Skip to main content
Erschienen in: Critical Care 1/2021

Open Access 01.12.2021 | COVID-19 | Research Letter

Short and long-term outcomes of patients with COVID-19-associated acute respiratory distress syndrome and difficult veno-venous-ECMO weaning

verfasst von: Paul Masi, Samuel Tuffet, Laurent Boyer, Thierry Folliguet, Armand Mekontso Dessap, Nicolas de Prost

Erschienen in: Critical Care | Ausgabe 1/2021

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
Hinweise
Paul Masi and Samuel Tuffet contributed equally to this work

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BMI
Body mass index
CT
Computerized tomography
DLCO
Haemoglobin value corrected diffusion capacity with CO
FVC
Forced expiratory vital capacity
ICU
Intensive care unit
KCO
CO transfer coefficient
MV
Mechanical ventilation
PBW
Predicted body weight
PEEP
Positive end-expiratory pressure
P plat
Plateau pressure
RS
Respiratory system
SAPS
Simplified acute physiology score 2
TLC
Total lung capacity
VV-ECMO
Veno-venous extra-corporeal membrane oxygenation
To the editor,
The 2019 coronavirus pandemic induced a massive influx of patients with acute respiratory distress syndrome [1], a part of them requiring veno-venous (VV)-extra-corporeal membrane oxygenation (ECMO) support [2]. A consensus of experts has recently published recommendations on VV-ECMO weaning [3, 4], derived from the EOLIA trial [5]. VV-ECMO weaning should be tested when native lung function has sufficiently recovered, allowing for adequate oxygenation and protective mechanical ventilation [e.g., ventilator FiO2 ≤ 60%, tidal volume ≥ 6 mL/kg of predicted body weight (PBW), respiratory rate ≤ 28/min, plateau pressure (Pplat) ≤ 28 cmH2O)]. Success criteria of a weaning test (with the membrane ventilation decreased to 0 L/min) for safe decannulation from ECMO are typically as follows: PaO2 ≥ 60 mmHg and PaCO2 ≤ 50 mmHg or pH ≥ 7.36 with ventilator FiO2 ≤ 60% and protective mechanical ventilation. However, some patients may undergo ECMO decannulation without meeting readiness to wean criteria and/or succeeding the weaning test.
The aim of this monocentre retrospective cohort study was to report the outcome of patients who underwent a conventional ECMO weaning (withdrawal after readiness to wean and successful weaning test as per EOLIA criteria) [5] to that of patients who underwent an unconventional facilitative weaning (because of a serious complication of VV-ECMO or lack of respiratory system mechanics improvement despite prolonged support (i.e., ≥ 10 days) in patients who have recovered a satisfactory native lung oxygenation, which justifies withdrawal despite no readiness to wean and/or unsuccessful weaning test). No other treatment was discontinued after ECMO weaning. Fifty-one COVID-19 patients admitted between March 2020 and June 2021 in our French tertiary center who required VV-ECMO support were included in the study. Seventeen patients (33%) died on VV-ECMO, whereas 34 (67%) were weaned off VV-ECMO, including 30 who were discharged alive from our ICU (three patients died and one is still in our ICU). Eighteen patients presented the criteria for facilitative weaning while 16 underwent conventional weaning. VV-ECMO weaning was justified in the facilitative group by one or more of the following: major bleeding (n = 5), infection (n = 2), severe hemolysis (n = 2), no respiratory function improvement despite prolonged duration of VV-ECMO support (n = 12, median [interquartile range 25–75] duration: 24 days [13–43]). Patients of the facilitative weaning group had more complications before VV-ECMO weaning, more often required prone position after VV-ECMO withdrawal, and had longer mechanical ventilation support and ICU length of stay than their counterparts (Table 1). Only two patients with facilitative weaning and one patient with conventional weaning died in the ICU. Strikingly, respiratory system mechanics, gas exchanges and CT-scan were more impaired at the time VV-ECMO was weaned off with facilitative versus conventional strategy (Table 1), consistent with a lung fibrosing process in the former group. Notably, the high plateau and driving pressure levels measured in this group were observed while ventilating patients with low tidal volumes as 75% of these were receiving less than 6 mL/kg PBW. Interestingly, no differences were observed regarding echocardiography, pulmonary function tests and chest CT-scan patterns of lung fibrosis in a subgroup of patients followed-up until 3–6 months of hospital discharge, except for more traction bronchiectasis in patients who underwent facilitative weaning (Table 2).
Table 1
Patients’ characteristics and outcomes in the intensive care unit of patients with conventional or facilitative ECMO weaning
Parameters
Facilitative weaning (n = 18)
Conventional weaning (n = 16)
P value
Age, years
53 (45–57)
50 (44–58)
0.92
Male gender (%)
11 (61)
11 (69)
0.70
SAPS 2 score
35 (27–54)
35 (29–50)
0.98
BMI, kg/m2
29.1 (26.1–31.9)
34.5 (26.10–35.8)
0.40
Between ICU admission and ECMO weaning
   
