Skip to main content
Erschienen in: BMC Pediatrics 1/2022

Open Access 01.12.2022 | COVID-19 | Research

Child transmission of SARS-CoV-2: a systematic review and meta-analysis

verfasst von: Sarah L Silverberg, Bei Yuan Zhang, Shu Nan Jessica Li, Conrad Burgert, Hennady P Shulha, Vanessa Kitchin, Laura Sauvé, Manish Sadarangani

Erschienen in: BMC Pediatrics | Ausgabe 1/2022

Abstract

Background

Understanding of the role of children in COVID-19 transmission has significant implications for school and childcare policies, as well as appropriate targeting of vaccine campaigns. The objective of this systematic review was to identify the role of children in SARS-CoV-2 transmission to other children and adults.

Methods

MEDLINE, EMBASE, CINAHL, Cochrane Central Register of Controlled Trials, and Web of Science were electronically searched for articles published before March 31, 2021. Studies of child-to-child and child-to-adult transmission and quantified the incidence of index and resulting secondary attack rates of children and adults in schools, households, and other congregate pediatric settings were identified. All articles describing confirmed transmission of SARS-CoV-2 from a child were included. PRISMA guidelines for data abstraction were followed, with each step conducted by two reviewers.

Results

40 of 6110 articles identified met inclusion criteria. Overall, there were 0.8 secondary cases per primary index case, with a secondary attack rate of 8.4% among known contacts. The secondary attack rate was 26.4% among adult contacts versus 5.7% amongst child contacts. The pooled estimate of a contact of a pediatric index case being infected as secondary case was 0.10 (95% CI 0.03-0.25).

Conclusions

Children transmit COVID-19 at a lower rate to children than to adults. Household adults are at highest risk of transmission from an infected child, more so than adults or children in other settings.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12887-022-03175-8.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
PRISMA
Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PCR
polymerase chain reaction
OR
odds ratio
CI
confidence interval
SAR
secondary attack rate

Background

The SARS-CoV-2 pandemic has led to worldwide economic disruption, as well as the mass-closing of social programs, daycare, and childcare institutions. Nearly 90% of students worldwide had their education disrupted by mid-April 2020 due to school closures [1]. To date, the data to support ongoing school closures to prevent increases in community SARS-CoV-2 transmission remain unclear. Some modeling studies have reported limited reduction in overall mortality rates of only 2-4% from school closures [2]. There have been reports of large-scale outbreaks associated with school openings [3], but this finding has not been consistently demonstrated in similar settings [4, 5]. In this context, it is critical to understand the role of children in transmission of the SARS-CoV-2 virus.
There has been greater focus on COVID-19 infection in adults, where the vast majority of symptomatic cases and deaths have occurred [1]. Adults are often index cases in household clusters due to their higher number of social contacts, and many studies focus on adult index cases in households. The prevalence of COVID-19 is much lower in children, as the incidence is consistently less than half that of adult cases [6, 7] In addition, children often present with asymptomatic or mildly symptomatic infection, and thus may be underrepresented in much of the literature [7, 8] There have been several studies synthesizing the state of current knowledge around pediatric presentation with COVID-19 or transmission to children from family members, but comparatively few studies that surround the transmissibility of pediatric infection [2, 9, 10] Those that have evaluate transmissibility systematically have largely done so early in the pandemic during maximal lockdowns and before many schools re-opened. This information can play an important role in decisions regarding reopening schools and the protective measures required in the classroom.
In this systematic review, we analyzed intra-familial and institutional spread of COVID-19 from a pediatric index case with confirmed child-to-adult or child-to-child infection. Our primary outcomes of interest were the secondary attack rates (SARs) of pediatric index cases in child and adult populations. We limited this review to contact-tracing studies with confirmed documented transmission to best characterize SARs.

Methods

Search strategy

For this systematic review and meta-analysis, we searched the literature to identify all published articles that reported evidence of SARS-CoV-2 transmission from children, either to other children or to adults. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guideline for meta-analyses (Supplementary Methods 1). We developed a search strategy to identify evidence in the literature of pediatric SARS-CoV-2 transmission and refined its parameters in consultation with a research librarian. We searched Ovid MEDLINE, EMBASE, CINAHL, Cochrane Central Register of Clinical Trials, and Web of Science databases for published studies in English exploring case-based pediatric COVID-19 transmission, published between January 1, 2020 to March 31, 2021 (Ovid MEDLINE search in Supplementary Methods 2).

Inclusion/exclusion criteria

We included published articles in English that demonstrated likely or confirmed transmission of SARS-CoV-2 from a child to an adult and/or to another child, with children defined as 18 years of age or younger. Likely transmission was defined as probable, symptomatic cases without a confirmed nucleic acid test by polymerase chain reaction (PCR). Confirmed transmission was defined as secondary cases confirmed by PCR via nasopharyngeal or salivary sample or through local community testing practices. We excluded articles that only demonstrated adult-to-child transmission or that did not contain information regarding the transmission of SARS-CoV-2. We excluded articles commenting on (1) neonatal (<28 days old) occurrences of transmission, (2) antibody results rather than PCR confirmed SARS-CoV-2, and (3) transmission occurring in a hospital setting. Letters, editorials, pre-printed articles, and review articles containing no primary data were excluded. Inclusion and exclusion criteria were specified in advance and documented in the study protocol.

Data extraction

After eliminating duplicates, two reviewers (two of S.L.S., B.Y.Z., C.B., or S.N.J.L.) independently screened all titles and abstracts to identify potentially eligible studies (Fig. 1). Full-text studies were then reviewed by two authors for eligibility (two of S.L.S., B.Y.Z., C.B., or S.N.J.L.). Disagreements were resolved by group discussion and review by a third reviewer (one of S.L.S., B.Y.Z., C.B., or S.N.J.L.). Articles found to be possibly eligible were fully assessed against inclusion and exclusion criteria by two reviewers independently (two of S.L.S., B.Y.Z., C.B., or S.N.J.L.). We also hand searched cited references in all potentially eligible studies for additional studies and identified additional studies cited in relevant review articles.
The following data categories were collected when available: study design, country, patient demographics (age, sex, ethnicity), index case, transmission setting, and the number of exposed adults and children who were infected or uninfected.

Statistical analysis

Secondary attack rates were defined as the proportion of confirmed infections among all contacts when the number of total contacts were known. Secondary cases were defined as the number of confirmed infections among all contacts when the total number of contacts was unspecified. Meta-analysis was performed to evaluate the difference between household and school transmission settings, as well as differences between child-to-child and child-to-adult transmission. Studies with counts less than 10 were excluded from the meta-analysis. Pooled odds ratios (ORs) or proportions and their 95% confidence intervals (CI) were calculated through a random effects model based on DerSimonian and Laird with 0.25 for continuity correction [11]. For comparison of transmission to child contacts versus adult contacts, analysis was done solely in the household (close contact) settings with OR as a measure of effect size. For each meta-analysis, heterogeneity across studies was evaluated using Cochrane’s Q test and the inconsistency index (I2). A Cochrane’s Q P-value <0.05 indicated significant heterogeneity and I2 with values above 50% suggested substantial heterogeneity [12]. Results are presented as forest plots with 95% CI. All statistical analyses were performed using RStudio, version 1.4.1106.

Risk of bias assessment

Using the NIH Quality Assessment Tool for Case-Control Studies, two reviewers independently (two of S.L.S., B.Y.Z., C.B., or S.N.J.L.) rated the quality of included studies.

