Skip to main content
Erschienen in: Critical Care 1/2021

Open Access 01.12.2021 | COVID-19 | Review

Knowledge translation tools to guide care of non-intubated patients with acute respiratory illness during the COVID-19 Pandemic

verfasst von: David Leasa, Paul Cameron, Kimia Honarmand, Tina Mele, Karen J. Bosma, for the LHSC Ventilation Strategy for COVID-19 Working Group

Erschienen in: Critical Care | Ausgabe 1/2021

Abstract

Providing optimal care to patients with acute respiratory illness while preventing hospital transmission of COVID-19 is of paramount importance during the pandemic; the challenge lies in achieving both goals simultaneously. Controversy exists regarding the role of early intubation versus use of non-invasive respiratory support measures to avoid intubation. This review summarizes available evidence and provides a clinical decision algorithm with risk mitigation techniques to guide clinicians in care of the hypoxemic, non-intubated, patient during the COVID-19 pandemic. Although aerosolization of droplets may occur with aerosol-generating medical procedures (AGMP), including high flow nasal oxygen and non-invasive ventilation, the risk of using these AGMP is outweighed by the benefit in carefully selected patients, particularly if care is taken to mitigate risk of viral transmission. Non-invasive support measures should not be denied for conditions where previously proven effective and may be used even while there is suspicion of COVID-19 infection. Patients with de novo acute respiratory illness with suspected/confirmed COVID-19 may also benefit. These techniques may improve oxygenation sufficiently to allow some patients to avoid intubation; however, patients must be carefully monitored for signs of increased work of breathing. Patients showing signs of clinical deterioration or high work of breathing not alleviated by non-invasive support should proceed promptly to intubation and invasive lung protective ventilation strategy. With adherence to these principles, risk of viral spread can be minimized.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13054-020-03415-2.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
COVID-19
Coronavirus disease 2019
AGMP
Aerosol-generating medical procedures
ROX index
Respiratory rate-oxygenation index
NIV
Non-invasive ventilation
CPAP
Continuous positive airway pressure
HFNO
High flow nasal oxygen
COPD
Chronic obstructive pulmonary disease
NRS
Non-invasive respiratory support
ARI
Acute respiratory illness
ICU
Intensive care unit
CHF
Congestive heart failure
HCP
Healthcare provider
SARS-CoV-2
Severe acute respiratory syndrome-related coronavirus 2
P-SILI
Patient self-inflicted lung injury
ETI
Endotracheal intubation
PPE
Personal protective equipment
PCR
Polymerase chain reaction
ARDS
Acute respiratory distress syndrome
CT
Computed tomography
OSA
Obstructive sleep apnea
OHS
Obesity hypoventilation syndrome
SpO2
Saturation of haemoglobin with oxygen as measured by pulse oximetry
FiO2
Fraction of inspired oxygen
PaO2
Partial pressure of oxygen (arterial)
PEEP
Positive end expiratory pressure
CO2
Carbon dioxide
HME
Heat and moisture exchanger
EPAP
Expiratory positive airway pressure
IPAP
Inspiratory positive airway pressure
Vt
Tidal volume

Introduction

Preventing hospital transmission of COVID-19 is of utmost importance to avoid “accelerating the curve” during the pandemic. To that end, guidance issued early during the pandemic warned against use of aerosol-generating medical procedures (AGMP), such as non-invasive ventilation (NIV), continuous positive airway pressure (CPAP) and high flow nasal oxygen (HFNO), advocating instead for early intubation in patients with suspected/confirmed COVID-19 [1, 2]. In early 2020, as hospitals prepared for a surge in patients with COVID-19, this guidance was widely and rapidly adopted, resulting in confusion and some tragic results. In March, 2020, a patient presenting with an acute exacerbation of chronic obstructive pulmonary disease (COPD), who did not want intubation, died in the emergency room of our tertiary care academic centre, when he was denied NIV pending COVID-19 test result. Clearly, the edict against use of non-invasive respiratory support (NRS) was problematic. If all patients presenting to hospital with acute respiratory illnesses (ARI) were to undergo early endotracheal intubation (ETI), ICU capacity would quickly be exceeded. Furthermore, many patients presenting to hospital have common cardiorespiratory diseases for which NIV has proven efficacy, such as COPD and congestive heart failure (CHF) exacerbations, while others have advanced directives limiting life-extending technologies. To deny such patients, NRS options during the pandemic is neither rational nor ethical. Within months, experienced clinicians treating COVID-19 patients made pleas to reconsider the need for early, systematic intubation [3, 4]. Conversely, exposing healthcare providers (HCPs) to AGMP in patients potentially infected with the SARS-CoV-2 virus without due caution is reckless. How do we balance the need to care for COVID-19 suspect and positive patients and minimize risk of transmission while still providing evidence-based care to all hospitalized patients with ARI during this pandemic?
Available information on the risk and benefits of AGMP during the COVID-19 pandemic is rapidly evolving, with new observations and empirical data published daily, yet gaps remain between knowledge and practice. Knowledge translation tools are urgently needed to synthesize and transform the best available data into instructions that can be easily implemented by front-line HCPs at the bedside. At our tertiary care academic centre, spanning two hospitals serving a catchment area of 1 million people [5], we formed a multidisciplinary Ventilation Strategy for COVID-19 Working Group. Our objective, achieved with rapid knowledge translation of emerging literature, was to provide a comprehensive and timely narrative review of this topic and develop recommendations, educational materials and a decision-making algorithm to guide staff managing these patients. The key principles discussed here of mitigating risk of aerosolization, minimizing in-hospital viral transmission, managing acute respiratory failure non-invasively and evading patient self-inflicted lung injury will remain relevant for the next wave of COVID-19, the next influenza season or the next pandemic to come.

Methods used to develop the knowledge translation tools

The multidisciplinary Ventilation Strategy for COVID-19 Working Group held its first virtual meeting 25 March 2020. Our aim was to minimize the risk of viral transmission with NRS strategies among various subgroups of patients and provide clear guidance to our front-line HCP on early management of patients with suspected or confirmed COVID-19. Our methodology included virtual discussion groups using Microsoft Teams® and Zoom® meeting software, evaluation of emerging published scientific literature, grey literature, Society (e.g., ESICM) webinars and newsletters, national/international health organization reports, as well as drawing upon email groups/personal communication with HCPs around the world to learn from their experience. Key articles were retrieved using OMNI Academic Search Tool (https://​ocul.​on.​ca/​omni/​) which includes PubMed, Google Scholar, Scopus, MEDLINE and others, using search terms COVID-19; SARS-CoV-2; hypoxemic respiratory failure; and treatment. Time was critical. By 6 April 2020, we had our first documents approved by hospital leadership and available for use in our centre, which served our staff through the first wave of COVID-19. Updates were disseminated in April, July and September, 2020, as new information became available. Guidance issued around best practice in COVID-19 is based on low levels of evidence (case series, small observational studies, expert opinion, or extrapolated data) [6]. We share our approach with advisement that further research is required to answer several key questions, (see Recommendations for Clinical Practice and Future Research, Additional file 1) and encourage enrolment in randomized controlled trials where possible.

