Skip to main content
Erschienen in: Die Innere Medizin 7/2023

07.06.2023 | Darmmikrobiom | Schwerpunkt: Fettstoffwechsel und Metabolisches Syndrom

Mikrobiom und metabolisches Syndrom – ein Henne-Ei-Problem?

verfasst von: Dr. med. Benedikt Hild

Erschienen in: Die Innere Medizin | Ausgabe 7/2023

Einloggen, um Zugang zu erhalten

Zusammenfassung

Das Mikrobiom ist hinsichtlich seiner physiologischen und pathophysiologischen Relevanz im letzten Jahrzehnt immer mehr in den Fokus der Forschung gerückt. Erkenntnisgewinne über die Funktionsweise unseres Mikrobioms verdeutlichen dessen Einfluss auf den Metabolismus. Ebenso werden die Wechselwirkungen mit der Entstehung des metabolischen Syndroms offensichtlich, gleichzeitig entstehen aber neue Fragen: Wird das Mikrobiom dysbiotisch, bevor oder nachdem es zu einem pathologischen Stoffwechsel gekommen ist? Gibt es Möglichkeiten, das Darmmikrobiom zur Therapie des metabolischen Syndroms oder seiner Folgeerkrankungen zu nutzen? Ziel dieses Übersichtsbeitrags ist, jenseits des Modebegriffs „Mikrobiom“ über aktuelle Forschungsansätze zu berichten, die auch für den praktisch tätigen Internisten relevant sind.
Literatur
1.
Zurück zum Zitat Blaser MJ (2017) The theory of disappearing microbiota and the epidemics of chronic diseases. Nat Rev Immunol 17:461–463PubMedCrossRef Blaser MJ (2017) The theory of disappearing microbiota and the epidemics of chronic diseases. Nat Rev Immunol 17:461–463PubMedCrossRef
2.
Zurück zum Zitat Boers SA, Jansen R, Hays JP (2019) Understanding and overcoming the pitfalls and biases of next-generation sequencing (NGS) methods for use in the routine clinical microbiological diagnostic laboratory. Eur J Clin Microbiol Infect Dis 38:1059–1070PubMedPubMedCentralCrossRef Boers SA, Jansen R, Hays JP (2019) Understanding and overcoming the pitfalls and biases of next-generation sequencing (NGS) methods for use in the routine clinical microbiological diagnostic laboratory. Eur J Clin Microbiol Infect Dis 38:1059–1070PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Bolnick HJ, Bui AL, Bulchis A et al (2020) Health-care spending attributable to modifiable risk factors in the USA: an economic attribution analysis. Lancet Public Health 5:e525–e535PubMedCrossRef Bolnick HJ, Bui AL, Bulchis A et al (2020) Health-care spending attributable to modifiable risk factors in the USA: an economic attribution analysis. Lancet Public Health 5:e525–e535PubMedCrossRef
4.
Zurück zum Zitat Bortolin RC, Vargas AR, Gasparotto J et al (2018) A new animal diet based on human western diet is a robust diet-induced obesity model: comparison to high-fat and cafeteria diets in term of metabolic and gut microbiota disruption. Int J Obes (Lond) 42:525–534PubMedCrossRef Bortolin RC, Vargas AR, Gasparotto J et al (2018) A new animal diet based on human western diet is a robust diet-induced obesity model: comparison to high-fat and cafeteria diets in term of metabolic and gut microbiota disruption. Int J Obes (Lond) 42:525–534PubMedCrossRef
5.
Zurück zum Zitat Breton J, Tennoune N, Lucas N et al (2016) Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab 23:324–334PubMedCrossRef Breton J, Tennoune N, Lucas N et al (2016) Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab 23:324–334PubMedCrossRef
6.
Zurück zum Zitat Carmody RN, Gerber GK, Luevano JM Jr. et al (2015) Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17:72–84PubMedCrossRef Carmody RN, Gerber GK, Luevano JM Jr. et al (2015) Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17:72–84PubMedCrossRef
7.
Zurück zum Zitat Chassaing B, Gewirtz AT (2014) Gut microbiota, low-grade inflammation, and metabolic syndrome. Toxicol Pathol 42:49–53PubMedCrossRef Chassaing B, Gewirtz AT (2014) Gut microbiota, low-grade inflammation, and metabolic syndrome. Toxicol Pathol 42:49–53PubMedCrossRef
8.
Zurück zum Zitat Cox LM, Yamanishi S, Sohn J et al (2014) Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158:705–721PubMedPubMedCentralCrossRef Cox LM, Yamanishi S, Sohn J et al (2014) Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158:705–721PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563PubMedCrossRef David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563PubMedCrossRef
10.
Zurück zum Zitat Depommier C, Everard A, Druart C et al (2019) Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med 25:1096–1103PubMedPubMedCentralCrossRef Depommier C, Everard A, Druart C et al (2019) Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med 25:1096–1103PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Ferretti P, Pasolli E, Tett A et al (2018) Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24:133–145.e5PubMedPubMedCentralCrossRef Ferretti P, Pasolli E, Tett A et al (2018) Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24:133–145.e5PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Franck M, de Toro-Martín J, Vohl M‑C (2022) Eco-evolutionary dynamics of the human-gut microbiota symbiosis in a changing nutritional environment. Evol Biol 49:255–264CrossRef Franck M, de Toro-Martín J, Vohl M‑C (2022) Eco-evolutionary dynamics of the human-gut microbiota symbiosis in a changing nutritional environment. Evol Biol 49:255–264CrossRef