Results

6110 studies were screened for eligibility; of those, 40 articles met the eligibility criteria and were included in qualitative and quantitative analysis (Table 1). No additional articles were added from review of references. The majority of studies identified cases solely using PCR, with 9 reporting additional serologies in some or all cases, one study using rapid tests in call cases, one study conducted viral cultures, and 4 conducting whole exome sequencing in some or all cases (Supplementary Table 1). Symptoms described amongst cases were in keeping with the relatively mild or asymptomatic infection described broadly in the literature (Supplementary Table 1).
Table 1
Characteristics of included studies
Article
Number of index patients
Child-to-child transmission
Child-to-adult transmission
Country
Setting
Positive PCR
Symptomatic; unconfirmed PCR
Asymptomatic or negative PCR
Positive PCR
Symptomatic; unconfirmed PCR
Asymptomatic or negative PCR
Posfay-Barbe et al. 2020
39
0
6
13
2
11
11
Switzerland
Household
Laws et al. 2021
12
1
0
15
2
0
17
USA
Household
Lopez et al. 2020
4
1
2
--
7
2
--
USA
Household
Macartney et al. 2020
12
2
--
196
1
--
101
Australia
Childcare
Yoon et al. 2021
1
0
1
153
0
1
35
South Korea
Childcare
Ehrhardt et al. 2020a
6
11
--
--
--
--
--
Germany
Childcare
Heavey et al. 2020
3
0
0
895
0
0
94
Ireland
School
Kim et al. 2021b
1
1
--
--
--
--
2
South Korea
Household
Drezner et al. 2020c
1
0
0
10
--
--
--
USA
Soccer
Gharekhanloo, Sedighi, and Khazaei 2020
1
1
0
0
0
0
0
Iran
Household
Wong et al. 2020d
1
0
0
 
1
0
 
South East Asia
School
Schwartz et al. 2020e
1
0
3
4
6
2
4
USA
Family gathering
Pray et al. 2020
1
1
6
5
--
--
--
USA
School Retreat
Fong et al. 2020
2
3
--
--
3
--
--
Hong Kong
Household
Pitman-Hunt et al. 2021f
2
1
--
--
0
--
--
USA
Household
Teherani et al. 2020
7
4
0
6
10
0
10
USA
Household
Okarska-Napierala, Mańdziuk, and Kuchar 2021
7
3
1
--
9
0
--
Poland
Nursery
Maltezou et al. 2020g
61
1
--
--
1
4
--
Greece
Household
Heudorf, Steul, and Gottschalk 2020
3
2
--
--
1
--
--
Germany
Household
Ji et al. 2020
2
1
--
--
4
--
--
China
Household
Lin et al. 2020h
2
0
0
1
1
0
3
China
Household
Yung et al. 2021
2
0
42
--
--
--
--
Singapore
School
Buonsenso, Danilo, and Graglia 2021
2
9
0
0
--
--
--
Italy
School
Cesilia et al. 2021
1
3
0
0
1
0
1
Indonesia
Household
Gillespie et al. 2021i
1
3
--
--
0
--
--
USA
Household and School
Shah, Kondre and Mavalankar 2021j
72
0
--
--
2
--
--
India
Household
Siegel et al. 2021k
1
12
--
--
2
--
--
USA
School
Brandal et al. 2021
13
2
--
--
1
--
--
Norway
School
Dawson et al. 2021l
1
1
--
--
0
--
--
USA
School
Lin et al. 2021
1
--
--
--
3
--
--
China
Household
Fiel-Ozores et al. 2021
1
--
--
--
1
--
--
Spain
Household
Gupta et al. 2021m
19
0
--
6
7
--
50
India
Household
Hershow et al. 2021n
40
4
--
--
1
--
--
USA
School
Gold et al. 2021o
1
2
--
--
--
--
--
USA
School
Soriano-Arandes et al. 2021
80
60
--
--
107
--
--
Spain
Household
Jordan et al. 2021
30
11
--
--
1
--
--
Spain
School
Abbas and Tornhage 2021
1
2
0
0
1
0
0
Sweden
Household
Lewis et al. 2021
1
1
--
--
2
--
--
USA
Household
Ismail et al. 2021
21
6
--
--
33
--
--
UK
School
Danis et al. 2020p
1
--
--
--
--
--
--
France
School
a: Transmission only reported on 6 of 137 index patients
b: Transmission only reported on 1 of 107 index patients
c: Transmission only reported on 1 of 2 index patients; other index patient self-isolated and had no contacts
d: total of 29 child and adult patients who were exposed but asymptomatic
e: index patient tested “negative” but likely testing error
f: reported household positive cases were excluded as pattern of transmission was not specified
g: concomitant COVID infections of 2 siblings but one tested first and was used as the index patient
h: Neonatal transmission was excluded. Child testing positive was asymptomatic.
i: School A was not included as index patient’s age was unknown
j: Study also reports 3 total positive secondary cases (age unknown) out of 278 total contacts
k: Total of 16 cases (unknown age) out of 320 contacts
l: Total of 1 case out of 102 tested contacts
m: Total of 9 cases (unknown age) out of 122 contacts
n: Data of tertiary transmission was excluded as secondary index patients were not specified
o: Other transmission clusters excluded as index patient was not specified
p: Total of 1 case (unknown age) out of 172 contact
Of the 40 articles included, 13 studies were conducted in the North America [1325], 14 in Europe [4, 10, 2637], 12 from Asia [3849], and 1 from Australia [50]. Of the 40 articles, 23 identified household child-to-adult or child-to-child transmission [10, 1315, 18, 19, 2427, 29, 3234, 3842, 4548]. Seventeen articles documented transmission at a school [4, 1723, 2830, 3537, 43, 44, 50], 6 in a childcare setting, [19, 28, 29, 31, 49, 50] and 5 from other social gatherings [16, 17, 23, 24, 47] (Table 1). Studies evaluating transmission in school and daycare settings, as well as structured social gatherings such as extracurricular sports, document a variety of non-pharmacological interventions to limit viral spread, including mask wearing, physical distancing, and maintenance of limited group sizes without intermingling (Supplementary Table 1).
A total of 457 pediatric index cases were included amongst all settings, resulting in a total of 355 secondary infections, of which 149 were pediatric cases and 206 were adult cases (Table 2). Overall, there was a mean of 0.78 secondary cases per index case (Table 2).
Table 2
Secondary Case Rate by Study Setting
Setting
Number of Studies
Total Index Patients
Number of pediatric cases
Number of adult cases
Number of total cases
Case Ratea
Childcare
6
54
26
53
79
1.46
Household
22
314
85
159
244
0.78
Social Event
5
23
13
15
28
1.22
School
16
142
68
50
118
0.83
All Settings
39b
457
149
206
355
0.78
aCase rate defined as the number of confirmed infections among all contacts, not considering the total number of contacts as not all contacts were known across all studies.
bOne study (Danis et al) was excluded because it did not differentiate between pediatric vs. adult cases
In studies that documented the total contacts exposed, the child-to-child transmission rate was 5.7% while the child-to-adult transmission rate was 26.4%. Overall, in studies that documented the total contacts exposed, 8.4% of contacts exposed to a confirmed pediatric index case were infected. We undertook a meta-analysis of overall pooled SARs, with data included from 13 studies [4, 1417, 19, 24, 26, 31, 43, 47, 49, 50]. The pooled estimate for all studies with full contact tracing of a contact of a pediatric index case being infected as secondary case was 0.10 (95% CI 0.03-0.25), with high heterogeneity (I2 = 88%) (Fig. 2).
We undertook a meta-analysis of pooled SARs in close contact settings to compare transmission to children and to adults, with data included from 5 studies [14, 15, 24, 26, 47]. The pooled OR estimate for adults was 0.21 (95% CI 0.05-0.91), with no heterogeneity (I2 = 0%) (Fig. 2B).

Transmission Setting

There were 142 index patients documented in a school setting, with an overall mean of 0.83 secondary cases per index case (Table 3). In studies that documented the total contacts exposed, the child-to-child transmission rate in school settings was 2.0% of all child contacts, while the child-to-adult transmission rate in school settings was 11.7% (Table 3). Of all confirmed child-to-child transmission in school and childcare settings, almost half (48%) took place in secondary school environments.
Table 3
Secondary Attack Rate by Setting
 
Childcare (6a)
Household (22b)
Social Event (5)
School (13c)
All Settings
Child to Child Transmission (N)
26/365
85/169
13/84
65/2304
149/2630
Child to Child SAR (%)
7.1%
50.3%
15.5%
2.0%
5.7%
Child to Adult Transmission (N)
53/167
159/338
15/73
50/426
208/789
Child to Adult SAR (%)
31.7%
47.0%
20.6%
11.7%
26.4%
a1 study excluded due to missing data
b10 studies excluded due to missing data
c6 studies excluded due to missing data
There were 314 index patients documented in a household setting, with an overall mean of 0.78 secondary cases per index case (Table 2). In studies that documented the total contacts exposed, the child-to-child transmission rate in household settings was 50.3% of all child contacts (Table 3). In studies that documented the total contacts exposed, the child-to-adult transmission rate in household settings was 47.0% of all adult contacts (Table 3).
We undertook a meta-analysis of pooled SARs in household and school settings [4, 1417, 19, 24, 26, 31, 43, 47, 49, 50]. The SAR estimate for household settings was 0.18 (95% CI 0.07-0.42), with significant heterogeneity (I2 = 83%), while the SAR estimate for school settings was 0.04 (95% CI 0.00-0.28) with significant heterogeneity (I2 = 91%) (Fig. 3). Comparisons of these pooled SARs by setting were insufficiently powered to run.