Defining the risk of hospital transmission versus the risk of early intubation

The novel coronavirus SARS-CoV-2 has infected over 50 million people worldwide to date [7]; based on data from China, Europe and the USA, approximately 20% of those infected require hospitalization, and 3–7% require support for acute respiratory failure [812]. Recent data show that between 9 and 17% of COVID-19 cases are infected HCPs [1315]. In northern Italy, 11.4% of HCPs working in respiratory units with patients undergoing AGMP tested positive for COVID-19 during a 2.5-month observation period [12]. The risk to HCP is not negligible; thus, their safety is paramount in the management of ARI throughout the pandemic.
Transmission of the SARS-CoV-2 virus is primarily through droplet spread [10]. These droplets (particles > 5–10 μm in diameter) are affected by gravity and may cause direct transmission from close contact or contribute to contamination of surfaces within 1.5–2.0 m, where the virus may remain active for hours to days [16, 17]. However, some events can generate aerosols composed of smaller virus-containing particles (< 5–10 μm) suspended in air. Until further data become available, it should be assumed that NRS measures are potentially AGMP. Dispersion distances for various treatment modalities have been described using human patient simulator technology to mimic different devices and severity of lung disease (Table 1) [1822]. However, with careful attention to risk mitigation strategies, the maximum exhaled air distance may be reduced compared to conventional oxygen therapy (Table 1).
Table 1
Exhaled air dispersion distances during various treatments and conditions, with usual set-up
Condition
Distance (mm)
Mechanism of dispersion
Coughing [18]
  
 No mask
680
Forward jet
 Wearing surgical mask
300
Sideway leakage
 Wearing N95 mask
151
Sideway leakage
Simple oxygen mask [19]
  
 2 LPM
200
Lateral leakage from side vents
 4 LPM
220
 
 8 LPM
300
 
 10 LPM
400
 
HFNO [21] (normal lung condition*)
  
 10 L/min
65
 
 30 L/min
130
 
 60 L/min
172
 
 Displaced interface tube: 60 L/min
620
 
NIV—CPAP [21]
  
 Swift FX nasal pillows: CPAP 5 cm H2O
207
 
 Swift FX nasal pillows: CPAP 20 cm H2O
332
 
 ResMed Quattro Air oronasal mask: CPAP 5 cm H2O
Negligible
 
 ResMed Quattro Air oronasal mask: CPAP 20 cm H2O
Negligible
Circular vent holes; no distinct jet
NIV—Bi-PAP/ total facemask [20]
  
 Respironics Full Face IPAP/EPAP: 10/5 cm H2O
618
Simulated for mild lung injury
 Respironics Full Face IPAP/EPAP: 18/5 cm H2O
812
Simulated for mild lung injury
NIV—Bi-PAP/oronasal mask [22]
  
 Respironics Comfort 2 mask IPAP/EPAP: 10/4 cm H2O
650
 
 Respironics Comfort 2 mask IPAP/EPAP: 18/4 cm H2O
850
 
 Respironics Image 3 mask + Whisper Swivel
  
  IPAP/EPAP: 10/4 cm H2O
950
 
  IPAP/EPAP: 18/4 cm H2O
 > 950
Diffuse dispersion
NIV—Bi-PAP/ helmet [20]
  
 Sea-Long helmet IPAP/EPAP: 12/10 cm H2O
150
Dispersion through neck interface
 Sea-Long helmet IPAP/EPAP: 20/12 cm H2O
230
 
StarMed CaStar R helmet
Negligible
Better neck seal using air cushion
All studies by David Hui
Airflow was marked with intrapulmonary smoke for visualization using a human patient stimulator (HPS) to mimic different devices and severity of lung injury
*Less exhaled distances with more severe lung injury at all flows during HFNO
Avoidance of NRS in patients with suspected/confirmed COVID-19 in favour of early endotracheal intubation (ETI) as first-line therapy carries risk of morbidity to patients, including immobilization, disuse diaphragmatic atrophy, ventilator-associated infections, and potential for long-term physical and neurocognitive dysfunction [23], with risk of overwhelming ICU and ventilator capacity. Thus, a strategy is required to identify and safely manage patients likely to benefit from NRS while protecting HCP from risk of contagion through AGMP, and to identify those patients likely to require early ETI, protecting them from risk of increased mortality associated with delay of inevitable intubation [24].

