0.0003*
0.61 (0.46–0.81)
0.0006*
Radiotherapy
No (Reference)
    
Yes
0.86 (0.53–1.39)
0.5389
  
Mechanical ventilation
No (Reference)
    
Yes
1.36 (0.94–1.97)
0.103
  
Parenteral nutrition
No (Reference)
    
Yes
0.96 (0.62–1.48)
0.8446
  
Blood count
MCH (%)
 
0.99 (0.95–1.04)
0.7346
  
MCHC (%)
 
0.90 (0.83–0.98)
0.0112
  
MCV (%)
 
1.01 (0.99–1.02)
0.4553
  
Metamyelocytes (%)
1.10 (1.02–1.18)
0.0096
  
Bands (%)
 
1.03 (1.00–1.05)
0.018
  
Atypical lymphocytes (%)
 
0.95 (0.86–1.05)
0.334
  
Biochemical
Albumin (g/dL)
 
0.57 (0.47–0.68)
< 0.0001*
0.74 (0.61–0.9)
0.0032*
ALP (U/L)
< 40
   
40–100
1.15 (0.43, 3.12)
0.8
  
101–400
1.96 (0.73, 5.31)
0.2
  
> 400
5.34 (1.86, 15.4)
0.002
  
ALT (U/L)
< 40 (Reference)
    
40–120
1.18 (0.87, 1.62)
0.3
  
121–400
1.92 (1.12, 3.29)
0.017
  
> 400
1.46 (0.54, 3.91)
0.5
  
AST (U/L)
\(\le\) 40 (Reference)
    
> 40
1.28 (0.90–1.83)
0.1755
  
Creatinine (mg/dL)
 
1.03 (0.99–1.08)
0.1763
  
Creatinine kinase MB (ng/mL)
 
1.00 (0.99–1.00)
0.6714
  
Potassium (mmol/L)
 
1.05 (0.83–1.34)
0.6801
  
Total protein (g/dL)
 
0.67 (0.58–0.79)
< 0.0001*
0.76 (0.64–0.91)
0.0028*
Calcium (mg/dL)
 
0.98 (0.83–1.16)
0.8104
  
Chloride (mmol/L)
 
0.93 (0.91–0.96)
< 0.0001*
0.95 (0.92–0.98)
0.0008*
Blood gas
Anion gap (mmol/L)
 
1.08 (1.04–1.12)
0.0002*
  
Base excess (mmol/L)
 
0.98 (0.96–1.01)
0.1342
  
Bicarbonate (mmol/L)
 
0.96 (0.92–1.00)
0.0314
  
Calculated total CO2 (mEq/L)
 
0.99 (0.96–1.02)
0.5118
  
Free calcium (mmol/L)
 
4.96 (1.18–20.93)
0.0292
  
Lactate (mmol/L)
 
1.52 (1.26–1.83)
< 0.0001*
1.38 (1.14–1.67)
0.0011*
pCO2 (mmHg)
 
0.99 (0.97–1.01)
0.3055
  
pO2 (mmHg)
< 80 (Reference)
    
\(\ge\) 80
1.25 (0.83–1.89)
0.2796
  
pH
 
0.82 (0.09–7.94)
0.8656
  
Scores
SAPSII
 
1.04 (1.03–1.04)
< 0.0001*
1.02 (1.01–1.03)
0.0017*
APSIII
 
1.02 (1.02–1.03)
< 0.0001*
1.01 (1–1.02)
0.0030*
SOFA
 
1.15 (1.11–1.18)
< 0.0001*
  
*P-value < 0.05
AKI acute kidney injury, RF respiratory failure, ALT glutamic-pyruvic transaminase, ALP alkaline phosphatase, MCV mean corpuscular volume, HF heart failure, AF atrial fibrillation, AST aspartate aminotransferase, Creatinine kinase MB muscle and brain fraction of creatinine kinase, MCH mean corpuscular hemoglobin, MCHC medium corpuscular hemoglobin concentration, BMI body mass index, APSIII Acute Physiology Score III, SOFA Sequential Organ Failure Assessment, SAPSIII Simplified Acute Physiology Score II