Country of origin

Amongst European and North American studies, there was a mean of 0.98 and 0.84 secondary cases per index case respectively, while amongst Asian studies there was an overall lower rate of 0.30 secondary cases per index case (Table 4). In studies that documented the total contacts exposed, in North America, Europe, and Asia, the child-to-child transmission rate was 4.2%, 9.9%, and 4.4% while the child-to-adult transmission rate was 17.8%, 37.4%, and 21.4% respectively (Table 5).
Table 4
Secondary case rate by continent
Country
Number of Studies
Total Index Patients
Number of pediatric cases
Number of adult cases
Number of total cases
Case Rate
All
39a
457
149
206
355
0.78
North America
13
73
31
30
61
0.84
Asia
12
105
9
22
31
0.30
Europe
13
267
107
155
262
0.98
Australia
1
12
2
1
3
0.25
aOne study (Danis) was excluded because it did not differentiate between pediatric vs. adult cases
Table 5
Secondary attack rates by continent
 
North America (13a)
Asia (12b)
Europe (13c)
Australia (1)
Child-to-Child Transmission (#)
31/740
9/207
107/1085
2/198
Child-to-Child Secondary Attack Rate (%)
4.19%
4.35%
9.86%
1.0%
Child-to-Adult Transmission (#)
30/169
22/103
155/415
1/102
Child-to-Adult Secondary Attack Rate (%)
17.75%
21.4%
37.35%
1.0%
a4 studies excluded due to missing data
b5 studies excluded due to missing data
c6 studies excluded due to missing data

Risk of bias assessment

Ten were deemed to be of good quality and have low risk of bias, while 22 were of fair quality and 8 were of poor quality (Supplementary Table 2). Studies deemed to be good quality all had clear study objectives, well-defined population groups, and consistently recruited from a single or homogeneous population. These studies had predefined exposure and outcome measures and defined timelines from exposure to outcome. Majority of these studies also had longitudinal follow-up to ensure delayed outcomes were adequately reported. Studies deemed to be fair or poor did not comment on potential confounding variables. Additionally, no studies reported the potential of multiple exposures or calculation of appropriate sample size.

Discussion

To our knowledge, this is the most comprehensive systematic review of cases of pediatric COVID-19 transmission in the literature and is the first to capture data beyond the first global pandemic wave. Our review suggests that overall, children have posed a relatively small risk of transmission, particularly to other children, with an average of less than one secondary case per index case. There was limited evidence of transmission in the school or childcare setting, echoing reports from other closely studied school populations [5052]. Our findings challenge many of the current public health practices of closing or limiting full time care for children in daycares, schools, and extra-curricular programming, particularly as most studies included in this review reflected periods with schools open for in class learning.
Although our study demonstrates that children do not appear to be a major contributor to the spread of COVID-19, adolescents may still play a role. The ages of all index patients and contacts were not available for meta-analysis. Of the children confirmed to have become infected with COVID-19 at school, almost half (48%) of them were confirmed to have been adolescents in a secondary school environment. This is likely to be an under-estimate as not all ages were specified. Further, the most significant reported school outbreaks took place in secondary schools [23, 28, 36]. Continuing extensive school closures in the setting of adult vaccinations and in the absence of an ongoing community outbreak, is unnecessary. Studies have increasingly shown such closures to be harmful to children, as the mental health effects and the additional unintended consequences to the most vulnerable children are coming to light [5355]. As an increasing proportion of adults are vaccinated in populations, we must continue to monitor the role of children in COVID-19 disease burden and transmission because the role of children may change in the face of an increasingly immune adult population. This will enable evidence-based decisions on vaccination of children to be made, in light of anticipated data from pediatric clinical trials of COVID-19 vaccines and other key issues such as equitable global distribution of COVID-19 vaccines.
Our study demonstrated that the core population at risk of COVID-19 infection from a child are those residing in the same household as the child, with a secondary attack rate of 47% to adults and 50% of children in this setting. However, there have been numerous studies demonstrating that children are less likely to be the index case in households to begin with, and are less likely than other household members to be infected by a family member [5659]. This may also be attributed to the more intimate caregiver roles that adults in the household may play compared to other siblings. Furthermore, while many public health policies recommend self-isolation within households when one individual is infected, this is usually unrealistic for children who rely on at least one caregiver for day-to-day needs. Alternatively, it is possible that the higher rate of transmission to adults in the household was a result of their biological vulnerability to the virus and population-wide increased rates of infection [60]. In studies that have sought to evaluate seroprevalence amongst household contacts, regardless of index case, there have been mixed findings, but overall children appear to have lower overall seropositivity than older household members [6163]. This matches our findings of overall lower transmission to other children in the household compared to transmission to other household adults, and may again reflect differing susceptibility to the virus. While these studies and population-wide seroprevalence studies do not clearly demonstrate transmission risk and would therefore be unlikely to significantly change the interpretation of our review’s findings, their findings do correlate with the transmission dynamics we identified in this review.
There remains limited data available regarding the potential for pediatric COVID-19 transmission in larger pediatric group settings such as schools and summer camps. Only a few studies in these settings were included in our study, while other settings contained sufficient contact-tracing data to be fully included in this review [64, 65]. Our study demonstrates that if a child with COVID-19 does attend a congregate setting with other children, the relative risk to others is quite low. However, this does not preclude super-spreading events from occurring, particularly among adolescents. There have been reports of extensive and rapid transmission in settings with prolonged contact, even where some measures to mitigate introduction of infected participants into the setting [17]. The role of adults in these settings at assisting spread remains unclear, but necessary, as many reports from school and daycare settings report similar, if not higher, rates of spread from teachers themselves than from students [15, 66]. Close monitoring of congregate pediatric settings, particularly intimate ones such as summer camps, will be critical until mass vaccination is achieved.
Our review, completed through March 2021, represents transmission in the absence of vaccine pressure. Large-scale COVID-19 vaccination campaigns began after the timing of most studies included in the review. As well, most of the studies with available data took place prior to the widespread development of virus variants with different transmission data. The potential role of child-to-child transmission will likely become even more prominent as many countries are quickly achieving vaccination of significant proportions of their adult populations. Our study, which demonstrates low rates of child-to-child transmission, argues that in the context of widespread adult vaccination, re-opening of schools and other childcare settings will no longer be risky from a transmission standpoint and will be vital in face of the ongoing mental health and other widespread detriments of keeping such settings closed.
In this study, we were unable to exhaustively collect all evidence of children who were SARS-CoV-2 positive, and yet did not transmit the virus. These are the most reported pediatric cases of COVID-19 in the literature, particularly early in the epidemic when children had limited contacts outside of the home but could not be included as they provided no clear information regarding transmission. As a result, our review may over-report documented transmission from children. Additionally, due to the relatively mild or absent illness most children have with COVID-19, there is an unknown number of untested cases of SARS-CoV-2 amongst pediatric patients with unspecified transmission that we are unable to capture in this review. As a result, these asymptomatic scenarios may have caused us to under-estimate the true transmission rate. We sought to focus on symptomatic children who would be at highest risk of transmission to others, which may miss some transmission from asymptomatic cases. Like other contact tracing studies [56, 67], we were also unable to control for the possibility of a ‘common exposure’ where two individuals were infected by the same source at the same time, but only one of the two was identified as the index case. Furthermore, we were limited by the many reports of pediatric COVID-19 cases without contact tracing available, clarity on ages of all cases, and/or larger studies that report outbreak size in relation to a communal pediatric setting but did not undergo thorough contact tracing to document the nature of the spread. Reporting of secondary school cases was particularly limited by unspecified ages in multiple studies, likely leading to an under-representation of adolescent index cases in school settings. The bias introduced in this study, with studied individuals having potentially a more clearly defined exposure than those in population-wide studies, might therefore over-account for cases amongst close contacts. Lastly, as assessed by the NIH Quality Assessment Tool, the quality of included studies were mostly deemed fair. Specifically, domains that may affect the overall validity of our results come from the lack of reporting of potential multiple exposures and potential confounding variables. Consequently, without knowing other exposures or additional risk factors impacting transmissibility, our reported rates may have over-reported the true transmission rate. In summary, some factors lead to potential over-estimation of transmission compared to our findings, while others may contribute to potential under-estimation of transmission, but the relative contributions of these factors are difficult to ascertain.
Additionally, most studies did not report cycle threshold cut-off values for PCR testing for reporting positive results, limiting our interpretation of the infectious potential of studied cases amongst and between individual studies, although all studies followed national reporting guidelines in their individual jurisdictions. We also acknowledge that the transmission characteristics of new SARS-CoV-2 variants may differ. We did not identify studies that clearly reflected variants of concern circulating in the population at the time data was collected; a focus on the changing transmission dynamics, particularly in pediatric cases, will be critical for ongoing studies to monitor.