14.
Zurück zum Zitat Funabashi M, Grove TL, Wang M et al (2020) A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 582:566–570PubMedPubMedCentralCrossRef Funabashi M, Grove TL, Wang M et al (2020) A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 582:566–570PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Gomez De Aguero M, Ganal-Vonarburg SC, Fuhrer T et al (2016) The maternal microbiota drives early postnatal innate immune development. Science 351:1296–1302PubMedCrossRef Gomez De Aguero M, Ganal-Vonarburg SC, Fuhrer T et al (2016) The maternal microbiota drives early postnatal innate immune development. Science 351:1296–1302PubMedCrossRef
16.
Zurück zum Zitat Goryakin Y, Thiebaut SP, Cortaredona S et al (2020) Assessing the future medical cost burden for the European health systems under alternative exposure-to-risks scenarios. PLoS ONE 15:e238565PubMedPubMedCentralCrossRef Goryakin Y, Thiebaut SP, Cortaredona S et al (2020) Assessing the future medical cost burden for the European health systems under alternative exposure-to-risks scenarios. PLoS ONE 15:e238565PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Gutierrez Lopez DE, Lashinger LM, Weinstock GM et al (2021) Circadian rhythms and the gut microbiome synchronize the host’s metabolic response to diet. Cell Metab 33:873–887PubMedCrossRef Gutierrez Lopez DE, Lashinger LM, Weinstock GM et al (2021) Circadian rhythms and the gut microbiome synchronize the host’s metabolic response to diet. Cell Metab 33:873–887PubMedCrossRef
19.
20.
Zurück zum Zitat Hall KD, Farooqi IS, Friedman JM et al (2022) The energy balance model of obesity: beyond calories in, calories out. Am J Clin Nutr 115:1243–1254PubMedPubMedCentralCrossRef Hall KD, Farooqi IS, Friedman JM et al (2022) The energy balance model of obesity: beyond calories in, calories out. Am J Clin Nutr 115:1243–1254PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Hild B, Dreier MS, Oh JH et al (2021) Neonatal exposure to a wild-derived microbiome protects mice against diet-induced obesity. Nat Metab 3:1042–1057PubMedPubMedCentralCrossRef Hild B, Dreier MS, Oh JH et al (2021) Neonatal exposure to a wild-derived microbiome protects mice against diet-induced obesity. Nat Metab 3:1042–1057PubMedPubMedCentralCrossRef
22.
23.
Zurück zum Zitat The Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214PubMedCentralCrossRef The Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214PubMedCentralCrossRef
24.
Zurück zum Zitat Koeth RA, Lam-Galvez BR, Kirsop J et al (2019) l‑carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J Clin Invest 129:373–387PubMedCrossRef Koeth RA, Lam-Galvez BR, Kirsop J et al (2019) l‑carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J Clin Invest 129:373–387PubMedCrossRef
25.
Zurück zum Zitat Li R, Andreu-Sanchez S, Kuipers F et al (2021) Gut microbiome and bile acids in obesity-related diseases. Best Pract Res Clin Endocrinol Metab 35:101493PubMedCrossRef Li R, Andreu-Sanchez S, Kuipers F et al (2021) Gut microbiome and bile acids in obesity-related diseases. Best Pract Res Clin Endocrinol Metab 35:101493PubMedCrossRef
27.
Zurück zum Zitat Malard F, Dore J, Gaugler B et al (2021) Introduction to host microbiome symbiosis in health and disease. Mucosal Immunol 14:547–554PubMedCrossRef Malard F, Dore J, Gaugler B et al (2021) Introduction to host microbiome symbiosis in health and disease. Mucosal Immunol 14:547–554PubMedCrossRef
28.
Zurück zum Zitat Mcloughlin K, Schluter J, Rakoff-Nahoum S et al (2016) Host selection of microbiota via differential adhesion. Cell Host Microbe 19:550–559PubMedCrossRef Mcloughlin K, Schluter J, Rakoff-Nahoum S et al (2016) Host selection of microbiota via differential adhesion. Cell Host Microbe 19:550–559PubMedCrossRef
29.
Zurück zum Zitat Napolitano M, Covasa M (2020) Microbiota transplant in the treatment of obesity and diabetes: current and future perspectives. Front Microbiol 11:590370PubMedPubMedCentralCrossRef Napolitano M, Covasa M (2020) Microbiota transplant in the treatment of obesity and diabetes: current and future perspectives. Front Microbiol 11:590370PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Parada Venegas D, De la Fuente MK, Landskron G et al (2019) Short chain fatty acids (SCFas)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10:277PubMedPubMedCentralCrossRef Parada Venegas D, De la Fuente MK, Landskron G et al (2019) Short chain fatty acids (SCFas)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10:277PubMedPubMedCentralCrossRef