Clinical management of ARI during the pandemic

COVID-19 should be suspected in patients presenting with an acute or acute on chronic respiratory illness. In addition to causing de novo ARI, the virus may also cause worsening of underlying cardiorespiratory disease with an acute exacerbation of COPD or CHF, or respiratory failure in the setting of pulmonary hypertension, obstructive sleep apnea (OSA)/obesity hypoventilation syndrome (OHS), or neuromuscular disease. Patients with acute on chronic respiratory failure may or may not have concomitant COVID-19 infection, but appropriate precautions should be taken until confirmed negative by testing. After donning appropriate personal protective equipment (PPE), isolating the patient from other patients, and sending a nasopharyngeal swab viral polymerase chain reaction (PCR) for SARS-CoV-2, the next step is to determine the most appropriate respiratory support.
Figure 1 represents a summary of recommendations as a decision algorithm (1A) and accompanying table (1B) for the early management of ARI during the COVID-19 pandemic. The algorithm is based on upholding best-evidence guidelines for non-COVID patients, and emerging evidence and worldwide clinical experience with COVID-19 during the pandemic. The purpose of this tool is to identify and categorize patients into three groups based on their likelihood of requiring non-AGMP support, AGMP or high-risk AGMP (intubation) as first-line therapy, so that patients can be admitted to the appropriate area within the hospital with the necessary level of expertise and appropriate precautions taken by HCPs. The decision algorithm was designed to be a pragmatic, easily applied bedside tool, and hence, we used pulse oxygen saturation (SpO2) and fraction of inspired oxygen (FiO2) values, but provided relative PaO2/FiO2 values for reference.
Patients with elevated respiratory rate and SpO2 < 94% on room air need oxygen applied by nasal prongs or face mask [6]. Patients without distress who are able to maintain a SpO2 ≥ 94% on a FiO2 ≤ 0.40 may be admitted to a hospital ward single-patient room and observed [6]. Patients with persistent elevated respiratory rate and moderate to severe hypoxemia require further assessment to determine whether early ETI will be necessary, or if NRS is appropriate.
In an effort to balance the risks of invasive mechanical ventilation with deleterious consequences of delayed intubation, we recommend consideration of intubation as the initial approach for patients with mental status changes (e.g., agitation or obtundation), shock requiring vasopressors, multi-organ failure (e.g., acute kidney injury requiring renal replacement therapy) or unmanageable secretions accompanying hypoxemia or acidosis. Such patients are not appropriate for NRS [25, 26], and early intubation facilitates safe airway management and protective lung ventilation which would not be possible with the spontaneous-breathing patient [23].
Co-operative patients with single system respiratory failure who do not require prompt intubation may be managed with NRS, but must be monitored closely for response to treatment. Both NIV (bi-level positive airway pressure) and CPAP should remain the treatment of choice as per usual indications: CPAP for CHF and OSA, and NIV for COPD exacerbations, neuromuscular disease or OHS complicated by hypercapnic respiratory failure [25]. If NIV is being considered for acute on chronic hypercapnic respiratory failure, this should be initiated at hospital admission. Do not prevent NIV use where previously appropriate prior to the COVID-19 pandemic.
Patients with de novo hypoxemic respiratory failure may be considered for HFNO [26] or CPAP (preferably by helmet), if HFNO is not available. Potential candidates for HFNO or CPAP should be alert, cooperative, able to protect their airway, with acceptable ventilation (pH > 7.30). Work of breathing should decrease with NRS measures and may be assessed by palpation of the sternomastoid muscle, detection of phasic contraction [27] and/or a reduction in an elevated serum lactate produced by fatiguing respiratory muscles [28]. HFNO and CPAP can support both oxygenation and ventilation by reducing work of breathing for patients with hypoxemia and dyspnea with presumed COVID-19 pneumonia [29, 30]. In Lombardy Italy, where numbers of COVID-19 patients surpassed ICU capacity, necessitating NRS in specially developed Respiratory COVID Units, ETI was avoided in approximately 2/3 of patients without increasing the relative risk of death [12]. However, available best practice guidelines [2931] suggest NRS should not be used for severe hypoxemic respiratory failure with high respiratory rate/high work of breathing not relieved with support [32], or a trajectory that suggests that invasive ventilation is inevitable. Patients with high respiratory rate or effort in the setting of acute lung inflammation are at risk of exacerbating the acute lung injury by means of hyperventilation or high transpulmonary pressures, termed “patient self-inflicted lung injury” (P-SILI) [33, 34]. Furthermore, if NRS does not reduce respiratory effort, patients may fatigue [32] and/or deteriorate precipitously. In such circumstances, patients should be intubated and transitioned to invasive ventilation without delay. Although intubation is the preferred option for patients failing to meet targets on HFNO, it is acceptable to use NIV for patients with restricted resuscitation goals that preclude intubation.
After HFNO or CPAP initiation, patients may be encouraged to assume the prone position, particularly if the PaO2/FiO2 ratio is below 200. The suggestion for a trial of awake prone positioning during NRS is based on physiologic benefit [35] and extrapolation from non-COVID studies rather than proven clinical outcomes in COVID-19 patients. Ventilation in prone position reduces mortality in patients with ARDS receiving invasive mechanical ventilation [36, 37] and improves oxygenation in awake, spontaneously breathing patients with moderate to severe ARDS receiving oxygen therapy by HFNO or NIV [38, 39]. Although small case series of spontaneously breathing and NIV-assisted COVID-19 patients have recently described feasibility, tolerance and safety with improvement in oxygenation, larger randomized controlled trials are needed to determine if it improves outcomes [4043]. In our experience, patients are able to pronate themselves but may need assistance adjusting their HFNO or NIV interface with turns. Although less complicated and labour-intensive than prone positioning in unconscious patients, potential risks and barriers include patient discomfort, nausea, increased leak from the interface, and nurse and respiratory therapist time to assist. If considered, prone positioning should be implemented early after hospital admission in patients fitting selection criteria (i.e., cooperative, able to protect airway, with low work of breathing) [44]. Thoracic CT and ultrasound findings [45] in COVID-19 are varied, but prone positioning may best help those with dorsal lung region ground glass consolidation and/or atelectasis through more homogenous lung inflation and improved ventilation-perfusion matching (i.e., when dorsal regions become nondependent) [23]. Encourage patients to accrue a total of 8 to 16 h per 24 h in the prone position, especially over the first 24–48 h. Ensure patients have access to oral suction, the means to contact the nurse (e.g., call bell, baby monitor), have continuous SpO2 monitoring and frequent assessment of respiratory rate and work of breathing. Aborting prone positioning in favour of intubation should not be delayed if failing HFNO/NIV.
The respiratory rate-oxygenation (ROX) index, developed to identify patients at high risk for needing intubation while on HFNO [46], may help guide intubation decision-making [45]. The ROX index is calculated as:
$${\text{ROX}}\;{\text{index }} = \frac{{ {\text{SpO}}_{{2}} /{\text{FiO}}_{{2}} }}{{{\text{Respiratory}}\;{\text{Rate}}}}$$
Previously healthy patients with normal lung compliance and cardiac output are likely to tolerate a lower SpO2 without significant distress. A ROX index ≥ 4.88 is reassuring, and such patients can continue to be observed. Figure 1a shows the ROX index thresholds at various time points which should prompt a change in management and consideration of intubation. The trend in ROX index over time may be as indicative as the absolute value, as the ROX index should improve over time. While validated for use during HFNO [46], the ROX index has not been studied for its predictive value in COVID-19 specifically and should not supplant clinical exam or clinical judgement. Furthermore, patients who develop acidosis, confusion, changes in mentation or are unable to manage their secretions should be intubated and invasively ventilated using a lung protective strategy.
Finally, patients undergoing NRS should be cared for in a monitored setting with well-trained staff accustomed to use and titration of these modalities (Fig. 1b). At our institution, our Respirology Service (led by staff pulmonologist with resident house staff) or Critical Care Outreach Team (a Rapid Response Team led by staff intensivist with specially trained ICU registered nurse and registered respiratory therapist) must be consulted to manage all patients on NRS, with patients admitted to a Respiratory Unit, ward or ICU where bedside staff are appropriately trained. Both pre-COVID and COVID-19 experience support the association between admission to the appropriate setting with team expertise and better outcomes for NRS [3, 12].