Conclusions

In addition to the previously reports of children having milder disease course and better prognosis than adults, children also appear to be less likely to transmit COVID-19 than their adult counterparts. Household transmission remains the most prominent source of child-to-adult and child-to-child transmission. Further research is required to better understand how child transmission of COVID-19 has been impacted by the reopening of schools and the advancement of vaccines, as well as introduction of new variants.

Acknowledgements

Not applicable.

Declarations

not applicable.
not applicable.

Competing interests

MS is supported via salary awards from the BC Children’s Hospital Foundation, the Canadian Child Health Clinician Scientist Program and the Michael Smith Foundation for Health Research. MS has been an investigator on projects funded by GlaxoSmithKline, Merck, Pfizer, Sanofi-Pasteur, Seqirus, Symvivo and VBI Vaccines. All funds have been paid to his institute, and he has not received any personal payments. No other authors have competing interests to declare.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat Viner RM, Russell SJ, Croker H, Packer J, Ward J, Stansfield C, et al. School closure and management practices during coronavirus outbreaks including COVID-19: a rapid systematic review. The Lancet Child & Adolescent Health. 2020;4(5):397–404.CrossRef Viner RM, Russell SJ, Croker H, Packer J, Ward J, Stansfield C, et al. School closure and management practices during coronavirus outbreaks including COVID-19: a rapid systematic review. The Lancet Child & Adolescent Health. 2020;4(5):397–404.CrossRef
3.
Zurück zum Zitat Stein-Zamir C, Abramson N, Shoob H, Libal E, Bitan M, Cardash T, et al. A large COVID-19 outbreak in a high school 10 days after schools’ reopening, Israel, May 2020. Eurosurveillance. 2020;25(29):2001352.PubMedCentralCrossRef Stein-Zamir C, Abramson N, Shoob H, Libal E, Bitan M, Cardash T, et al. A large COVID-19 outbreak in a high school 10 days after schools’ reopening, Israel, May 2020. Eurosurveillance. 2020;25(29):2001352.PubMedCentralCrossRef
4.
Zurück zum Zitat Heavey L, Casey G, Kelly C, Kelly D, McDarby G. No evidence of secondary transmission of COVID-19 from children attending school in Ireland, 2020. Eurosurveillance. 2020;25(21):2–5.CrossRef Heavey L, Casey G, Kelly C, Kelly D, McDarby G. No evidence of secondary transmission of COVID-19 from children attending school in Ireland, 2020. Eurosurveillance. 2020;25(21):2–5.CrossRef
5.
Zurück zum Zitat Im Kampe EO, Lehfeld A-S, Buda S, Buchholz U, Haas W. Surveillance of COVID-19 school outbreaks, Germany, March to August 2020. Eurosurveillance. 2020;25(38):2001645. Im Kampe EO, Lehfeld A-S, Buda S, Buchholz U, Haas W. Surveillance of COVID-19 school outbreaks, Germany, March to August 2020. Eurosurveillance. 2020;25(38):2001645.
6.
Zurück zum Zitat Stringhini S, Wisniak A, Piumatti G, Azman AS, Lauer SA, Baysson H, et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-based study. Lancet. 2020;396(10247):313–9.PubMedPubMedCentralCrossRef Stringhini S, Wisniak A, Piumatti G, Azman AS, Lauer SA, Baysson H, et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-based study. Lancet. 2020;396(10247):313–9.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Boehmer TK, DeVies J, Caruso E, van Santen KL, Tang S, Black CL, et al. Changing Age Distribution of the COVID-19 Pandemic - United States, May-August 2020. MMWR Morbidity and mortality weekly report. 2020;69(39):1404–9.PubMedPubMedCentralCrossRef Boehmer TK, DeVies J, Caruso E, van Santen KL, Tang S, Black CL, et al. Changing Age Distribution of the COVID-19 Pandemic - United States, May-August 2020. MMWR Morbidity and mortality weekly report. 2020;69(39):1404–9.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Dong Y, Mo X, Hu Y, Qi X, Jiang F, Jiang Z, Tong S. Epidemiology of COVID-19 Among Children in China. Pediatrics. 2020;145(6):e20200702. Dong Y, Mo X, Hu Y, Qi X, Jiang F, Jiang Z, Tong S. Epidemiology of COVID-19 Among Children in China. Pediatrics. 2020;145(6):e20200702.
9.
Zurück zum Zitat Merckx J, Labrecque JA, Kaufman JS. Transmission of SARS-CoV-2 by children. Deutsches Aerzteblatt Online. 2020. Merckx J, Labrecque JA, Kaufman JS. Transmission of SARS-CoV-2 by children. Deutsches Aerzteblatt Online. 2020.
10.
Zurück zum Zitat Maltezou HC, Magaziotou I, Dedoukou X, Eleftheriou E, Raftopoulos V, Michos A, et al. Children and Adolescents With SARS-CoV-2 Infection Epidemiology, Clinical Course and Viral Loads. Pediatric Infectious Disease Journal. 2020;39(12):E388-E92.CrossRef Maltezou HC, Magaziotou I, Dedoukou X, Eleftheriou E, Raftopoulos V, Michos A, et al. Children and Adolescents With SARS-CoV-2 Infection Epidemiology, Clinical Course and Viral Loads. Pediatric Infectious Disease Journal. 2020;39(12):E388-E92.CrossRef
11.
Zurück zum Zitat DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.PubMedCrossRef DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.PubMedCrossRef
13.
Zurück zum Zitat Pitman-Hunt C, Leja J, Jiwani ZM, Rondot D, Ang J, Kannikeswaran N. Severe Acute Respiratory Syndrome-Coronavirus-2 Transmission in an Urban Community: The Role of Children and Household Contacts. J Pediatric Infect Dis Soc. 2021;10(9):919–21. Pitman-Hunt C, Leja J, Jiwani ZM, Rondot D, Ang J, Kannikeswaran N. Severe Acute Respiratory Syndrome-Coronavirus-2 Transmission in an Urban Community: The Role of Children and Household Contacts. J Pediatric Infect Dis Soc. 2021;10(9):919–21.
14.
Zurück zum Zitat Laws RL, Chancey RJ, Rabold EM, Chu VT, Lewis NM, Fajans M, Reses HE, Duca LM, Dawson P, Conners EE, Gharpure R, Yin S, Buono S, Pomeroy M, Yousaf AR, Owusu D, Wadhwa A, Pevzner E, Battey KA, Njuguna H, Fields VL, Salvatore P, O'Hegarty M, Vuong J, Gregory CJ, Banks M, Rispens J, Dietrich E, Marcenac P, Matanock A, Pray I, Westergaard R, Dasu T, Bhattacharyya S, Christiansen A, Page L, Dunn A, Atkinson-Dunn R, Christensen K, Kiphibane T, Willardson S, Fox G, Ye D, Nabity SA, Binder A, Freeman BD, Lester S, Mills L, Thornburg N, Hall AJ, Fry AM, Tate JE, Tran CH, Kirking HL. Symptoms and Transmission of SARS-CoV-2 Among Children - Utah and Wisconsin, March-May 2020. Pediatrics. 2021;147(1):e2020027268. Laws RL, Chancey RJ, Rabold EM, Chu VT, Lewis NM, Fajans M, Reses HE, Duca LM, Dawson P, Conners EE, Gharpure R, Yin S, Buono S, Pomeroy M, Yousaf AR, Owusu D, Wadhwa A, Pevzner E, Battey KA, Njuguna H, Fields VL, Salvatore P, O'Hegarty M, Vuong J, Gregory CJ, Banks M, Rispens J, Dietrich E, Marcenac P, Matanock A, Pray I, Westergaard R, Dasu T, Bhattacharyya S, Christiansen A, Page L, Dunn A, Atkinson-Dunn R, Christensen K, Kiphibane T, Willardson S, Fox G, Ye D, Nabity SA, Binder A, Freeman BD, Lester S, Mills L, Thornburg N, Hall AJ, Fry AM, Tate JE, Tran CH, Kirking HL. Symptoms and Transmission of SARS-CoV-2 Among Children - Utah and Wisconsin, March-May 2020. Pediatrics. 2021;147(1):e2020027268.
15.
Zurück zum Zitat Lopez AS, Hill M, Antezano J, Vilven D, Rutner T, Bogdanow L, et al. Transmission Dynamics of COVID-19 Outbreaks Associated with Child Care Facilities - Salt Lake City, Utah, April-July 2020. MMWR-Morb Mortal Wkly Rep. 2020;69(37):1319–23.PubMedPubMedCentralCrossRef Lopez AS, Hill M, Antezano J, Vilven D, Rutner T, Bogdanow L, et al. Transmission Dynamics of COVID-19 Outbreaks Associated with Child Care Facilities - Salt Lake City, Utah, April-July 2020. MMWR-Morb Mortal Wkly Rep. 2020;69(37):1319–23.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Drezner JA, Drezner SM, Magner KN, Ayala JT. COVID-19 Surveillance in Youth Soccer During Small Group Training: A Safe Return to Sports Activity. Sports Health.3. Drezner JA, Drezner SM, Magner KN, Ayala JT. COVID-19 Surveillance in Youth Soccer During Small Group Training: A Safe Return to Sports Activity. Sports Health.3.
17.
