Skip to main content
Erschienen in: Critical Care 1/2021

Open Access 01.12.2021 | COVID-19 | Research

Association of intensity of ventilation with 28-day mortality in COVID-19 patients with acute respiratory failure: insights from the PRoVENT-COVID study

verfasst von: Michiel T. U. Schuijt, Marcus J. Schultz, Frederique Paulus, Ary Serpa Neto, for the PRoVENT–COVID Collaborative Group

Erschienen in: Critical Care | Ausgabe 1/2021

Abstract

Background

The intensity of ventilation, reflected by driving pressure (ΔP) and mechanical power (MP), has an association with outcome in invasively ventilated patients with or without acute respiratory distress syndrome (ARDS). It is uncertain if a similar association exists in coronavirus disease 2019 (COVID-19) patients with acute respiratory failure.

Methods

We aimed to investigate the impact of intensity of ventilation on patient outcome. The PRoVENT-COVID study is a national multicenter observational study in COVID-19 patients receiving invasive ventilation. Ventilator parameters were collected a fixed time points on the first calendar day of invasive ventilation. Mean dynamic ΔP and MP were calculated for individual patients at time points without evidence of spontaneous breathing. A Cox proportional hazard model, and a double stratification analysis adjusted for confounders were used to estimate the independent associations of ΔP and MP with outcome. The primary endpoint was 28-day mortality.

Results

In 825 patients included in this analysis, 28-day mortality was 27.5%. ΔP was not independently associated with mortality (HR 1.02 [95% confidence interval 0.88–1.18]; P = 0.750). MP, however, was independently associated with 28-day mortality (HR 1.17 [95% CI 1.01–1.36]; P = 0.031), and increasing quartiles of MP, stratified on comparable levels of ΔP, had higher risks of 28-day mortality (HR 1.15 [95% CI 1.01–1.30]; P = 0.028).

Conclusions

In this cohort of critically ill invasively ventilated COVID-19 patients with acute respiratory failure, we show an independent association of MP, but not ΔP with 28-day mortality. MP could serve as one prognostic biomarker in addition to ΔP in these patients. Efforts aiming at limiting both ΔP and MP could translate in a better outcome.
Trial registration Clinicaltrials.gov (study identifier NCT04346342).
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13054-021-03710-6.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ARDS
Acute respiratory distress disease
CI
Confidence interval
CRS
Respiratory system compliance
COVID-19
Coronavirus disease 2019
ΔP
Driving pressure
ECMO
Extracorporeal membrane oxygenation
FiO2
Fraction of inspired oxygen
HR
Hazard ratio
ICU
Intensive care unit
MP
Mechanical power of ventilation
NMBA
Neuromuscular blocking agents
PaCO2
Partial pressure of arterial carbon dioxide
PaO2
Partial pressure of arterial oxygen
Ppeak
Peak pressure
PEEP
Positive end-expiratory pressure
PRoVENT-COVID
PRactice of VENTilation in COVID-19
RR
Respiratory rate
VT
Tidal volume
VFD-28
Ventilator-free days and alive at day 28

Introduction

Mortality rates are high in coronavirus disease 2019 (COVID-19) patients who need invasive ventilation for acute respiratory failure [1, 2]. Adequate prognostication is difficult though essential towards identifying patients with a high mortality risk, in order to consider alternative approaches hoping to improve outcomes. Studies have shown associations of several factors, like gender, age, comorbidities, biochemical markers and severity of illness scores with mortality [311]. Studies have also shown associations of various parameters of invasive ventilation, including degree of hypoxemia, positive end–expiratory pressure (PEEP), tidal volume (VT) and respiratory system compliance (Crs) with outcome in these patients [4, 5, 811].
In patients receiving ventilation because of a reason other than COVID-19, recent studies have shown associations of the driving pressure (ΔP) and the mechanical power of ventilation (MP) with mortality, both in patients with and patients without acute respiratory distress syndrome (ARDS) [1220]. ΔP is the pressure applied by the ventilator used to deliver of a VT, as such representing the strain applied to the lung with each breath. MP is a summary value for the amount of energy per unit of time transferred from the ventilator to the respiratory system [15], and part of this energy acts directly on lung tissue, where it can cause harm. MP is calculated from VT, RR and the ΔP. These two parameters are attractive digital biomarkers, because they are easily calculable at the bedside, readily available and without costs.
Associations of ΔP and MP with outcome in COVID-19 patients that need invasive ventilation for acute respiratory failure have not yet been investigated. To investigate the impact of intensity of ventilation on 28-day mortality, we performed a preplanned analysis of a conveniently–sized national multicenter cohort of COVID-19 patients receiving invasive ventilation because of acute respiratory failure. The hypothesis was that both ΔP and MP have independent associations with mortality.