History of previous lung disease
0 (0)
1 (6)
0.47
Chest CT-scan upon ICU admission
   
 Pulmonary embolism
1 (6)
2 (13)
0.59
 Lung parenchyma affected, %
68 (50–90)a
75 (50–75)b
0.50
Corticosteroids during ICU stay
   
 Dexamethasone
11 (61)
9 (56)
> 0.99
 Hydrocortisone/Fludrocortisone
8 (44)
4 (33)
0.30
 Methylprednisolone pulse therapy
2 (11)
1 (6)
> 0.99
Renal replacement therapy
7 (39)
5 (31)
0.73
Ventilator-associated pneumonia
17 (94)
10 (63)
0.030
Major bleedingc
13 (72)
4 (25)
0.015
ECMO support duration, days
24 (16–43)
10 (7–14)
< 0.001
At time of ECMO weaning trial
   
Ventilator settings during ECMO weaning
   
 Tidal volume, mL
345 (308–396)
400 (320–442)
0.10
 Tidal Volume, mL/kg PBW
5.6 (4.8–5.9)
5.8 (5.5–6.1)
0.20
 Respiratory rate, breaths/min
34 (30–38)
29 (26–32)
0.002
 Plateau pressure, cmH2O
31 (29–34)
25 (22–26)
< 0.001
 Driving pressure, cmH2O
24 (22–27)
13 (12–16)
< 0.001
 RS compliance, mL/cmH2O
14 (12–17)
27 (22–35)
< 0.001
 PEEP, cmH2O
5 (5–8)
10 (7–12)
0.003
Arterial blood gases during weaning
   
 pH
7.35 (7.27–7.38)
7.42 (7.36–7.44)
0.008
 PaCO2, mmHg
47 (42–55)
41 (37–44)
0.001
 PaO2, mmHg
82 (71–96)
84 (76–104)
0.37
 Arterial lactate levels, mmol/L
0.9 (0.6–1.2)
1.1 (0.9–1.4)
0.10
 HCO3, mmol/L
27 (24–29)
27 (23–29)
0.90
 PaO2/FiO2 ratio, mmHg
166 (145–202)
200 (156–254)
0.25
 FiO2
50 (40–60)
50 (40–50)
0.29
BAL fluid cytological analysisd
   
 Total cell counts; 103/mL
474 (240–772)
500 (259–873)
0.90
 Macrophages, %
27 (12–48)
75 (18–89)
0.15
 Neutrophils, %
50 (27–71)
18 (5–50)
0.07
 Lymphocytes, %
9 (2–17)
4 (3–35)
0.67
 Eosinophils, %
1 (0–3)
0 (0–2)
0.24
Chest CT-scan at time of weaninge
   
 Reticular pattern
3 (21)
1 (8)
0.60
 Ground glass opacity
11 (78)
12 (100)
0.13
 Alveolar condensation
12 (86)
9 (75)
0.53
 Traction bronchiectasis
12 (86)
5 (12)
0.038
 Tracheal distorsion
1 (7)
0 (0)
> 0.99
 Scissural distortion
4 (29)
2 (16)
0.59
After ECMO withdrawal
   
MV with non-protective settingsf, days
6 (4–10)
1 (0–2)
< 0.0001
Rescue therapy after weaning
   
 Prone positioning
9 (50)
1 (6)
0.008
 Inhaled nitric oxide
4 (22)
1 (6)
0.34
 Methylprednisolone pulse therapy
1 (5)
0 (0)
RS mechanics on the day of MV weaning
   