Zurück zum Zitat Pray IW, Gibbons-Burgener SN, Rosenberg AZ, Cole D, Borenstein S, Bateman A, et al. COVID-19 Outbreak at an Overnight Summer School Retreat - Wisconsin, July-August 2020. MMWR Morbidity and mortality weekly report. 2020;69(43):1600–4.PubMedPubMedCentralCrossRef Pray IW, Gibbons-Burgener SN, Rosenberg AZ, Cole D, Borenstein S, Bateman A, et al. COVID-19 Outbreak at an Overnight Summer School Retreat - Wisconsin, July-August 2020. MMWR Morbidity and mortality weekly report. 2020;69(43):1600–4.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Gillespie DL, Meyers LA, Lachmann M, Redd SC, Zenilman JM. The Experience of 2 Independent Schools With In-Person Learning During the COVID‐19 Pandemic. Journal of School Health. 2021. Gillespie DL, Meyers LA, Lachmann M, Redd SC, Zenilman JM. The Experience of 2 Independent Schools With In-Person Learning During the COVID‐19 Pandemic. Journal of School Health. 2021.
19.
Zurück zum Zitat Teherani MF, Kao CM, Camacho-Gonzalez A, Banskota S, Shane AL, Linam WM, et al. Burden of Illness in Households With Severe Acute Respiratory Syndrome Coronavirus 2–Infected Children. J Pediatr Infect Dis Soc. 2020;9(5):613–6.CrossRef Teherani MF, Kao CM, Camacho-Gonzalez A, Banskota S, Shane AL, Linam WM, et al. Burden of Illness in Households With Severe Acute Respiratory Syndrome Coronavirus 2–Infected Children. J Pediatr Infect Dis Soc. 2020;9(5):613–6.CrossRef
20.
Zurück zum Zitat Gold JA. Clusters of SARS-CoV-2 infection among elementary school educators and students in one school district—Georgia, December 2020–January 2021. MMWR Morbidity and mortality weekly report. 2021;70. Gold JA. Clusters of SARS-CoV-2 infection among elementary school educators and students in one school district—Georgia, December 2020–January 2021. MMWR Morbidity and mortality weekly report. 2021;70.
21.
Zurück zum Zitat Hershow RB, Wu K, Lewis NM, Milne AT, Currie D, Smith AR, et al. Low SARS-CoV-2 Transmission in Elementary Schools—Salt Lake County, Utah, December 3, 2020–January 31, 2021. Morbidity and Mortality Weekly Report. 2021;70(12):442.PubMedPubMedCentralCrossRef Hershow RB, Wu K, Lewis NM, Milne AT, Currie D, Smith AR, et al. Low SARS-CoV-2 Transmission in Elementary Schools—Salt Lake County, Utah, December 3, 2020–January 31, 2021. Morbidity and Mortality Weekly Report. 2021;70(12):442.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Dawson P, Worrell MC, Malone S, Tinker SC, Fritz S, Maricque B, et al. Pilot Investigation of SARS-CoV-2 Secondary Transmission in Kindergarten Through Grade 12 Schools Implementing Mitigation Strategies—St. Louis County and City of Springfield, Missouri, December 2020. Morbidity and Mortality Weekly Report. 2021;70(12):449.PubMedPubMedCentralCrossRef Dawson P, Worrell MC, Malone S, Tinker SC, Fritz S, Maricque B, et al. Pilot Investigation of SARS-CoV-2 Secondary Transmission in Kindergarten Through Grade 12 Schools Implementing Mitigation Strategies—St. Louis County and City of Springfield, Missouri, December 2020. Morbidity and Mortality Weekly Report. 2021;70(12):449.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Siegel M, Kloppenburg B, Woerle S, Sjoblom S, Danyluk G. Notes from the Field: SARS-CoV-2 Transmission Associated with High School Football Team Members—Florida, September–October 2020. Morbidity and Mortality Weekly Report. 2021;70(11):402.PubMedPubMedCentralCrossRef Siegel M, Kloppenburg B, Woerle S, Sjoblom S, Danyluk G. Notes from the Field: SARS-CoV-2 Transmission Associated with High School Football Team Members—Florida, September–October 2020. Morbidity and Mortality Weekly Report. 2021;70(11):402.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Schwartz NG, Moorman AC, Makaretz A, Chang KT, Chu VT, Szablewski CM, et al. Adolescent with COVID-19 as the Source of an Outbreak at a 3-Week Family Gathering—Four States, June–July 2020. Morbidity and Mortality Weekly Report. 2020;69(40):1457.PubMedPubMedCentralCrossRef Schwartz NG, Moorman AC, Makaretz A, Chang KT, Chu VT, Szablewski CM, et al. Adolescent with COVID-19 as the Source of an Outbreak at a 3-Week Family Gathering—Four States, June–July 2020. Morbidity and Mortality Weekly Report. 2020;69(40):1457.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Lewis NM, Duca LM, Marcenac P, Dietrich EA, Gregory CJ, Fields VL, et al. Characteristics and timing of initial virus shedding in severe acute respiratory syndrome coronavirus 2, Utah, USA. Emerg Infect Dis. 2021;27(2):352.PubMedPubMedCentralCrossRef Lewis NM, Duca LM, Marcenac P, Dietrich EA, Gregory CJ, Fields VL, et al. Characteristics and timing of initial virus shedding in severe acute respiratory syndrome coronavirus 2, Utah, USA. Emerg Infect Dis. 2021;27(2):352.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Posfay-Barbe KM, Wagner N, Gauthey M, Moussaoui D, Loevy N, Diana A, L'Huillier AG. COVID-19 in Children and the Dynamics of Infection in Families. Pediatrics. 2020;146(2):e20201576. Posfay-Barbe KM, Wagner N, Gauthey M, Moussaoui D, Loevy N, Diana A, L'Huillier AG. COVID-19 in Children and the Dynamics of Infection in Families. Pediatrics. 2020;146(2):e20201576.
27.
Zurück zum Zitat Heudorf U, Steul K, Gottschalk R. Sars-Cov-2 in children - insights and conclusions from the mandatory reporting data in Frankfurt am Main, Germany, March-July 2020. Gms Hygiene and Infection Control. 2020;15:12. Heudorf U, Steul K, Gottschalk R. Sars-Cov-2 in children - insights and conclusions from the mandatory reporting data in Frankfurt am Main, Germany, March-July 2020. Gms Hygiene and Infection Control. 2020;15:12.
28.
Zurück zum Zitat Ehrhardt J, Ekinci A, Krehl H, Meincke M, Finci I, Klein J, et al. Transmission of SARS-CoV-2 in children aged 0 to 19 years in childcare facilities and schools after their reopening in May 2020, Baden-Württemberg, Germany. Eurosurveillance. 2020;25(36):2001587.PubMedCentralCrossRef Ehrhardt J, Ekinci A, Krehl H, Meincke M, Finci I, Klein J, et al. Transmission of SARS-CoV-2 in children aged 0 to 19 years in childcare facilities and schools after their reopening in May 2020, Baden-Württemberg, Germany. Eurosurveillance. 2020;25(36):2001587.PubMedCentralCrossRef
29.
Zurück zum Zitat Ismail SA, Saliba V, Bernal JL, Ramsay ME, Ladhani SN. SARS-CoV-2 infection and transmission in educational settings: a prospective, cross-sectional analysis of infection clusters and outbreaks in England. The Lancet Infectious Diseases. 2021;21(3):344–53.PubMedCrossRef Ismail SA, Saliba V, Bernal JL, Ramsay ME, Ladhani SN. SARS-CoV-2 infection and transmission in educational settings: a prospective, cross-sectional analysis of infection clusters and outbreaks in England. The Lancet Infectious Diseases. 2021;21(3):344–53.PubMedCrossRef
30.
Zurück zum Zitat Danis K, Epaulard O, Bénet T, Gaymard A, Campoy S, Botelho-Nevers E, et al. Cluster of Coronavirus Disease 2019 (COVID-19) in the French Alps, February 2020. Clin Infect Dis. 2020;71(15):825–32.PubMedCrossRef Danis K, Epaulard O, Bénet T, Gaymard A, Campoy S, Botelho-Nevers E, et al. Cluster of Coronavirus Disease 2019 (COVID-19) in the French Alps, February 2020. Clin Infect Dis. 2020;71(15):825–32.PubMedCrossRef
31.
32.
Zurück zum Zitat Abbas M, Törnhage C-J. Family Transmission of COVID-19 Including a Child with MIS-C and Acute Pancreatitis. International medical case reports journal. 2021;14:55–65.PubMedPubMedCentralCrossRef Abbas M, Törnhage C-J. Family Transmission of COVID-19 Including a Child with MIS-C and Acute Pancreatitis. International medical case reports journal. 2021;14:55–65.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Soriano-Arandes A, Gatell A, Serrano P, Biosca M, Campillo F, Capdevila R, et al. Household SARS-CoV-2 transmission and children: a network prospective study. Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America. 2021. Soriano-Arandes A, Gatell A, Serrano P, Biosca M, Campillo F, Capdevila R, et al. Household SARS-CoV-2 transmission and children: a network prospective study. Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America. 2021.
34.