Preventing hospital transmission of COVID-19 through isolation and PPE

To reduce hospital transmission, environmental control and appropriate PPE must be considered when managing patients. Suspected or confirmed COVID-19 patients requiring hospital admission and undergoing AGMPs should be admitted to a negative pressure room, if available, otherwise, single-patient rooms (with door closed). Negative pressure rooms within the Emergency Department or ICU may be reserved for patients requiring ETI on arrival, as the intubation procedure is a high-risk AGMP. Rapid sequence intubation should be performed by the most experienced person with a limited number of HCPs in the room [1, 2, 47]. Where available, specialized “intubation teams” of highly experienced HCPs may perform all intubations in COVID-19 suspect/ confirmed cases [47, 48]. A hydrophobic filter should be interposed between the facemask and breathing circuit. After the intubation procedure is complete, patients receiving invasive mechanical ventilation through a closed circuit may be moved out of negative pressure rooms and cohorted according to COVID-19 status. The number of air exchanges per hour in the room will determine the length of time to clear the air of aerosolized particles after completion of an AGMP within the room.
If a patient develops symptoms suggestive of COVID-19 while in hospital, the patient should be transferred to a single patient or negative pressure room for AGMP with appropriate PPE used. CT scan may improve diagnostic sensitivity, particularly in the early phase of infection where nasopharyngeal swab PCR may be falsely negative [49]. If test results confirm the patient is COVID-19 negative, no further action is needed. The area(s) will need thorough cleaning as the virus does survive on stainless steel and plastic for up to 48 h [16].
Detailed guidelines for PPE required during AGMPs and recommendations for optimizing the supply of PPE during the COVID-19 pandemic are available [17, 5052]. As described by Lockhart et al., [17] we recommend a three-tiered approach to PPE, as shown in Fig. 1b. Care with donning and doffing of PPE is crucial and should be reviewed in instructional videos [53] and practiced under supervision.

Technical aspects: mitigation techniques to reduce exhaled droplet dispersion

Respiratory care exposes HCPs to respiratory droplets. Mitigation techniques can substantially reduce droplet deposition during NRS. Figure 2 is a picture guide demonstrating device modifications for NIV [5456], and Fig. 3 is an infographic summarizing risk mitigation techniques for use during AGMPs.

High flow nasal oxygen

HFNO is an open-interface high flow oxygen delivery system which may be better tolerated than oxygen by nasal prongs or mask to treat hypoxemia due to COVID-19 pneumonia. Mitigation of droplet transmission associated with HFNO may be achieved using a properly fitting surgical facemask over the HFNO cannula to reduce lateral droplet dispersion [57] (Fig. 3a). When using HFNO, deliver 40 to 60 L/min of gas flow and lowest FiO2 possible to maintain SpO2 in the range of 92–96% [6].

Boussignac CPAP system

The Boussignac CPAP system is a simple method that works using the venturi principle with wall oxygen flow. A ventilator/CPAP device is not required [58, 59]. With the Boussignac system, air or oxygen is injected through the micro-channels in the wall of the plastic tube. As gas molecules accelerate through the channels and enter the cylinder, a virtual valve is created, resulting in continuous positive airway pressure (Fig. 3A). Oxygen flow of 8 L/min creates a CPAP pressure of 3 cmH2O; 15 L/min results in 5 cmH2O; and 23 L/min (or flush) provides 10 cmH2O of pressure. A bacterial/viral filter should be inserted between the mask and the Boussignac valve.

Helmet CPAP system

CPAP may be delivered via the helmet interface with the inspiratory limb connected to a free flow oxygen system and the expiratory limb connected to a positive end-expiratory pressure (PEEP) valve (Fig. 3a) [60]. Set oxygen flow at 50–60 L/minute to ensure carbon dioxide (CO2) washout from the helmet; FiO2 may be adjusted but do not set flow lower than 50 L/minute to avoid CO2 rebreathing [60]. Alternatively, the helmet may be connected to a ventilator to deliver CPAP or bi-level pressures.

Non-invasive ventilation

Where experience exists, delivery of NIV using a helmet interface may offer reduced droplet spread [61], improved patient tolerance [61] and efficacy [62] over an oronasal mask. The helmet is connected to an ICU ventilator using conventional respiratory circuitry joining two port sites to allow inspiratory and expiratory flow. High flow and short inspiratory time are necessary to pressurize the helmet rapidly. As shown in Table 1, second generation helmets have negligible exhaled air dispersion due to a better seal at the neck [20].
Where helmets and/or expertise utilizing them are not available, an oronasal non-vented mask (rather than nasal interface) should be used. Proper mask fitting and seal is important for oronasal non-vented masks, to minimise droplet dispersion and maximize effectiveness. Where possible, use a ventilator with a dual limb circuit plus heat and moisture exchanger (HME) filter with a non-vented mask (no anti-asphyxia valve is needed) (see Fig. 2a). Sequence of actions: put NIV interface on patient; then turn ventilator on; and turn ventilator off before removing NIV interface. If possible, do not use the device humidifier. Patients will require enhanced mouth care for dryness given increased airflow without humidification. If the patient has secretions with strong cough or is expected to require NIV for a prolonged period, device humidification may be needed and may be used with a dual limb circuit. Increased risk of aerosolization of virus-containing water droplets must be weighed against the risk of mucous plugging [63].
A single-circuit bi-level ventilator may need to be used if a dual circuit ventilator is not available or not tolerated. In this case, use a fitted oronasal non-vented mask plus anti-asphyxia valve with combined HME-viral/bacterial filter plus exhalation port. An anti-asphyxia valve is mandatory for use with a non-vented mask. The anti-bacterial/viral filter should be placed in the circuit between the mask and the exhalation port (see Fig. 2b). Anti-bacterial/viral filters should be changed every 24 h or sooner if soiled as this may increase resistance to flow. Blocked filters can be mistaken for clinical deterioration, and this issue is remedied by changing filters. An external humidifier should not be used.
Initial prescription for single-circuit bi-level ventilation for de novo ARI: quick rise time (~ 200 ms); high trigger; low cycle; expiratory positive airway pressure (EPAP) 8–12 cm H20; and minimal pressure support (inspiratory positive airway pressure, IPAP ≤ 5 cm H20 above EPAP). Target and monitor for Vt ~ 4–7 mL/kg ideal body weight and a SpO2 ≥ 92–96% [64] using the lowest FiO2 possible.

Home mechanical ventilation patients

Patients receiving mechanical ventilation at home (e.g., neuromuscular disease) may present to the emergency room with/without respiratory symptoms using a single-circuit bi-level ventilator and vented mask and/or cough assist device in the community. Continuation of this support is essential to their survival. Home NIV circuit modifications are required using an oronasal non-vented mask with anti-asphyxia valve and expiratory port with anti-bacterial/viral filter (see Fig. 2c). A variety of circuit modifications can be used [56]. Otherwise, use their home ventilator and prescription, care for them in a single room, and staff should wear AGMP PPE (including N95 mask) while in the patient room.