Methods

Design

This report concerns a preplanned secondary analysis of the PRoVENT-COVID study, an investigator–initiated, multicenter, retrospective observational study of invasively ventilated COVID-19 patients undertaken during the first 3 months of the pandemic at 22 ICUs in the Netherlands [8]. The study protocol of the PRoVENT-COVID study was prepublished [21], and a statistical analysis plan for the current analysis, written before assessing the database, is available online [22]. Details on the parent study have been published before [8]. The institutional review board of the Amsterdam UMC, Amsterdam, The Netherlands, approved the study protocol, and need for patient informed consent was waived seen the observational design of the study.

Patients

Consecutive patients aged 18 years or older were eligible for participation in the PRoVENT-COVID study if admitted to one of the participating ICUs and had received invasive ventilation for acute respiratory failure due to COVID-19. The parent study had no exclusion criteria––for the current analysis we excluded patients with incomplete ventilation data to calculate ΔP or MP. We also excluded patients that were lost to follow–up at day 28.

Collected data, patient classification, and calculations

Demographics and data regarding premorbid diseases and home medication were collected. On the first calendar day of invasive ventilation, in the first hour after intubation and thereafter every 8 h at fixed time points, ventilator settings and parameters were collected.
First, it was determined whether there was evidence of spontaneous breathing. Spontaneous breathing was deemed likely if: 1) patient was on a spontaneous ventilation mode, e.g., pressure support ventilation; or 2) patient was on a non–spontaneous ventilation mode with measured (total) RR exceeding the set RR > 2 breaths per minute. ΔP and MP were only calculated for those time points at which there was no evidence of spontaneous breathing. Per each time point, dynamic ΔP and MP were calculated using the following standard formulas:
$${\text{dynamic}}\,\Delta P\,\left( {{\text{in}}\,{\text{cm}}\,{\text{H}}_{2} {\text{O}}} \right) = {\text{peak}}\,{\text{pressure}}\,\left( {P_{{{\text{peak}}}} } \right){-}{\text{PEEP}}\quad \left[ {12,16} \right]$$
(1)
$${\text{MP}}\,\left( {{\text{in}}\,{\text{J}}/\min } \right) = 0.098*V_{T} *RR*\left( {P_{{{\text{peak}}}} {-}0.5*\Delta P} \right)\quad \left[ {15,16,23,24} \right]$$
(2)
The ΔP and MP were summarized as the mean of values over the first calendar day of ventilation.

Outcomes

The primary outcome was 28-day mortality.