 Pressure support level, cm H2O
11 (8–14)
10 (8–13)
0.60
 Tidal volume, mL
520 (411–609)
471 (397–622)
0.75
 Tidal volume, mL/kg PBW
7.2 (6.3–8.4)
7.0 (5.9–8.7)
0.98
 Complianceg, mL/cmH2O
44.7 (35.2–62.4)
48.9 (34.1–77.8)
0.78
Total MV duration, days
55 (38–86)h
21 (14–31)
0.0002
MV duration after ECMO weaning, days
26 (16–36)h
5 (3–12)
< 0.0001
ICU length of stay, days
55 (40–91)h
27 (19–32)
< 0.0001
In-ICU mortality
2 (13)h
1 (6)
0.60
Continuous variables are expressed as median (interquartile range) and were compared with the Mann–Whitney test; Categorical variables are expressed as n (%) and were compared with χ2 or Fischer tests, as appropriate
aAvailable for 14 patients
bAvailable for 13 patients
cMajor bleeding defined by Bleeding Academic Research Consortium (BARC) consensus classification type 3 or more; SAPS 2 Simplified Acute Physiology Score 2, BMI body mass index, ECMO extracorporeal membrane oxygenation, ICU intensive care unit, MV mechanical ventilation, PBW predicted body weight, RS respiratory system, PEEP positive end-expiratory pressure
dAvailable for 12 patients in the facilitative weaning group and 5 patients in the conventional weaning group
eAvailable for 14 patients in the facilitative weaning group and 12 patients in the conventional weaning group
fDefined by the number of days with a plateau pressure ≥ 30 cm H2O and/or a driving pressure > 15 cm H2O
gComputed as tidal volume (mL)/pressure support level (cm H2O)
hOne patient was still in the ICU at the time of this report
Table 2
Long-term outcomes (three to six months after hospital discharge) of patients with conventional or facilitative weaning
 
Facilitative weaning (n = 6)
Conventional weaning (n = 7)
P value
Pulmonary hypertensiona
0 (0)
0 (0)
Pulmonary function tests
   
 KCO, % predicted
88 (75–100)
104 (88–111)
0.11
 DLCO, % predicted
57 (44–73)
70 (57–72)
0.29
 FVC % predicted
77 (59–85)
82 (52–91)
0.92
 TLC, % predicted
75 (65–79)
77 (64–94)
0.70
Chest CT-scan at long-term
   
 Reticular pattern
1 (12)
1 (14)
> 0.99
 Ground glass opacity
5 (71)
4 (50)
0.60
 Alveolar condensation
0 (0)
1 (12.5)
 > 0.99
 Traction bronchiectasis
4 (57)
4 (50)
> 0.99
 Tracheal traction
0 (0)
0 (0)
 Scissural distortion
2 (29)
1 (13)
0.57
6-min walking test
   
 Walked distance, m
433 (348–503)
506 (480–548)
0.08
 % of predicted distance, %
67 (62–74)
90 (78–97)
0.009
 Room air saturation
97 (96–98)
98 (96–98)
0.82
Dyspnea (MRC scale)
  
 0.07
 0
0 (0)
4 (57)
 
 1 or 2
6 (100)
3 (43)
 
aAssessed by transthoracic echocardiography; KCO CO transfer coefficient; DLCO haemoglobin value (Hb) corrected diffusion capacity with CO; FVC forced expiratory vital capacity; TLC total lung capacity
Despite they did not meet the classical weaning criteria [3, 4], patients with facilitative weaning had a low ICU mortality. At long-term follow-up, they also showed good recovery on pulmonary function tests and chest CT imaging. These data illustrate that VV-ECMO withdrawal criteria could be less restrictive, especially in patients developing life-threatening complications under VV-ECMO support or with reasonable recovery of native lung oxygenation function but no improvement of respiratory system mechanics. Our results need to be confirmed and the best ventilator settings to be applied after ECMO weaning to be further studied.

Acknowledgements

The authors would like to thank Dr Thomas d’Humières for performing cardiac echocardiographies and Dr Frédéric Schlemmer for patients’ long-term follow-up, Arnoux Morgane, Adam Thomas and all the physicians and nurses of the medical ICU, Henri Mondor Hospital, Créteil, France, who took care of the patients.