Validation of the model

The ROC curve, calibration curve, and decision curve were plotted to validate the model. The results of the ROC curve analysis showed that the AUC of the nomogram model for predicting the mortality in the training cohort at 1 month, 3 months, 1 year, and 3 years was 0.862, 0.890, 0.826, and 0.831, respectively; the AUC of the for predicting model for predicting the mortality in the validation cohort at 1 month, 3 months, 1 year, 3 years was 0.854, 0.884, 0.872, and 0.839, respectively (Fig. 3). And the model exhibited good predictive accuracy. The calibration curve analysis revealed that the agreement between the predicted and the actual values was within an acceptable range (Fig. 4). In addition, we plotted decision curves (Fig. 5). The green horizontal line in the figure shows the benefit if none of the patients received the intervention, the red bias line shows the benefit if all the patients received the intervention, and the blue curve shows the benefit if they received the intervention as judged by the model. The figure shows that our model has a large net gain in both the training and validation cohorts.

Discussion

In the present study, we studied patients with secondary bone tumors in the intensive care unit and developed a nomogram model to predict patient prognosis based on patient demographic information, laboratory test indicators, and comorbidities/surgical history. The model achieved an AUC of above 0.8 in both the training and validation cohorts, showing good predictive value.
Most current studies on secondary bone tumors have focused on bone metastases from specific tumors (Li et al. 2021; Lang et al. 2013; Huang et al. 2019; Sun et al. 2019), and few pan-cancer studies have been conducted on bone metastases in all cancer patients. However, there is a certain commonality in patients who develop secondary bone tumors, especially in patients with bone metastases admitted to the intensive care unit. An earlier similar study analyzed prognostic factors based on 216 patients with bone metastases (Teshima et al. 1990), but the study cohort was not limited to the intensive care unit. Independent predictors of prognosis in patients with bone metastases in the intensive care unit remain uncertain. Hence, we developed a predictive model that can predict the prognosis of patients with secondary bone tumors in the intensive care unit to provide supporting data for future studies.
Our model showed that nine characteristics, including low albumin, APSIII, chemotherapy, high lactate, low chloride, hepatic metastases, respiratory failure, SAPSIII, and low total protein, were independent predictors of prognosis in patients with secondary bone tumors in the intensive care unit. Among them, albumin, chemotherapy, chloride, and total protein were shown to be protective factors; while, APSIII, hepatic metastases, SAPSIII, SOFA, and lactate were promoting factors of mortality. Among the protective biomarkers, total protein and albumin are often used as indicators of nutritional status and hepatic synthetic function (Hülshoff et al. 2013), and exogenous albumin is frequently treated as a nutritional support drug in critically ill patients (Farrugia 2010). Bone metastasis means tumor progression. Hypoproteinemia is prevalent in cancer patients due to the damage inflicted on the body by the tumor and various treatment methods (Christina et al. 2023; Jiang et al. 2022; Sun et al. 2022); therefore, these patients require a higher protein intake to maintain body functions (Muscaritoli et al. 2021). Adequate plasma albumin has been demonstrated in many studies to be the basis for improved prognosis in patients with various medical conditions (Fanali et al. 2012; Yu et al. 1877; Amouzandeh et al. 2018; Arques 2018). Meanwhile, a prospective cohort study showed a significant negative correlation between serum albumin and the inflammatory marker C-reactive protein (Sheinenzon et al. 2021). Serum chloride ions are important electrolytes for maintaining body fluid homeostasis and are associated with the cardiac, renal and neurohormonal systems (Zandijk et al. 2021). Chloride was associated with acidosis and we included acidosis for analysis, but acidosis did not show a correlation with patient prognosis. The effect of serum chloride ions on patient prognosis is controversial to some extent. A study by Yaling Zhai et al. showed that elevated serum chloride levels were associated with poor prognostic outcomes in patients with IgA nephropathy, which contradicts our findings (Zhai et al. 2021). Nevertheless, some studies have shown that electrolyte disorders such as hypochlorhydria are significantly associated with poor prognosis in cancer patients (Li et al. 2020). In addition, a study on heart failure revealed a significant inverse association between serum chloride concentration and long-term mortality of patients (HR: 0.890; 95% CI: 0.863–0.918; P < 0.001), which is consistent with our study. Therefore, we believe that the effect of serum chloride ions on patient mortality is related to the disease characteristics of patients. However, no studies have directly illustrated the effect of serum chloride concentration on the prognosis of patients with bone metastases, and more research data are needed for validation. Among the biomarkers that manifest as mortality-promoting factors, lack of oxygen in the body affects the normal function of many organs (Fenves and Emmett 2021). In our model, the biomarkers incorporated into the model are mostly indicators reflecting acid–base and electrolyte balance and nutritional status in the patient’s body. Hence, for patients with secondary bone tumors in the intensive care unit, the administration of adequate nutrients and maintenance of acid-base balance are important measures to improve the prognosis of patients. In addition, hepatic metastases and the prognostic score were also major risk factors. This suggests that the severity of the cancer and the patient's physical condition are equally significant in predicting prognosis.
Our model can provide valid predictive information, but some limitations need to be mentioned: first, due to the limitation of the database, we could not include some important indicators, such as the primary tumor of the patient, the size of the primary tumor, and the site of metastasis. Second, we were unable to determine whether the patient’s combined tumor was the primary tumor. Moreover, some laboratory indicators may interact with each other, but we are unable to detect the interactions between covariates. Finally, our model only used data from a single center and needs to be validated using a large sample of data from multiple centers.