Limitations

Emerging data on use of NRS in COVID-19 are limited to observational studies demonstrating feasibility and physiologic benefits rather than trials evaluating clinically important outcomes. Furthermore, due to the urgency of publishing, heterogeneity in study design and reporting of data make comparisons across centres problematic. Notwithstanding, the knowledge translation tools we developed are based on best available evidence and were utilized in our hospitals with excellent uptake and acceptance by staff.

Conclusion

During the COVID-19 pandemic, patients may present with various etiologies of ARI, requiring differing support levels for oxygenation and ventilation. The evidence for NRS versus early ETI in COVID-19 is still evolving. Despite limitations of existing data, HCPs must still act with the best knowledge available. In that context, it is prudent to suspect COVID-19 infection in all patients with respiratory symptoms and/or hypoxemia until ruled out, but suspicion of COVID-19 does not necessitate early intubation in all patients. Selected patients may be managed with NRS provided appropriate precautions are taken to mitigate nosocomial transmission, patients are closely monitored, and hypoxemic patients proceed to prompt intubation when necessary.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13054-020-03415-2.

Acknowledgements

The authors also wish to acknowledge Chadia El-Khatib and Jessica Sturt-Smith for assistance with formatting the manuscript. The authors wish to acknowledge all of our collaborators from the LHSC Ventilation Strategy for COVID-19 Working Group as collaborating authors, listed in alphabetical order: Rob Arntfield, John Basmaji, Karen J. Bosma (lead), Paul Cameron, Ian Dashnay Rob Ducharme, Belinda Gougoulias, Jeff Granton, Wael Haddara, Ahmed F. Hegazy, Kimia Honarmand, Kendrah Krouskos, John Landau, David Leasa, Rob Leeper, Christine MacDonald, Claudio Martin, David McCormack, Rachelle McCready, Tina Mele, Brenda Morgan, Dave Nagpal, Ruediger Noppens, Allison Oldershaw, Marat Slessarev, Joanne Smith, Michelle Stephens, Ravi Taneja, Susan Whitehouse, Tim Winterburn. LHSC Ventilation Strategy for COVID-19 Working Group: Rob Arntfield, John Basmaji, Karen J. Bosma (lead), Paul Cameron, Ian Dashnay, Rob Ducharme, Belinda Gougoulias, Jeff Granton, Wael Haddara, Ahmed Hegazy, Kendrah Krouskos, John Landau, David Leasa, Rob Leeper, Christine MacDonald, Claudio Martin, David McCormack, Rachelle McCready, Tina Mele, Brenda Morgan, Dave Nagpal, Ruediger Noppens, Allison Oldershaw, Marat Slessarev, Joanne Smith, Michelle Stephens, Ravi Taneja, Susan Whitehouse, Tim Winterburn.
Not applicable.
Not applicable.