Statistical analysis

Continuous variables were reported as median (quartile 25%–quartile 75%) and compared with Wilcoxon rank–sum tests, and categorical variables as number in percentage and compared with Fisher exact tests.
Variables with a P < 0.10 in the univariable prediction model were selected and included in the multivariable model. Variables with P < 0.05 in the multivariable model were selected as the covariates to be included in the final models. The following variables were considered for initial assessment: age, gender, body mass index, partial pressure of arterial oxygen/fraction of inspired oxygen (PaO2/FiO2) ratio, plasma creatinine, medical history of hypertension, heart failure, diabetes, chronic kidney disease, chronic obstructive pulmonary disease, active hematological neoplasia and/or active solid tumor, use of angiotensin converting enzyme inhibitors, use of angiotensin II receptor blockers, use of a vasopressor or inotropes, fluid balance, pH, mean arterial pressure, heart rate, and respiratory system compliance. These baseline covariates were selected according to clinical relevance and as used in previous study [8].
A multivariable (shared–frailty) Cox proportional hazard model including the covariates selected from those described above, and considering mean ΔP or MP as the predictor of interest was constructed. To compare the relative predictive ability of both variables, an additional model was build including ΔP and MP together, after assessing correlation and multicollinearity through Pearson’s correlation coefficient and variance inflation factor, respectively. If multicollinearity was found, this model was discarded and we followed with the independent models for ΔP and MP. For all models, the hazard ratio (HR) with its 95% confidence interval (CI) was reported. To further assess the impact of ΔP and MP, quintiles of increasing ΔP and MP were created, and the estimates for each quintile derived from the model above were plotted. Also, a double stratification analysis was used to assess the impact of each of the variables when the other was kept constant. First, the cohort was stratified in six quantiles of ΔP and then each quantile was further stratified in quartiles of increasing MP. The resulting quartiles have matched ΔP and increasing MP. Then, the models above were reproduced to extract the hazard ratio for each of the quartiles. Similarly, the same strategy was followed to create quartiles with matched MP and increasing ΔP.
Kaplan–Meier curves were used to compare 28-day mortality among patients receiving high and low mean ΔP and MP. The cutoff used for ΔP was set at 15 cm H2O [12, 16], though the ideal threshold for dynamic ΔP is less certain than for static ΔP. The ideal cutoff for MP has not yet been established, but recent reports suggest that a value of 17 J/min could be a reasonable cutoff for this parameter [13, 16, 25].
Two sensitivity analyses were performed. First, the models were re–ran according to the degree of hypoxemia at the first day of invasive ventilation. For this, we used the cutoffs as used in the Berlin definition for ARDS: mild (200 < PaO2/FiO2 ≤ 300 mmHg), moderate (100 < PaO2/FiO2 ≤ 200 mmHg) and severe hypoxemia (PaO2/FiO2 ≤ 100 mmHg). The models were repeated considering an interaction between the variable of interest (ΔP or MP) and the degree of hypoxemia at baseline. Second, the models were re–ran with an alternative validated equation for calculating MP in patients treated with pressure-controlled ventilation (PCV);
$${\text{MP}}_{{{\text{PCV}}}} \left( {{\text{in}}\,{\text{J}}/\min } \right) = 0.098*V_{T}*RR*\left( {\Delta P \, + {\text{ PEEP}}} \right)\quad [26].$$
(3)
All analyses were performed using R version 4.0.2 (R Foundation for Statistical Computing), and a P < 0.05 was considered significant.

Results

Patients

Of the originally enrolled 1102 patients in the PRoVENT-COVID study, 825 (74.9%) were used in the current analysis (Additional file 1: Figure S1). Demographics characteristics and ventilation characteristics are presented in Table 1. Most patients had moderate ARDS, using severity classification of the current Berlin definition for ARDS. The most prevalent premorbid conditions were hypertension and diabetes mellitus. 227 (27.5%) patients died within the first 28 days of follow–up. Other clinical outcomes are shown in Additional file 1: Table S1.
Table 1
Baseline characteristics and clinical outcome of the included patients according to the cohort studied
 
Overall cohort (n = 825)
Age, years
65.0 (57.0–71.0)
Male gender – no (%)
600 (72.7)
Body mass index, kg/m2
27.8 (25.2–30.8)
Transferred under invasive ventilation
130 (15.8)
Days between intubation and admission
0.0 (0.0–0.0)
Use of non–invasive ventilation prior to intubation – no (%)
67/751 (8.9)
Duration of non–invasive ventilation, h
6.5 (2.0–19.9)
Chest CT scan performed – no (%)
268/799 (33.5)
Lung parenchyma affected – no (%)
 
0%
13/268 (4.9)
25%
88/268 (32.8)
50%
78/268 (29.1)
75%
71/268 (26.5)
100%
18/268 (6.7)
Chest X–ray performed – no (%)
454/525 (86.5)
Quadrants affected – no (%)
 