Zurück zum Zitat Fiel-Ozores A, González-Durán ML, Novoa-Carballal R, Fernández-Pinilla I, Cabrera-Alvargonzález JJ, Martínez-Reglero C, et al. Differential clinic in children infected by SARS-CoV-2, traceability of contacts and cost-effectiveness of diagnostic tests: Cross-sectional observational study. Anales de Pediatría (English Edition). 2021. Fiel-Ozores A, González-Durán ML, Novoa-Carballal R, Fernández-Pinilla I, Cabrera-Alvargonzález JJ, Martínez-Reglero C, et al. Differential clinic in children infected by SARS-CoV-2, traceability of contacts and cost-effectiveness of diagnostic tests: Cross-sectional observational study. Anales de Pediatría (English Edition). 2021.
35.
Zurück zum Zitat Jordan I, de Sevilla MF, Fumado V, Bassat Q, Bonet-Carne E, Fortuny C, et al. Transmission of SARS-CoV-2 infection among children in summer schools applying stringent control measures in Barcelona, Spain. Clinical Infectious Diseases. 2021. Jordan I, de Sevilla MF, Fumado V, Bassat Q, Bonet-Carne E, Fortuny C, et al. Transmission of SARS-CoV-2 infection among children in summer schools applying stringent control measures in Barcelona, Spain. Clinical Infectious Diseases. 2021.
36.
Zurück zum Zitat Buonsenso D, Graglia B. High rates of SARS-CoV‐2 transmission in a high‐school class. Journal of Paediatrics and Child Health. 2021;57(2):299.PubMedPubMedCentralCrossRef Buonsenso D, Graglia B. High rates of SARS-CoV‐2 transmission in a high‐school class. Journal of Paediatrics and Child Health. 2021;57(2):299.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Brandal LT, Ofitserova TS, Meijerink H, Rykkvin R, Lund HM, Hungnes O, et al. Minimal transmission of SARS-CoV-2 from paediatric COVID-19 cases in primary schools, Norway, August to November 2020. Eurosurveillance. 2021;26(1):2–7.CrossRef Brandal LT, Ofitserova TS, Meijerink H, Rykkvin R, Lund HM, Hungnes O, et al. Minimal transmission of SARS-CoV-2 from paediatric COVID-19 cases in primary schools, Norway, August to November 2020. Eurosurveillance. 2021;26(1):2–7.CrossRef
38.
Zurück zum Zitat Lin G-t, Zhang Y-h, Xiao M-f, Wei Y, Chen J-n, Lin D-j, et al. Epidemiological investigation of a COVID-19 family cluster outbreak transmitted by a 3-month-old infant. Health Information Science and Systems. 2021;9(1):1–10.CrossRef Lin G-t, Zhang Y-h, Xiao M-f, Wei Y, Chen J-n, Lin D-j, et al. Epidemiological investigation of a COVID-19 family cluster outbreak transmitted by a 3-month-old infant. Health Information Science and Systems. 2021;9(1):1–10.CrossRef
39.
Zurück zum Zitat Ji T, Chen HL, Xu J, Wu LN, Li JJ, Chen K, et al. Lockdown Contained the Spread of 2019 Novel Coronavirus Disease in Huangshi City, China: Early Epidemiological Findings. Clinical Infectious Diseases. 2020;71(6):1454–60.PubMedCrossRef Ji T, Chen HL, Xu J, Wu LN, Li JJ, Chen K, et al. Lockdown Contained the Spread of 2019 Novel Coronavirus Disease in Huangshi City, China: Early Epidemiological Findings. Clinical Infectious Diseases. 2020;71(6):1454–60.PubMedCrossRef
40.
Zurück zum Zitat Lin J, Duan J, Tan T, Fu Z, Dai J. The isolation period should be longer: Lesson from a child infected with SARS-CoV-2 in Chongqing, China. Pediatr Pulmonol. 2020;55(6):E6-E9.PubMedCrossRef Lin J, Duan J, Tan T, Fu Z, Dai J. The isolation period should be longer: Lesson from a child infected with SARS-CoV-2 in Chongqing, China. Pediatr Pulmonol. 2020;55(6):E6-E9.PubMedCrossRef
41.
Zurück zum Zitat Fong M, Cowling B, Leung G, Wu P. Letter to the editor: COVID-19 cases among school-aged children and school-based measures in Hong Kong, July 2020. Eurosurveillance. 2020;25(37):2001671.PubMedCentralCrossRef Fong M, Cowling B, Leung G, Wu P. Letter to the editor: COVID-19 cases among school-aged children and school-based measures in Hong Kong, July 2020. Eurosurveillance. 2020;25(37):2001671.PubMedCentralCrossRef
42.
Zurück zum Zitat Cesilia C, Sudarmaji S, Setiabudi D, Nataprawira HM. Case report of a COVID-19 family cluster originating from a boarding school. Paediatrica Indonesiana. 2021;61(1):49–55.CrossRef Cesilia C, Sudarmaji S, Setiabudi D, Nataprawira HM. Case report of a COVID-19 family cluster originating from a boarding school. Paediatrica Indonesiana. 2021;61(1):49–55.CrossRef
43.
Zurück zum Zitat Yung CF, Kam KQ, Nadua KD, Chong CY, Tan NWH, Li J, Lee KP, Chan YH, Thoon KC, Ng KC. Novel coronavirus 2019 transmission risk in educational settings. Clin Infect Dis. 2021;72(6):1055–8. Yung CF, Kam KQ, Nadua KD, Chong CY, Tan NWH, Li J, Lee KP, Chan YH, Thoon KC, Ng KC. Novel coronavirus 2019 transmission risk in educational settings. Clin Infect Dis. 2021;72(6):1055–8.
44.
Zurück zum Zitat Wong J, Jamaludin SA, Alikhan MF, Chaw L. Asymptomatic transmission of SARS-CoV‐2 and implications for mass gatherings. Influenza Other Respir Viruses. 2020. Wong J, Jamaludin SA, Alikhan MF, Chaw L. Asymptomatic transmission of SARS-CoV‐2 and implications for mass gatherings. Influenza Other Respir Viruses. 2020.
45.
Zurück zum Zitat Gharekhanloo F, Sedighi I, Khazaei S. Variety of radiological findings in a family with COVID-19: a case report. Egypt J Radiol Nucl Med. 2020;51(1):5.CrossRef Gharekhanloo F, Sedighi I, Khazaei S. Variety of radiological findings in a family with COVID-19: a case report. Egypt J Radiol Nucl Med. 2020;51(1):5.CrossRef
46.
Zurück zum Zitat Shah K, Kandre Y, Mavalankar D. Secondary attack rate in household contacts of COVID-19 Paediatric index cases: a study from Western India. Journal of Public Health (Oxford, England). 2021. Shah K, Kandre Y, Mavalankar D. Secondary attack rate in household contacts of COVID-19 Paediatric index cases: a study from Western India. Journal of Public Health (Oxford, England). 2021.
47.
Zurück zum Zitat Gupta N, Saravu K, Varma M, Pm A, Shetty S, Umakanth S. Transmission of SARS-CoV-2 infection by children: a study of contacts of index paediatric cases in India. Journal of tropical pediatrics. 2021;67(1):fmaa081.PubMedCrossRef Gupta N, Saravu K, Varma M, Pm A, Shetty S, Umakanth S. Transmission of SARS-CoV-2 infection by children: a study of contacts of index paediatric cases in India. Journal of tropical pediatrics. 2021;67(1):fmaa081.PubMedCrossRef
48.
Zurück zum Zitat Kim J, Choe YJ, Lee J, Park YJ, Park O, Han MS, Kim JH, Choi EH. Role of children in household transmission of COVID-19. Arch Dis Child. 2021;106(7):709–11. Kim J, Choe YJ, Lee J, Park YJ, Park O, Han MS, Kim JH, Choi EH. Role of children in household transmission of COVID-19. Arch Dis Child. 2021;106(7):709–11.
49.
Zurück zum Zitat Yoon Y, Choi G-J, Kim JY, Kim K-R, Park H, Chun JK, et al. Childcare Exposure to Severe Acute Respiratory Syndrome Coronavirus 2 for 4-Year-Old Presymptomatic Child, South Korea. Emerg Infect Dis. 2021;27(2):341.PubMedPubMedCentralCrossRef Yoon Y, Choi G-J, Kim JY, Kim K-R, Park H, Chun JK, et al. Childcare Exposure to Severe Acute Respiratory Syndrome Coronavirus 2 for 4-Year-Old Presymptomatic Child, South Korea. Emerg Infect Dis. 2021;27(2):341.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Macartney K, Quinn HE, Pillsbury AJ, Koirala A, Deng L, Winkler N, et al. Transmission of SARS-CoV-2 in Australian educational settings: a prospective cohort study. Lancet Child Adolesc Health. 2020;4(11):807–16.PubMedPubMedCentralCrossRef Macartney K, Quinn HE, Pillsbury AJ, Koirala A, Deng L, Winkler N, et al. Transmission of SARS-CoV-2 in Australian educational settings: a prospective cohort study. Lancet Child Adolesc Health. 2020;4(11):807–16.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Zimmerman KO, Akinboyo IC, Brookhart MA, Boutzoukas AE, McGann K, Smith MJ, et al. Incidence and secondary transmission of SARS-CoV-2 infections in schools. Pediatrics. 2021. Zimmerman KO, Akinboyo IC, Brookhart MA, Boutzoukas AE, McGann K, Smith MJ, et al. Incidence and secondary transmission of SARS-CoV-2 infections in schools. Pediatrics. 2021.
52.