Competing interests

The authors declare they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Zuo MZ, Huang YG, Ma WH, Xue ZG, Zhang JQ, Gong YH, et al. Expert recommendations for tracheal intubation in critically ill patients with noval coronavirus disease 2019. Chin Med Sci J. 2020;35:105–9.PubMedCentral Zuo MZ, Huang YG, Ma WH, Xue ZG, Zhang JQ, Gong YH, et al. Expert recommendations for tracheal intubation in critically ill patients with noval coronavirus disease 2019. Chin Med Sci J. 2020;35:105–9.PubMedCentral
2.
Zurück zum Zitat Brown CA, Mosier JM, Carlson JN, Gibbs MA. Pragmatic recommendations for intubating critically ill patients with suspected COVID-19. J Am Coll Emerg Phys Open. 2020;1(2):80–4. Brown CA, Mosier JM, Carlson JN, Gibbs MA. Pragmatic recommendations for intubating critically ill patients with suspected COVID-19. J Am Coll Emerg Phys Open. 2020;1(2):80–4.
4.
Zurück zum Zitat Villarreal-Fernandez E, Patel R, Golamari R, Khalid M, DeWaters A, Haouzi P. A plea for avoiding systematic intubation in severely hypoxemic patients with COVID-19-associated respiratory failure. Crit Care. 2020;24(1):337.CrossRefPubMedPubMedCentral Villarreal-Fernandez E, Patel R, Golamari R, Khalid M, DeWaters A, Haouzi P. A plea for avoiding systematic intubation in severely hypoxemic patients with COVID-19-associated respiratory failure. Crit Care. 2020;24(1):337.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat NHS specialty-guide-NIV-respiratory-support-and-coronavirus-v3.pdf. NHS specialty-guide-NIV-respiratory-support-and-coronavirus-v3.pdf.
8.
Zurück zum Zitat Team TNCPERE. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19)—China, 2020. China CDC Weekly. 2020;2(8):113–22. Team TNCPERE. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19)—China, 2020. China CDC Weekly. 2020;2(8):113–22.
10.
Zurück zum Zitat Mission W-CJ. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 02, 2020 ed2020. Mission W-CJ. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 02, 2020 ed2020.
11.
Zurück zum Zitat Bialek S, Boundy E, Bowen V, Chow N, Cohn A, Dowling N, et al. Severe outcomes among patients with coronavirus disease 2019 (COVID-19)—United States, February 12-March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(12):343–6.CrossRefPubMedCentral Bialek S, Boundy E, Bowen V, Chow N, Cohn A, Dowling N, et al. Severe outcomes among patients with coronavirus disease 2019 (COVID-19)—United States, February 12-March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(12):343–6.CrossRefPubMedCentral
12.
Zurück zum Zitat Franco C, Facciolongo N, Tonelli R, Dongilli R, Vianello A, Pisani L, et al. Feasibility and clinical impact of out-of-ICU non-invasive respiratory support in patients with COVID-19 related pneumonia. Eur Respir J. 2020. Franco C, Facciolongo N, Tonelli R, Dongilli R, Vianello A, Pisani L, et al. Feasibility and clinical impact of out-of-ICU non-invasive respiratory support in patients with COVID-19 related pneumonia. Eur Respir J. 2020.
16.
Zurück zum Zitat van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564–7.CrossRefPubMed van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564–7.CrossRefPubMed
17.
Zurück zum Zitat Lockhart SL, Duggan LV, Wax RS, Saad S, Grocott HP. Personal protective equipment (PPE) for both anesthesiologists and other airway managers: principles and practice during the COVID-19 pandemic. Can J Anaesth. 2020;Epub ahead of print 2020 Apr 23. Lockhart SL, Duggan LV, Wax RS, Saad S, Grocott HP. Personal protective equipment (PPE) for both anesthesiologists and other airway managers: principles and practice during the COVID-19 pandemic. Can J Anaesth. 2020;Epub ahead of print 2020 Apr 23.
18.
Zurück zum Zitat Hui DS, Chow BK, Chu L, Ng SS, Lee N, Gin T, et al. Exhaled air dispersion during coughing with and without wearing a surgical or N95 mask. PLoS ONE. 2012;7(12):e50845.CrossRefPubMedPubMedCentral Hui DS, Chow BK, Chu L, Ng SS, Lee N, Gin T, et al. Exhaled air dispersion during coughing with and without wearing a surgical or N95 mask. PLoS ONE. 2012;7(12):e50845.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Hui DS, Hall SD, Chan MT, Chow BK, Ng SS, Gin T, et al. Exhaled air dispersion during oxygen delivery via a simple oxygen mask. Chest. 2007;132(2):540–6.CrossRefPubMed Hui DS, Hall SD, Chan MT, Chow BK, Ng SS, Gin T, et al. Exhaled air dispersion during oxygen delivery via a simple oxygen mask. Chest. 2007;132(2):540–6.CrossRefPubMed
20.
Zurück zum Zitat Hui DS, Chow BK, Lo T, Ng SS, Ko FW, Gin T, et al. Exhaled air dispersion during noninvasive ventilation via helmets and a total facemask. Chest. 2015;147(5):1336–43.CrossRefPubMed Hui DS, Chow BK, Lo T, Ng SS, Ko FW, Gin T, et al. Exhaled air dispersion during noninvasive ventilation via helmets and a total facemask. Chest. 2015;147(5):1336–43.CrossRefPubMed
21.
Zurück zum Zitat Hui DS, Chow BK, Lo T, Tsang OTY, Ko FW, Ng SS, et al. Exhaled air dispersion during high-flow nasal cannula therapy versus CPAP via different masks. Eur Respir J. 2019;53(4):1802339.CrossRefPubMed Hui DS, Chow BK, Lo T, Tsang OTY, Ko FW, Ng SS, et al. Exhaled air dispersion during high-flow nasal cannula therapy versus CPAP via different masks. Eur Respir J. 2019;53(4):1802339.CrossRefPubMed
22.
Zurück zum Zitat Hui DS, Chow BK, Ng SS, Chu LCY, Hall SD, Gin T, et al. Exhaled air dispersion distances during noninvasive ventilation via different Respironics face masks. Chest. 2009;136(4):998–1005.CrossRefPubMed Hui DS, Chow BK, Ng SS, Chu LCY, Hall SD, Gin T, et al. Exhaled air dispersion distances during noninvasive ventilation via different Respironics face masks. Chest. 2009;136(4):998–1005.CrossRefPubMed
23.
Zurück zum Zitat Telias I, Katira BH, Brochard L. Is the prone position helpful during spontaneous breathing in patients with COVID-19? JAMA. 2020. Telias I, Katira BH, Brochard L. Is the prone position helpful during spontaneous breathing in patients with COVID-19? JAMA. 2020.
24.
Zurück zum Zitat Bellani G, Laffey JG, Pham T, Madotto F, Fan E, Brochard L, et al. Noninvasive ventilation of patients with acute respiratory distress syndrome insights from the LUNG SAFE study. Am J Respir Crit Care Med. 2017;195(1):67–77.CrossRefPubMed Bellani G, Laffey JG, Pham T, Madotto F, Fan E, Brochard L, et al. Noninvasive ventilation of patients with acute respiratory distress syndrome insights from the LUNG SAFE study. Am J Respir Crit Care Med. 2017;195(1):67–77.CrossRefPubMed
25.
Zurück zum Zitat Rochwerg B, Brochard L, Elliott MW, Hess D, Hill NS, Nava S, et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J. 2017;50(2). Rochwerg B, Brochard L, Elliott MW, Hess D, Hill NS, Nava S, et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J. 2017;50(2).
26.
Zurück zum Zitat Frat JP, Thille AW, Mercat A, Girault C, Ragot S, Perbet S, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372(23):2185–96.CrossRefPubMed Frat JP, Thille AW, Mercat A, Girault C, Ragot S, Perbet S, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372(23):2185–96.CrossRefPubMed
27.
Zurück zum Zitat Tobin MJ. Basing respiratory management of coronavirus on physiological principles. Am J Respir Crit Care Med. 2020;Epub ahead of print 2020 Apr 13. Tobin MJ. Basing respiratory management of coronavirus on physiological principles. Am J Respir Crit Care Med. 2020;Epub ahead of print 2020 Apr 13.
29.
Zurück zum Zitat Alhazzani W, Moller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med. 2020;46(5):854–87.CrossRefPubMedPubMedCentral Alhazzani W, Moller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med. 2020;46(5):854–87.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Fowler R HT, Salvadori M, Ofner M, Poliquin G, Yeung T & J Brooks on behalf of the COVID-19 Clinical Care Guidance Working Group. Clinical management of patients with moderate to severe COVID-19 - Interim guidance2020. Fowler R HT, Salvadori M, Ofner M, Poliquin G, Yeung T & J Brooks on behalf of the COVID-19 Clinical Care Guidance Working Group. Clinical management of patients with moderate to severe COVID-19 - Interim guidance2020.
31.
Zurück zum Zitat Poston JT, Patel BK, Davis AM. Management of critically Ill adults with COVID-19. JAMA. 2020; Epub ahead of print 2020 Mar 28. Poston JT, Patel BK, Davis AM. Management of critically Ill adults with COVID-19. JAMA. 2020; Epub ahead of print 2020 Mar 28.
32.
Zurück zum Zitat Tonelli R, Fantini R, Tabbi L, Castaniere I, Pisani L, Pellegrino MR, et al. Early inspiratory effort assessment by esophageal manometry predicts noninvasive ventilation outcome in de novo respiratory failure. A pilot study. Am J Respir Crit Care Med. 2020;202(4):558–67.CrossRefPubMedPubMedCentral Tonelli R, Fantini R, Tabbi L, Castaniere I, Pisani L, Pellegrino MR, et al. Early inspiratory effort assessment by esophageal manometry predicts noninvasive ventilation outcome in de novo respiratory failure. A pilot study. Am J Respir Crit Care Med. 2020;202(4):558–67.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438–42.CrossRefPubMed Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438–42.CrossRefPubMed
34.
Zurück zum Zitat Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med. 2012;40(5):1578–85.CrossRefPubMed Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med. 2012;40(5):1578–85.CrossRefPubMed
35.
Zurück zum Zitat Coppo A, Bellani G, Winterton D, Di Pierro M, Soria A, Faverio P, et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. Lancet Respir Med. 2020;8(8):765–74.CrossRefPubMedPubMedCentral Coppo A, Bellani G, Winterton D, Di Pierro M, Soria A, Faverio P, et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. Lancet Respir Med. 2020;8(8):765–74.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.CrossRefPubMed Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.CrossRefPubMed
37.
Zurück zum Zitat Munshi L, Del Sorbo L, Adhikari NKJ, Hodgson CL, Wunsch H, Meade MO, et al. Prone position for acute respiratory distress syndrome. A systematic review and meta-analysis. Ann Am Thorac Soc. 2017;14(Supplement_4):S280–8.CrossRefPubMed Munshi L, Del Sorbo L, Adhikari NKJ, Hodgson CL, Wunsch H, Meade MO, et al. Prone position for acute respiratory distress syndrome. A systematic review and meta-analysis. Ann Am Thorac Soc. 2017;14(Supplement_4):S280–8.CrossRefPubMed