1
38/453 (8.4)
2
108/453 (23.8)
3
129/453 (28.5)
4
178/453 (39.3)
Severity of ARDS – no (%)
 
No
9/813 (1.1)
Mild
73/813 (9.0)
Moderate
488/813 (60.0)
Severe
243/813 (29.9)
Co–existing disorders – no (%)
 
Hypertension
279 (33.8)
Heart failure
35 (4.2)
Diabetes
191 (23.2)
Chronic kidney disease
37 (4.5)
Baseline creatinine, µmol/L*
78.0 (62.0–98.0)
Liver cirrhosis
3 (0.4)
Chronic obstructive pulmonary disease
68 (8.2)
Active hematological neoplasia
12 (1.5)
Active solid neoplasia
21 (2.5)
Neuromuscular disease
3 (0.4)
Immunosuppression
19 (2.3)
Previous medication – no (%)
 
Systemic steroids
31 (3.8)
Inhalation steroids
92 (11.2)
Angiotensin converting enzyme inhibitor
142 (17.2)
Angiotensin II receptor blocker
90 (10.9)
Beta-blockers
149 (18.1)
Insulin
61 (7.4)
Metformin
135 (16.4)
Statins
251 (30.4)
Calcium channel blockers
157 (19.0)
Vital signs at day 01
 
Heart rate, bpm**
85.0 (74.5–97.8)
Mean arterial pressure, mmHg**
80.5 (73.8–88.0)
Laboratory tests at day 01
 
pH**
7.36 (7.31–7.41)
Worst PaO2/FiO2, mmHg***
123.9 (94.3–160.1)
PaCO2, mmHg**
44.5 (39.5–50.3)
Lactate mmol/L**
1.1 (0.9–1.4)
Organ support at day 01 – no (%)
 
Continuous sedation
790/823 (96.0)
Inotropic or vasopressor
640/823 (77.8)
Vasopressor
639/823 (77.6)
Inotropic
41/823 (5.0)
Fluid balance, mL
539.0 (0.0–1340.0)
Urine output, mL
691.0 (380.0–1155.0)
Ventilation support at day 01
 
Assisted ventilation – no (%)
151/823 (18.3)
Tidal volume, mL/kg PBW**,a
6.4 (5.9–7.0)
Tidal volume ≤ 8 mL/kg PBW
787 (96.1)
PEEP, cmH2O**,a
13.0 (11.0–14.7)
Peak pressure, cmH2O**,a
27.0 (24.2–30.0)
Driving pressure, cmH2O**,a
14.0 (12.0–16.0)
Driving pressure > 15 cmH2O
270 (32.7)
Mechanical power
 
Absolute, J/min**,a
18.5 (15.5–22.2)
Mechanical power > 17 J/min
473 (57.3)
Adjusted by compliance, (J/min)/(mL/cmH2O)
0.57 (0.43–0.75)
Mechanical power > 0.23 (J/min)/(mL/cmH2O)
510 (61.8)
Compliance, mL/cmH2O**,a
32.1 (26.9–39.6)
Total respiratory rate, mpm**,a
21.7 (19.8–24.0)
Set respiratory rate, mpm**,a
22.0 (20.0–24.0)
Minute ventilation, L/min**,a
9.5 (8.4–11.0)
FiO2**
0.57 (0.48–0.68)
etCO2, mmHg**
36.9 (33.0–42.0)
Rescue therapy at day 01 – no (%)
 
Prone positioning
263/811 (32.4)
Duration, h
8.0 (4.0–13.0)
Recruitment maneuver
14/667 (2.1)
ECMO
4/810 (0.5)
Use of NMBA
212/822 (25.8)
Hours of use
0.0 (0.0–8.0)
Clinical outcome
 
28-day mortality
227 (27.5)
Data are median (quartile 25%–quartile 75%) or No (%). Percentages may not total 100 because of rounding
CT computed tomography; ARDS acute respiratory distress syndrome; PaO2 arterial partial pressure of oxygen; FiO2 Fraction of inspired oxygen; PaCO2 arterial partial pressure of carbon dioxide; PEEP positive end expiratory pressure; etCO2 End tidal carbon dioxide; ECMO extracorporeal membrane oxygenation; NMBA neuromuscular blocking agent
*Most recent measurement in 24 h before intubation, or at ICU admission under invasive ventilation
**Aggregate as the mean of a maximum of four values
***Worst value of four available
aOnly assessed in moments without spontaneous breathing activity