Declarations

This is an ancillary study of an observational study on acute respiratory failure in COVID-19 patients approved by the Comité de Protection des Personnes (CPP Nord Ouest IV, no 2020-A03009-30). Patients or their relatives received information that data abstracted from their medical charts could be used for research purposes.
Not applicable.

Competing interests

Authors declare no competing interest for this work.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. Intensive Care Med. 2021;47:60–73.CrossRef COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. Intensive Care Med. 2021;47:60–73.CrossRef
2.
Zurück zum Zitat Barbaro RP, MacLaren G, Boonstra PS, Iwashyna TJ, Slutsky AS, Fan E, et al. Extracorporeal membrane oxygenation support in COVID-19: an international cohort study of the Extracorporeal Life Support Organization registry. Lancet. 2020;396:1071–8.CrossRef Barbaro RP, MacLaren G, Boonstra PS, Iwashyna TJ, Slutsky AS, Fan E, et al. Extracorporeal membrane oxygenation support in COVID-19: an international cohort study of the Extracorporeal Life Support Organization registry. Lancet. 2020;396:1071–8.CrossRef
3.
Zurück zum Zitat Combes A, Schmidt M, Hodgson CL, Fan E, Ferguson ND, Fraser JF, et al. Extracorporeal life support for adults with acute respiratory distress syndrome. Intensive Care Med. 2020;46:2464–76.CrossRef Combes A, Schmidt M, Hodgson CL, Fan E, Ferguson ND, Fraser JF, et al. Extracorporeal life support for adults with acute respiratory distress syndrome. Intensive Care Med. 2020;46:2464–76.CrossRef
4.
Zurück zum Zitat Abrams D, Schmidt M, Pham T, Beitler JR, Fan E, Goligher EC, et al. Mechanical ventilation for acute respiratory distress syndrome during extracorporeal life support. Research and practice. Am J Respir Crit Care Med. 2020;201:514–25.CrossRef Abrams D, Schmidt M, Pham T, Beitler JR, Fan E, Goligher EC, et al. Mechanical ventilation for acute respiratory distress syndrome during extracorporeal life support. Research and practice. Am J Respir Crit Care Med. 2020;201:514–25.CrossRef
5.
Zurück zum Zitat Combes A, Hajage D, Capellier G, Demoule A, Lavoué S, Guervilly C, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378:1965–75.CrossRef Combes A, Hajage D, Capellier G, Demoule A, Lavoué S, Guervilly C, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378:1965–75.CrossRef
Metadaten
Titel
Short and long-term outcomes of patients with COVID-19-associated acute respiratory distress syndrome and difficult veno-venous-ECMO weaning
verfasst von
Paul Masi
Samuel Tuffet
Laurent Boyer
Thierry Folliguet
Armand Mekontso Dessap
Nicolas de Prost
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Schlagwort
COVID-19
Erschienen in
Critical Care / Ausgabe 1/2021
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-021-03758-4

Weitere Artikel der Ausgabe 1/2021

Critical Care 1/2021 Zur Ausgabe

Blutdrucksenkung schon im Rettungswagen bei akutem Schlaganfall?

31.05.2024 Apoplex Nachrichten

Der optimale Ansatz für die Blutdruckkontrolle bei Patientinnen und Patienten mit akutem Schlaganfall ist noch nicht gefunden. Ob sich eine frühzeitige Therapie der Hypertonie noch während des Transports in die Klinik lohnt, hat jetzt eine Studie aus China untersucht.

Ähnliche Überlebensraten nach Reanimation während des Transports bzw. vor Ort

29.05.2024 Reanimation im Kindesalter Nachrichten

Laut einer Studie aus den USA und Kanada scheint es bei der Reanimation von Kindern außerhalb einer Klinik keinen Unterschied für das Überleben zu machen, ob die Wiederbelebungsmaßnahmen während des Transports in die Klinik stattfinden oder vor Ort ausgeführt werden. Jedoch gibt es dabei einige Einschränkungen und eine wichtige Ausnahme.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Häusliche Gewalt in der orthopädischen Notaufnahme oft nicht erkannt

28.05.2024 Häusliche Gewalt Nachrichten

In der Notaufnahme wird die Chance, Opfer von häuslicher Gewalt zu identifizieren, von Orthopäden und Orthopädinnen offenbar zu wenig genutzt. Darauf deuten die Ergebnisse einer Fragebogenstudie an der Sahlgrenska-Universität in Schweden hin.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.