33.
34.
Zurück zum Zitat Sonnenburg ED, Smits SA, Tikhonov M et al (2016) Diet-induced extinctions in the gut microbiota compound over generations. Nature 529:212–215PubMedPubMedCentralCrossRef Sonnenburg ED, Smits SA, Tikhonov M et al (2016) Diet-induced extinctions in the gut microbiota compound over generations. Nature 529:212–215PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Sonnenburg JL, Sonnenburg ED (2019) Vulnerability of the industrialized microbiota. Science 366(6464):eaaw9255PubMedCrossRef Sonnenburg JL, Sonnenburg ED (2019) Vulnerability of the industrialized microbiota. Science 366(6464):eaaw9255PubMedCrossRef
36.
Zurück zum Zitat Stacy A, Andrade-Oliveira V, Mcculloch JA et al (2021) Infection trains the host for microbiota-enhanced resistance to pathogens. Cell 184:615–627.e17PubMedPubMedCentralCrossRef Stacy A, Andrade-Oliveira V, Mcculloch JA et al (2021) Infection trains the host for microbiota-enhanced resistance to pathogens. Cell 184:615–627.e17PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Tanoue T, Honda K (2012) Induction of Treg cells in the mouse colonic mucosa: a central mechanism to maintain host-microbiota homeostasis. Semin Immunol 24:50–57PubMedCrossRef Tanoue T, Honda K (2012) Induction of Treg cells in the mouse colonic mucosa: a central mechanism to maintain host-microbiota homeostasis. Semin Immunol 24:50–57PubMedCrossRef
38.
Zurück zum Zitat Thaiss CA, Levy M, Korem T et al (2016) Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167:1495–1510.e12PubMedCrossRef Thaiss CA, Levy M, Korem T et al (2016) Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167:1495–1510.e12PubMedCrossRef
39.
Zurück zum Zitat Thevaranjan N, Puchta A, Schulz C et al (2017) Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21:455–466.e4PubMedPubMedCentralCrossRef Thevaranjan N, Puchta A, Schulz C et al (2017) Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21:455–466.e4PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Tierney BT, Tan Y, Yang Z et al (2022) Systematically assessing microbiome-disease associations identifies drivers of inconsistency in metagenomic research. PLoS Biol 20:e3001556PubMedPubMedCentralCrossRef Tierney BT, Tan Y, Yang Z et al (2022) Systematically assessing microbiome-disease associations identifies drivers of inconsistency in metagenomic research. PLoS Biol 20:e3001556PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031PubMedCrossRef Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031PubMedCrossRef
42.
Zurück zum Zitat Turnbaugh PJ, Ridaura VK, Faith JJ et al (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14PubMedPubMedCentralCrossRef Turnbaugh PJ, Ridaura VK, Faith JJ et al (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Vrang N, Madsen AN, Tang-Christensen M et al (2006) PYY(3-36) reduces food intake and body weight and improves insulin sensitivity in rodent models of diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 291:R367–375PubMedCrossRef Vrang N, Madsen AN, Tang-Christensen M et al (2006) PYY(3-36) reduces food intake and body weight and improves insulin sensitivity in rodent models of diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 291:R367–375PubMedCrossRef
44.
Zurück zum Zitat Zeevi D, Korem T, Zmora N et al (2015) Personalized nutrition by prediction of glycemic responses. Cell 163:1079–1094PubMedCrossRef Zeevi D, Korem T, Zmora N et al (2015) Personalized nutrition by prediction of glycemic responses. Cell 163:1079–1094PubMedCrossRef
45.
Zurück zum Zitat Zeng MY, Inohara N, Nunez G (2017) Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol 10:18–26PubMedCrossRef Zeng MY, Inohara N, Nunez G (2017) Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol 10:18–26PubMedCrossRef
46.
47.
Zurück zum Zitat Zietak M, Kovatcheva-Datchary P, Markiewicz LH et al (2016) Altered microbiota contributes to reduced diet-induced obesity upon cold exposure. Cell Metab 23:1216–1223PubMedPubMedCentralCrossRef Zietak M, Kovatcheva-Datchary P, Markiewicz LH et al (2016) Altered microbiota contributes to reduced diet-induced obesity upon cold exposure. Cell Metab 23:1216–1223PubMedPubMedCentralCrossRef
Metadaten
Titel
Mikrobiom und metabolisches Syndrom – ein Henne-Ei-Problem?
verfasst von
Dr. med. Benedikt Hild
Publikationsdatum
07.06.2023

Weitere Artikel der Ausgabe 7/2023

Die Innere Medizin 7/2023 Zur Ausgabe

Schwerpunkt: Fettstoffwechsel und Metabolisches Syndrom

Update Lipidologie: Evidenzbasierte Behandlung von Fettstoffwechselstörungen

Praxisempfehlungen der Deutschen Diabetes Gesellschaft

Kurz, prägnant und aktuell: Die Praxisempfehlungen der Deutschen Diabetes Gesellschaft.