Zurück zum Zitat Gilliam WS, Malik AA, Shafiq M, Klotz M, Reyes C, Humphries JE, Murray T, Elharake JA,Wilkinson D, Omer SB. COVID-19 Transmission in US Child Care Programs. Pediatrics. 2021;147(1):e2020031971. Gilliam WS, Malik AA, Shafiq M, Klotz M, Reyes C, Humphries JE, Murray T, Elharake JA,Wilkinson D, Omer SB. COVID-19 Transmission in US Child Care Programs. Pediatrics. 2021;147(1):e2020031971.
53.
Zurück zum Zitat Crawley E, Loades M, Feder G, Logan S, Redwood S, Macleod J. Wider collateral damage to children in the UK because of the social distancing measures designed to reduce the impact of COVID-19 in adults. BMJ Paediatrics Open. 2020;4(1):e000701.PubMedPubMedCentralCrossRef Crawley E, Loades M, Feder G, Logan S, Redwood S, Macleod J. Wider collateral damage to children in the UK because of the social distancing measures designed to reduce the impact of COVID-19 in adults. BMJ Paediatrics Open. 2020;4(1):e000701.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Munro APS, Faust SN. Children are not COVID-19 super spreaders: time to go back to school. Arch Dis Child. 2020;105(7):618–9. Munro APS, Faust SN. Children are not COVID-19 super spreaders: time to go back to school. Arch Dis Child. 2020;105(7):618–9.
55.
Zurück zum Zitat Lee J. Mental health effects of school closures during COVID-19. The Lancet Child & Adolescent Health. 2020;4(6). Lee J. Mental health effects of school closures during COVID-19. The Lancet Child & Adolescent Health. 2020;4(6).
56.
Zurück zum Zitat Zhu Y, Bloxham CJ, Hulme KD, Sinclair JE, Tong ZWM, Steele LE, et al. A meta-analysis on the role of children in SARS-CoV-2 in household transmission clusters. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2020:ciaa1825. Zhu Y, Bloxham CJ, Hulme KD, Sinclair JE, Tong ZWM, Steele LE, et al. A meta-analysis on the role of children in SARS-CoV-2 in household transmission clusters. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2020:ciaa1825.
57.
Zurück zum Zitat Ludvigsson JF. Children are unlikely to be the main drivers of the COVID-19 pandemic - A systematic review. Acta Paediatr. 2020;109(8):1525–30.PubMedCrossRef Ludvigsson JF. Children are unlikely to be the main drivers of the COVID-19 pandemic - A systematic review. Acta Paediatr. 2020;109(8):1525–30.PubMedCrossRef
58.
Zurück zum Zitat Grijalva CG, Rolfes MA, Zhu Y, McLean HQ, Hanson KE, Belongia EA, et al. Transmission of SARS-COV-2 Infections in Households - Tennessee and Wisconsin, April-September 2020. MMWR Morbidity and mortality weekly report. 2020;69(44):1631–4.PubMedPubMedCentralCrossRef Grijalva CG, Rolfes MA, Zhu Y, McLean HQ, Hanson KE, Belongia EA, et al. Transmission of SARS-COV-2 Infections in Households - Tennessee and Wisconsin, April-September 2020. MMWR Morbidity and mortality weekly report. 2020;69(44):1631–4.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Jing Q-L, Liu M-J, Zhang Z-B, Fang L-Q, Yuan J, Zhang A-R, et al. Household secondary attack rate of COVID-19 and associated determinants in Guangzhou, China: a retrospective cohort study. The Lancet Infectious Diseases. 2020;20(10):1141–50.PubMedPubMedCentralCrossRef Jing Q-L, Liu M-J, Zhang Z-B, Fang L-Q, Yuan J, Zhang A-R, et al. Household secondary attack rate of COVID-19 and associated determinants in Guangzhou, China: a retrospective cohort study. The Lancet Infectious Diseases. 2020;20(10):1141–50.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Hausler M, van Helden J, Kleines M. Retarded decline of the share of SARS-CoV-2-positive children in North Rhine-Westphalia, Germany. J Med Virol.7. Hausler M, van Helden J, Kleines M. Retarded decline of the share of SARS-CoV-2-positive children in North Rhine-Westphalia, Germany. J Med Virol.7.
61.
Zurück zum Zitat Bi Q, Lessler J, Eckerle I, Lauer SA, Kaiser L, Vuilleumier N, et al. Insights into household transmission of SARS-CoV-2 from a population-based serological survey. Nat Commun. 2021;12(1):3643.PubMedPubMedCentralCrossRef Bi Q, Lessler J, Eckerle I, Lauer SA, Kaiser L, Vuilleumier N, et al. Insights into household transmission of SARS-CoV-2 from a population-based serological survey. Nat Commun. 2021;12(1):3643.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Fung HF, Martinez L, Alarid-Escudero F, Salomon JA, Studdert DM, Andrews JR, et al. The Household Secondary Attack Rate of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): A Rapid Review. Clinical Infectious Diseases. 2020;73(Supplement_2):S138-S45. Fung HF, Martinez L, Alarid-Escudero F, Salomon JA, Studdert DM, Andrews JR, et al. The Household Secondary Attack Rate of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): A Rapid Review. Clinical Infectious Diseases. 2020;73(Supplement_2):S138-S45.
63.
Zurück zum Zitat Petersen MS, Kristiansen MF, Reinert HW, Fjallsbak JP, Christiansen DH, Gaini S, et al. Seroprevalence of SARS-CoV-2-Specific Antibodies among Quarantined Close Contacts of COVID-19 Patients, Faroe Islands, 2020. Emerg Infect Dis. 2021;27(11):2795–801.PubMedPubMedCentralCrossRef Petersen MS, Kristiansen MF, Reinert HW, Fjallsbak JP, Christiansen DH, Gaini S, et al. Seroprevalence of SARS-CoV-2-Specific Antibodies among Quarantined Close Contacts of COVID-19 Patients, Faroe Islands, 2020. Emerg Infect Dis. 2021;27(11):2795–801.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Blaisdell LL, Cohn W, Pavell JR, Rubin DS, Vergales JE. Preventing and mitigating SARS-CoV-2 transmission—four overnight camps, Maine, June–August 2020. Morbidity and Mortality Weekly Report. 2020;69(35):1216.PubMedPubMedCentralCrossRef Blaisdell LL, Cohn W, Pavell JR, Rubin DS, Vergales JE. Preventing and mitigating SARS-CoV-2 transmission—four overnight camps, Maine, June–August 2020. Morbidity and Mortality Weekly Report. 2020;69(35):1216.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Szablewski CM, Chang KT, McDaniel CJ, Chu VT, Yousaf AR, Schwartz NG, Brown M, Winglee K, Paul P, Cui Z, Slayton RB, Tong S, Li Y, Uehara A, Zhang J, Sharkey SM, Kirking HL, Tate JE, Dirlikov E, Fry AM, Hall AJ, Rose DA, Villanueva J, Drenzek C, Stewart RJ, Lanzieri TM; Camp Outbreak Field Investigation Team. SARS-CoV-2 transmission dynamics in a sleep-away camp. Pediatrics. 2021;147(4):e2020046524. Szablewski CM, Chang KT, McDaniel CJ, Chu VT, Yousaf AR, Schwartz NG, Brown M, Winglee K, Paul P, Cui Z, Slayton RB, Tong S, Li Y, Uehara A, Zhang J, Sharkey SM, Kirking HL, Tate JE, Dirlikov E, Fry AM, Hall AJ, Rose DA, Villanueva J, Drenzek C, Stewart RJ, Lanzieri TM; Camp Outbreak Field Investigation Team. SARS-CoV-2 transmission dynamics in a sleep-away camp. Pediatrics. 2021;147(4):e2020046524.
66.
Zurück zum Zitat Torres JP, Piñera C, De La Maza V, Lagomarcino AJ, Simian D, Torres B, Urquidi C, Valenzuela MT, O'Ryan M. Severe Acute Respiratory Syndrome Coronavirus 2 Antibody Prevalence in Blood in a Large School Community Subject to a Coronavirus Disease 2019 Outbreak: A Cross-sectional Study. Clin Infect Dis. 2021;73(2):e458–65. Torres JP, Piñera C, De La Maza V, Lagomarcino AJ, Simian D, Torres B, Urquidi C, Valenzuela MT, O'Ryan M. Severe Acute Respiratory Syndrome Coronavirus 2 Antibody Prevalence in Blood in a Large School Community Subject to a Coronavirus Disease 2019 Outbreak: A Cross-sectional Study. Clin Infect Dis. 2021;73(2):e458–65.
67.
Zurück zum Zitat Park YJ, Choe YJ, Park O, Park SY, Kim Y-M, Kim J, et al. Contact tracing during coronavirus disease outbreak, South Korea, 2020. Emerg Infect Dis. 2020;26(10):2465–8.PubMedPubMedCentralCrossRef Park YJ, Choe YJ, Park O, Park SY, Kim Y-M, Kim J, et al. Contact tracing during coronavirus disease outbreak, South Korea, 2020. Emerg Infect Dis. 2020;26(10):2465–8.PubMedPubMedCentralCrossRef
Metadaten
Titel
Child transmission of SARS-CoV-2: a systematic review and meta-analysis
verfasst von
Sarah L Silverberg
Bei Yuan Zhang
Shu Nan Jessica Li
Conrad Burgert
Hennady P Shulha
Vanessa Kitchin
Laura Sauvé
Manish Sadarangani
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Schlagwort
COVID-19
Erschienen in
BMC Pediatrics / Ausgabe 1/2022
Elektronische ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-022-03175-8