ΔP and MP

The median number of observations in the first calendar day of invasive ventilation at which ventilation data were collected was 3 [2 to 3]. In 88.2% [75 to 100%] of observations per patient, there was no evidence of spontaneous breathing and ΔP and MP could be calculated. Distribution of ventilator parameters are presented in Additional file 1: Figure S2.
In the first calendar day of invasive ventilation, median ΔP was 14.0 [12.0 to 16.0] cm H2O and median MP was 18.5 [15.5 to 22.2] J/min. ΔP was > 15 cm H2O in 270 (32.7%) patients; MP was > 17 J/min in 473 (57.3%) patients.
The baseline risk model used for the adjusted analysis is shown in Additional file 1: Table S2. The following variables were independently associated with outcome and selected as confounders for the final models: age, chronic obstructive pulmonary disease, pH and heart rate. No indication of multicollinearity between ΔP and MP was found in the model when including both variables together, thus, this model was not discarded (Additional file 1: Table S3).

Association of ΔP and MP with 28-day mortality

ΔP had no association with 28-day mortality, neither in the univariable (HR, 1.09 [95% CI, 0.96 to 1.24]; P = 0.190), nor in the multivariable assessment (HR, 1.02 [95% CI, 0.88 to 1.18]; P = 0.750) (Fig. 1 and Table 2). Contrary, MP had an association with 28-day mortality, both in an univariable (HR, 1.17 [95% CI, 1.02 to 1.33]; P = 0.020) and in a multivariable assessment (HR, 1.17 [95% CI, 1.01 to 1.36]; P = 0.031). While 28-day mortality was not different between patients with ΔP > 15 cm H2O versus ≤ 15 cm H2O, 28-day mortality was higher in patients with MP > 17 J/min versus ≤ 17 J/min (Fig. 1).
Table 2
Univariable and multivariable model assessing the association of baseline driving pressure and mechanical power with 28-day mortality
 
Univariable model
Multivariable model for ΔP
Multivariable model for MP
Multivariable model for ΔP and MP
Hazard ratio (95% CI)
p value
Hazard ratio (95% CI)
p value
Hazard ratio (95% CI)
p value
Hazard ratio (95% CI)
p value
Demographic characteristics
        
Age
1.87 (1.58–2.21)
< 0.001
1.89 (1.58–2.25)
< 0.001
1.91 (1.60–2.28)
< 0.001
1.91 (1.61–2.28)
< 0.001
Co-existing disorders
        
COPD
1.81 (1.22–2.68)
0.003
1.70 (1.14–2.53)
0.009
1.78 (1.20–2.66)
0.004
1.79 (1.20–2.68)
0.004
Laboratory tests at day 01
        
pH
0.68 (0.60–0.76)
< 0.001
0.75 (0.65–0.87)
< 0.001
0.77 (0.66–0.89)
< 0.001
0.77 (0.66–0.89)
< 0.001
Vital signs at day 01
        
Heart rate
1.23 (1.08–1.41)
0.001
1.17 (1.01–1.35)
0.031
1.16 (1.01–1.34)
0.035
1.16 (1.01–1.34)
0.037
Ventilatory variables at day 01
        