Conclusion

A prognostic model has been developed in this study for patients with secondary bone tumors in the intensive care unit. The prediction performance of the model is robust and it can provide valid forecasting information. The indicators included in the model suggest that nutritional support and maintenance of fluid balance are important therapeutic measures to improve the prognosis of patients with bone metastases in the intensive care unit.

Acknowledgements

Not applicable.

Declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

Not applicable.
Not applicable.
Not applicable.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Jetzt bestellen und 100 € sparen!

Literatur
Zurück zum Zitat Abdelazeem B, Abbas KS, Rao DN, Tariq R, Wahab A (2022) Incidence and comparative prognosis of cancers with metastasis to noncommon sites: a population-based study. Medicine 101(29):e29743CrossRefPubMedPubMedCentral Abdelazeem B, Abbas KS, Rao DN, Tariq R, Wahab A (2022) Incidence and comparative prognosis of cancers with metastasis to noncommon sites: a population-based study. Medicine 101(29):e29743CrossRefPubMedPubMedCentral
Zurück zum Zitat Fornetti J, Welm AL, Stewart SA (2018) Understanding the bone in cancer metastasis. J Bone Miner Res 33(12):2099–2113CrossRefPubMed Fornetti J, Welm AL, Stewart SA (2018) Understanding the bone in cancer metastasis. J Bone Miner Res 33(12):2099–2113CrossRefPubMed
Zurück zum Zitat Guo W, Tang X, Yang Y, Ji T (2008) Surgical treatment and outcome of pelvic metastases. Zhonghua Wai Ke Za Zhi [chinese Journal of Surgery] 46(12):891–894PubMed Guo W, Tang X, Yang Y, Ji T (2008) Surgical treatment and outcome of pelvic metastases. Zhonghua Wai Ke Za Zhi [chinese Journal of Surgery] 46(12):891–894PubMed
Zurück zum Zitat Liu FT, Qiu C, Luo HL, Zhang Y, Xia GF, Hao TF, Zhu PQ (2016) The association of HOTAIR expression with clinicopathological features and prognosis in gastric cancer patients. Panminerva Med 58(2):167–174PubMed Liu FT, Qiu C, Luo HL, Zhang Y, Xia GF, Hao TF, Zhu PQ (2016) The association of HOTAIR expression with clinicopathological features and prognosis in gastric cancer patients. Panminerva Med 58(2):167–174PubMed
Zurück zum Zitat Mao Q, Xia W, Dong G, Chen S, Wang A, Jin G, Jiang F, Xu L (2018) A nomogram to predict the survival of stage IIIA-N2 non–small cell lung cancer after surgery. J Thoracic Cardiovasc Surg 155(4):1784–1792CrossRef Mao Q, Xia W, Dong G, Chen S, Wang A, Jin G, Jiang F, Xu L (2018) A nomogram to predict the survival of stage IIIA-N2 non–small cell lung cancer after surgery. J Thoracic Cardiovasc Surg 155(4):1784–1792CrossRef