Weitere Artikel der Ausgabe 1/2022

BMC Pediatrics 1/2022 Zur Ausgabe

Mit dem Seitenschneider gegen das Reißverschluss-Malheur

03.06.2024 Urologische Notfallmedizin Nachrichten

Wer ihn je erlebt hat, wird ihn nicht vergessen: den Schmerz, den die beim Öffnen oder Schließen des Reißverschlusses am Hosenschlitz eingeklemmte Haut am Penis oder Skrotum verursacht. Eine neue Methode für rasche Abhilfe hat ein US-Team getestet.

Ähnliche Überlebensraten nach Reanimation während des Transports bzw. vor Ort

29.05.2024 Reanimation im Kindesalter Nachrichten

Laut einer Studie aus den USA und Kanada scheint es bei der Reanimation von Kindern außerhalb einer Klinik keinen Unterschied für das Überleben zu machen, ob die Wiederbelebungsmaßnahmen während des Transports in die Klinik stattfinden oder vor Ort ausgeführt werden. Jedoch gibt es dabei einige Einschränkungen und eine wichtige Ausnahme.

Alter der Mutter beeinflusst Risiko für kongenitale Anomalie

28.05.2024 Kinder- und Jugendgynäkologie Nachrichten

Welchen Einfluss das Alter ihrer Mutter auf das Risiko hat, dass Kinder mit nicht chromosomal bedingter Malformation zur Welt kommen, hat eine ungarische Studie untersucht. Sie zeigt: Nicht nur fortgeschrittenes Alter ist riskant.

Begünstigt Bettruhe der Mutter doch das fetale Wachstum?

Ob ungeborene Kinder, die kleiner als die meisten Gleichaltrigen sind, schneller wachsen, wenn die Mutter sich mehr ausruht, wird diskutiert. Die Ergebnisse einer US-Studie sprechen dafür.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.