Driving pressure
1.09 (0.96–1.24)
0.190
1.10 (0.97–1.24)
0.147
1.02 (0.88–1.18)
0.750
Absolute mechanical power
1.17 (1.02–1.33)
0.020
1.18 (1.04–1.35)
0.009
1.17 (1.01–1.36)
0.031
Continuous variables were included and the hazard ratio represents the increase in one standard deviation of the variable
ΔP driving pressure; MP mechanical power; CI confidence interval; COPD chronic obstructive pulmonary disease
If ΔP was kept constant and only MP increased (i.e., due to increases in other components than ΔP) a statistically significant effect on outcome was found––increasing quartiles of MP, stratified on comparable levels of ΔP, were associated with increased risk of 28-day mortality (HR, 1.15 [95% CI, 1.01 to 1.30]; P = 0.028) (Fig. 2). However, increasing quartiles of ΔP, stratified on comparable levels of MP, were not associated with 28-day mortality (HR, 1.02 [95% CI, 0.90 to 1.15]; P = 0.730). No interaction between the effect of ΔP or MP on 28-day mortality and the degree of hypoxemia at baseline was found (Table 3). The sensitivity analysis using an alternative equation for MP in patients under PCV did not change the findings (Additional file 1: Table S4, Figure S2 and S3).
Table 3
Effect of driving pressure and mechanical power on 28-day mortality according to severity of hypoxemia at baseline
 
Multivariable hazard ratio (95% CI)
P value
Driving pressure
  
Mild ARDS
1.66 (0.97–2.84)
Reference
Moderate ARDS
1.01 (0.85–1.19)
0.083
Severe ARDS
1.12 (0.89–1.40)
0.173
Mechanical power
  
Mild ARDS
1.10 (0.59–2.05)
Reference
Moderate ARDS
1.11 (0.94–1.29)
0.899
Severe ARDS
1.30 (1.01–1.68)
0.635
P value for the interaction between severity of ARDS and the variable of interest
CI confidence interval

Discussion

In this observational study assessing the association of ΔP and MP on 28-day mortality of patients receiving invasive ventilation for acute respiratory failure related to COVID-19, higher ΔP was not, but higher MP was associated with increased 28-day mortality after adjustment for confounders. In addition, when ΔP was kept constant, progressive increments in MP, due to increase in other components, like VT or RR, resulted in higher risks for 28-day mortality.
Comparing our patient cohort to COVID-19 patients in series of patients worldwide, baseline characteristics and 28-day mortality were similar [1, 11, 2729]. Two large observational studies, originating from France and from the United States, reported a similar median ΔP, respectively 13 [10 to 17] and 15 [11 to 18] cm H2O. Thus far, MP has only been reported in one cohort of COVID-19 patient [11], in which MP was much higher than in our cohort, 26.5 [18.6 to 34.9] versus 18.5 [15.5 to 22.2] J/min. It remains uncertain why we see this remarkable difference, as the same equation for MP was used. However, MP in our study was comparable to that reported in cohorts of patients with ARDS from another origin than COVID-19 [13, 16, 19].
This is the first study on associations of ΔP and MP with mortality in invasively ventilated COVID-19 patients. In contrast to previous studies on ΔP and MP in patients receiving ventilation because of a reason other than COVID-19, higher ΔP was not associated with an increased risk of mortality. MP adjusted for confounders was associated with 28-day mortality, being in line with previous studies [13, 16, 19]. Furthermore, increasing quartiles of MP, stratified on comparable levels of ΔP, were associated with increased risk of 28-day mortality, showing the predictive value of MP in addition to ΔP, which is in line with a previous study in patients receiving ventilation because of a reason other than COVID-19 [18]. Recently, a study showed the adverse effect of the exposure to higher intensities of ΔP and MP over time in critically ill patients receiving ventilation due to respiratory failure due to a reason other than COVID-19 [16].
In our analysis, the signal for mechanical power was stronger than for ΔP. Over recent years, ΔP has become a value targeted by the clinician not to exceed a certain value. This may be caused by the fact that mechanical power is more difficult to calculate at the bedside than ΔP. Consequently, this may have resulted in lower ΔP levels with a narrow distribution in the current cohort, and this may have led to insufficient statistical power to test whether ΔP has a statistical association with outcome. In our cohort, MP was often high and with a broad distribution.
Despite the finding that the association of ΔP with 28-day mortality did not reach statistical significance, ΔP remains an important digital biomarker. Limiting ΔP has been found to have a strong potential to improve outcome in other patient cohorts [13, 14, 16]. Besides, ΔP is much easier to calculate at the bedside compared to MP. In daily practice, MP may serve as an additional digital biomarker that is calculated by, and presented on the screen of the ventilator. Nevertheless, randomized controlled trials evidence remains needed to understand the true and independent value of limiting ΔP and MP.
Various equations for calculating MP have been studied and reported in recent years [1620, 25, 30]. As transpulmonary pressures and plateau pressures were not routinely measured, we used dynamic driving pressure in the MP equation. Recent findings suggest that this substitution is reliable [30], and other validated this approach [16]. Aside, using the dynamic ΔP simplifies the calculation of MP at the bedside. The sensitivity analysis, using another previously validated equation for MP in patients under PCV [26] did not change the findings.
Our study has several strengths. The study was conveniently–sized, and included a large number of centers. Also, both academic and non–academic centers participated, improving the generalizability of our findings. Granular ventilation data were collected by trained study personnel. We restricted the analysis to patients without the evidence of spontaneous breathing, as both ΔP and MP cannot yet be calculated in a reliable way in patients with spontaneous breathing, and we adhered to a prepublished statistical analysis plan.
Our study also has limitations. In this study we did not collect blood biomarkers, like D–dimer levels, which have been shown to have a strong association with mortality [10]. Therefore, we could not add them to our models. Likewise, pulmonary embolism was not included in our models, which could be a confounding factor, as increased death space could result in a higher MP. Furthermore, the disease severity scores were not included, as the participating centers used different scores, which are not mutually exclusive. However, multiple baseline covariates were used in our models, representing multiple organ systems, supportive treatments and pre–existing comorbidities, being in line with previous studies investigating the impact of ΔP and MP [16, 18, 19]. Also, during the first half of 2020, there was no standard use of dexamethasone or tocilizumab, which may influence patient outcome. Another limitation is that normalization of MP by respiratory system compliance or predicted body weight has shown superior predictive value over non–normalized MP [17]. However, normalized MP has been less validated in comparison to absolute MP. Also, it is unknown whether this relationship simply reflects more an association between respiratory system compliance and patient outcome.