38.
Zurück zum Zitat Ding L, Wang L, Ma W, He H. Efficacy and safety of early prone positioning combined with HFNC or NIV in moderate to severe ARDS: a multi-center prospective cohort study. Crit Care. 2020;24(1):28.CrossRefPubMedPubMedCentral Ding L, Wang L, Ma W, He H. Efficacy and safety of early prone positioning combined with HFNC or NIV in moderate to severe ARDS: a multi-center prospective cohort study. Crit Care. 2020;24(1):28.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Caputo ND, Strayer RJ, Levitan R. Early self-proning in awake, non-intubated patients in the emergency department: a single ED’s experience during the COVID-19 pandemic. Acad Emerg Med. 2020;27(5):375–8.CrossRefPubMedPubMedCentral Caputo ND, Strayer RJ, Levitan R. Early self-proning in awake, non-intubated patients in the emergency department: a single ED’s experience during the COVID-19 pandemic. Acad Emerg Med. 2020;27(5):375–8.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Elharrar X, Trigui Y, Dols AM, Touchon F, Martinez S, Prud'homme E, et al. Use of prone positioning in nonintubated patients with COVID-19 and hypoxemic acute respiratory failure. JAMA. 2020. Elharrar X, Trigui Y, Dols AM, Touchon F, Martinez S, Prud'homme E, et al. Use of prone positioning in nonintubated patients with COVID-19 and hypoxemic acute respiratory failure. JAMA. 2020.
41.
Zurück zum Zitat Sartini C, Tresoldi M, Scarpellini P, Tettamanti A, Carco F, Landoni G, et al. Respiratory parameters in patients with COVID-19 after using noninvasive ventilation in the prone position outside the intensive care unit. JAMA. 2020. Sartini C, Tresoldi M, Scarpellini P, Tettamanti A, Carco F, Landoni G, et al. Respiratory parameters in patients with COVID-19 after using noninvasive ventilation in the prone position outside the intensive care unit. JAMA. 2020.
42.
Zurück zum Zitat Ferrando C, Mellado-Artigas R, Gea A, Arruti E, Aldecoa C, Adalia R, et al. Awake prone positioning does not reduce the risk of intubation in COVID-19 treated with high-flow nasal oxygen therapy: a multicenter, adjusted cohort study. Crit Care. 2020;24(1):597.CrossRefPubMedPubMedCentral Ferrando C, Mellado-Artigas R, Gea A, Arruti E, Aldecoa C, Adalia R, et al. Awake prone positioning does not reduce the risk of intubation in COVID-19 treated with high-flow nasal oxygen therapy: a multicenter, adjusted cohort study. Crit Care. 2020;24(1):597.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Ng Z, Tay WC, Ho CHB. Awake prone positioning for non-intubated oxygen dependent COVID-19 pneumonia patients. Eur Respir J. 2020;56(1). Ng Z, Tay WC, Ho CHB. Awake prone positioning for non-intubated oxygen dependent COVID-19 pneumonia patients. Eur Respir J. 2020;56(1).
44.
Zurück zum Zitat Slessarev M, Cheng J, Ondrejicka M, Arntfield R, Critical Care Western Research G. Patient self-proning with high-flow nasal cannula improves oxygenation in COVID-19 pneumonia. Can J Anaesth. 2020; Epub ahead of print 2020 Apr 23. Slessarev M, Cheng J, Ondrejicka M, Arntfield R, Critical Care Western Research G. Patient self-proning with high-flow nasal cannula improves oxygenation in COVID-19 pneumonia. Can J Anaesth. 2020; Epub ahead of print 2020 Apr 23.
45.
Zurück zum Zitat Denault A, Delisle S, Canty D, Royse A, Royse C, Serra X, et al. A proposed lung ultrasound and phenotypic algorithm for the care of COVID-19 patients with acute respiratory failure. Can J Anaesth. 2020; Epub ahead of print May 21, 2020. Denault A, Delisle S, Canty D, Royse A, Royse C, Serra X, et al. A proposed lung ultrasound and phenotypic algorithm for the care of COVID-19 patients with acute respiratory failure. Can J Anaesth. 2020; Epub ahead of print May 21, 2020.
46.
Zurück zum Zitat Roca O, Caralt B, Messika J, Samper M, Sztrymf B, Hernandez G, et al. An index combining respiratory rate and oxygenation to predict outcome of nasal high-flow therapy. Am J Respir Crit Care Med. 2019;199(11):1368–76.CrossRefPubMed Roca O, Caralt B, Messika J, Samper M, Sztrymf B, Hernandez G, et al. An index combining respiratory rate and oxygenation to predict outcome of nasal high-flow therapy. Am J Respir Crit Care Med. 2019;199(11):1368–76.CrossRefPubMed
47.
Zurück zum Zitat Luo M, Cao S, Wei L, Tang R, Hong S, Liu R, et al. Precautions for Intubating Patients with COVID-19. Anesthesiology. 2020;132(6):1616–8.CrossRefPubMed Luo M, Cao S, Wei L, Tang R, Hong S, Liu R, et al. Precautions for Intubating Patients with COVID-19. Anesthesiology. 2020;132(6):1616–8.CrossRefPubMed
48.
Zurück zum Zitat Sorbello M, Morello G, Pintaudi S, Cataldo R. COVID-19: intubation kit, intubation team, or intubation spots? Anesth Analg. 2020;131(2):e128–30.CrossRefPubMed Sorbello M, Morello G, Pintaudi S, Cataldo R. COVID-19: intubation kit, intubation team, or intubation spots? Anesth Analg. 2020;131(2):e128–30.CrossRefPubMed
49.
Zurück zum Zitat Li Y, Xia L. Coronavirus disease 2019 (COVID-19): role of chest CT in diagnosis and management. AJR Am J Roentgenol. 2020;214(6):1280–6.CrossRefPubMed Li Y, Xia L. Coronavirus disease 2019 (COVID-19): role of chest CT in diagnosis and management. AJR Am J Roentgenol. 2020;214(6):1280–6.CrossRefPubMed
51.
Zurück zum Zitat Ferioli M, Cisternino C, Leo V, Pisani L, Palange P, Nava S. Protecting healthcare workers from SARS-CoV-2 infection: practical indications. Eur Respir Rev. 2020;29(155). Ferioli M, Cisternino C, Leo V, Pisani L, Palange P, Nava S. Protecting healthcare workers from SARS-CoV-2 infection: practical indications. Eur Respir Rev. 2020;29(155).
52.
Zurück zum Zitat Seto WH. Airborne transmission and precautions: facts and myths. J Hosp Infect. 2015;89(4):225–8.CrossRefPubMed Seto WH. Airborne transmission and precautions: facts and myths. J Hosp Infect. 2015;89(4):225–8.CrossRefPubMed
57.
Zurück zum Zitat Leonard S, Atwood CW, Jr., Walsh BK, DeBellis RJ, Dungan GC, Strasser W, et al. Preliminary Findings on Control of Dispersion of Aerosols and Droplets During High-Velocity Nasal Insufflation Therapy Using a Simple Surgical Mask: Implications for the High-Flow Nasal Cannula. Chest. 2020; Epub ahead of print 2020 Apr 6. Leonard S, Atwood CW, Jr., Walsh BK, DeBellis RJ, Dungan GC, Strasser W, et al. Preliminary Findings on Control of Dispersion of Aerosols and Droplets During High-Velocity Nasal Insufflation Therapy Using a Simple Surgical Mask: Implications for the High-Flow Nasal Cannula. Chest. 2020; Epub ahead of print 2020 Apr 6.
58.
Zurück zum Zitat Spijker EE, de Bont M, Bax M, Sandel M. Practical use, effects and complications of prehospital treatment of acute cardiogenic pulmonary edema using the Boussignac CPAP system. Int J Emerg Med. 2013;6(1):8.CrossRefPubMedPubMedCentral Spijker EE, de Bont M, Bax M, Sandel M. Practical use, effects and complications of prehospital treatment of acute cardiogenic pulmonary edema using the Boussignac CPAP system. Int J Emerg Med. 2013;6(1):8.CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Sehlin M, Tornell SS, Ohberg F, Johansson G, Winso O. Pneumatic performance of the Boussignac CPAP system in healthy humans. Respir Care. 2011;56(6):818–26.CrossRefPubMed Sehlin M, Tornell SS, Ohberg F, Johansson G, Winso O. Pneumatic performance of the Boussignac CPAP system in healthy humans. Respir Care. 2011;56(6):818–26.CrossRefPubMed
60.
61.
Zurück zum Zitat Patel BK, Wolfe KS, Pohlman AS, Hall JB, Kress JP. Effect of noninvasive ventilation delivered by helmet vs face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2016;315(22):2435–41.CrossRefPubMedPubMedCentral Patel BK, Wolfe KS, Pohlman AS, Hall JB, Kress JP. Effect of noninvasive ventilation delivered by helmet vs face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2016;315(22):2435–41.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Ferreyro BL, Angriman F, Munshi L, Del Sorbo L, Ferguson ND, Rochwerg B, et al. Association of noninvasive oxygenation strategies with all-cause mortality in adults with acute hypoxemic respiratory failure: a systematic review and meta-analysis. JAMA. 2020;324(1):57–67.CrossRefPubMed Ferreyro BL, Angriman F, Munshi L, Del Sorbo L, Ferguson ND, Rochwerg B, et al. Association of noninvasive oxygenation strategies with all-cause mortality in adults with acute hypoxemic respiratory failure: a systematic review and meta-analysis. JAMA. 2020;324(1):57–67.CrossRefPubMed
63.
Zurück zum Zitat Esquinas AM, Al-Jawder SE, BaHammam AS. Practice of Humidification During Noninvasive Mechanical Ventilation (NIV): Determinants of Humidification Strategies. Humidification in the intensive care unit: the essentials. Berlin, Heidelberg: Springer; 2012. p. 93–102. Esquinas AM, Al-Jawder SE, BaHammam AS. Practice of Humidification During Noninvasive Mechanical Ventilation (NIV): Determinants of Humidification Strategies. Humidification in the intensive care unit: the essentials. Berlin, Heidelberg: Springer; 2012. p. 93–102.
64.
Zurück zum Zitat NHS-specialty-guide-oxygen-therapy-and-coronavirus-9-april-2020.pdf. NHS-specialty-guide-oxygen-therapy-and-coronavirus-9-april-2020.pdf.
65.
Zurück zum Zitat Thomas P, Baldwin C, Bissett B, Boden I, Gosselink R, Granger CL, et al. Physiotherapy management for COVID-19 in the acute hospital setting: clinical practice recommendations. J Physiother. 2020;66(2):73–82.CrossRefPubMedPubMedCentral Thomas P, Baldwin C, Bissett B, Boden I, Gosselink R, Granger CL, et al. Physiotherapy management for COVID-19 in the acute hospital setting: clinical practice recommendations. J Physiother. 2020;66(2):73–82.CrossRefPubMedPubMedCentral
Metadaten
Titel
Knowledge translation tools to guide care of non-intubated patients with acute respiratory illness during the COVID-19 Pandemic
verfasst von
David Leasa
Paul Cameron
Kimia Honarmand
Tina Mele
Karen J. Bosma
for the LHSC Ventilation Strategy for COVID-19 Working Group
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Schlagwort
COVID-19
Erschienen in
Critical Care / Ausgabe 1/2021
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-020-03415-2