Zurück zum Zitat Muscaritoli M, Arends J, Bachmann P, Baracos V, Barthelemy N, Bertz H, Bozzetti F, Hutterer E, Isenring E, Kaasa S, Krznaric Z, Laird B, Larsson M, Laviano A, Muhlebach S, Oldervoll L, Ravasco P, Solheim TS, Strasser F, de van der Schueren M, Preiser JC, Bischoff SC (2021) ESPEN practical guideline: Clinical Nutrition in cancer. Clin Nutr 40(5):2898–2913. https://doi.org/10.1016/j.clnu.2021.02.005CrossRefPubMed Muscaritoli M, Arends J, Bachmann P, Baracos V, Barthelemy N, Bertz H, Bozzetti F, Hutterer E, Isenring E, Kaasa S, Krznaric Z, Laird B, Larsson M, Laviano A, Muhlebach S, Oldervoll L, Ravasco P, Solheim TS, Strasser F, de van der Schueren M, Preiser JC, Bischoff SC (2021) ESPEN practical guideline: Clinical Nutrition in cancer. Clin Nutr 40(5):2898–2913. https://​doi.​org/​10.​1016/​j.​clnu.​2021.​02.​005CrossRefPubMed
Zurück zum Zitat Sheinenzon A, Shehadeh M, Michelis R, Shaoul E, Ronen O (2021) Serum albumin levels and inflammation. Int J Biol Macromol 184:857–862CrossRefPubMed Sheinenzon A, Shehadeh M, Michelis R, Shaoul E, Ronen O (2021) Serum albumin levels and inflammation. Int J Biol Macromol 184:857–862CrossRefPubMed
Zurück zum Zitat Soares M, Caruso P, Silva E, Teles JM, Lobo SM, Friedman G, Dal Pizzol F, Mello PV, Bozza FA, Silva UV (2010) Characteristics and outcomes of patients with cancer requiring admission to intensive care units: a prospective multicenter study. Crit Care Med 38(1):9–15CrossRefPubMed Soares M, Caruso P, Silva E, Teles JM, Lobo SM, Friedman G, Dal Pizzol F, Mello PV, Bozza FA, Silva UV (2010) Characteristics and outcomes of patients with cancer requiring admission to intensive care units: a prospective multicenter study. Crit Care Med 38(1):9–15CrossRefPubMed
Zurück zum Zitat Teshima T, Chatani M, Inoue T, Hirokawa Y, Wadasaki K, Kasiwado K, Kagemoto M, Katsuta S, Honke Y, Koyama T et al (1990) Prognostic factors for patients with osseous metastasis: a multi-institutional prospective study. Strahlentherapie Und Onkologie: Organ Der Deutschen Rontgengesellschaft [et Al] 166(6):387–391 Teshima T, Chatani M, Inoue T, Hirokawa Y, Wadasaki K, Kasiwado K, Kagemoto M, Katsuta S, Honke Y, Koyama T et al (1990) Prognostic factors for patients with osseous metastasis: a multi-institutional prospective study. Strahlentherapie Und Onkologie: Organ Der Deutschen Rontgengesellschaft [et Al] 166(6):387–391
Zurück zum Zitat Zhai Y, Yao X, Qi Y, Gao J, Chen Y, Wang X, Wu F, Zhao Z (2021) Elevated serum chloride levels contribute to a poor prognosis in patients with IgA nephropathy. J Immunol Res 2021:1CrossRef Zhai Y, Yao X, Qi Y, Gao J, Chen Y, Wang X, Wu F, Zhao Z (2021) Elevated serum chloride levels contribute to a poor prognosis in patients with IgA nephropathy. J Immunol Res 2021:1CrossRef
Metadaten
Titel
Development of a nomogram to predict the prognosis of patients with secondary bone tumors in the intensive care unit: a retrospective analysis based on the MIMIC IV database
verfasst von
Weikang Li
Jinliang Li
Jinkui Cai
Publikationsdatum
01.03.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Cancer Research and Clinical Oncology / Ausgabe 3/2024
Print ISSN: 0171-5216
Elektronische ISSN: 1432-1335
DOI
https://doi.org/10.1007/s00432-024-05667-9

Weitere Artikel der Ausgabe 3/2024

Journal of Cancer Research and Clinical Oncology 3/2024 Zur Ausgabe

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.