Weitere Artikel der Ausgabe 1/2021

Critical Care 1/2021 Zur Ausgabe

Mit dem Seitenschneider gegen das Reißverschluss-Malheur

03.06.2024 Urologische Notfallmedizin Nachrichten

Wer ihn je erlebt hat, wird ihn nicht vergessen: den Schmerz, den die beim Öffnen oder Schließen des Reißverschlusses am Hosenschlitz eingeklemmte Haut am Penis oder Skrotum verursacht. Eine neue Methode für rasche Abhilfe hat ein US-Team getestet.

Blutdrucksenkung schon im Rettungswagen bei akutem Schlaganfall?

31.05.2024 Apoplex Nachrichten

Der optimale Ansatz für die Blutdruckkontrolle bei Patientinnen und Patienten mit akutem Schlaganfall ist noch nicht gefunden. Ob sich eine frühzeitige Therapie der Hypertonie noch während des Transports in die Klinik lohnt, hat jetzt eine Studie aus China untersucht.

Ähnliche Überlebensraten nach Reanimation während des Transports bzw. vor Ort

29.05.2024 Reanimation im Kindesalter Nachrichten

Laut einer Studie aus den USA und Kanada scheint es bei der Reanimation von Kindern außerhalb einer Klinik keinen Unterschied für das Überleben zu machen, ob die Wiederbelebungsmaßnahmen während des Transports in die Klinik stattfinden oder vor Ort ausgeführt werden. Jedoch gibt es dabei einige Einschränkungen und eine wichtige Ausnahme.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.