Conclusion

In this cohort of COVID-19 patients that received invasive ventilation for acute respiratory failure, both a higher MP and increasing quartiles of MP stratified on comparable levels of ΔP were associated with increased risk of 28-day mortality. Taken together, both ΔP and MP are useful digital biomarkers for prognostication in invasively ventilated COVID-19 patients. Targeting lower MP, in addition to lower ΔP, may translate in better outcomes.

Acknowledgements

The authors would like to state a special gratitude towards all participating centers and all members of the PRoVENT-COVID Collaborative Group. The PRoVENT-COVID Collaborative Group investigators in alphabetic order: J.P. van Akkeren; A.G. Algera; C.K. Algoe; R.B. van Amstel; O.L. Baur; P. van de Berg; A.E. van den Berg; D.C.J.J. Bergmans; D.I. van den Bersselaar; F.A. Bertens; A.J.G.H. Bindels; M.M. de Boer; S. den Boer; L.S. Boers; M. Bogerd; L.D.J. Bos; M. Botta; J.S. Breel; H. de Bruin; S. de Bruin; C.L. Bruna; L.A. Buiteman–Kruizinga; O. Cremer; R.M. Determann; W. Dieperink; D.A. Dongelmans; H.S. Franke; M.S. Galek–Aldridge; M.J. de Graaff; L.A. Hagens; J.J. Haringman; N.F.L.Heijnen; S.Hiel; S.T. van der Heide; P.L.J. van der Heiden; L.L. Hoeijmakers; L. Hol; M. W. Hollmann; M.E. Hoogendoorn; J. Horn; R. van der Horst; E.L.K. Ie; D. Ivanov; N.P. Juffermans; E. Kho; E.S. de Klerk; A.W.M. Koopman; M. Koopmans; S. Kucukcelebi; M.A. Kuiper; D.W. de Lange; D. M. van Meenen; Ignacio Martin-Loeches; Guido Mazzinari; N. van Mourik; I. Martin–Loeches; S.G. Nijbroe; M. Onrust; E.A.N. Oostdijk; F. Paulus; C.J. Pennartz; J. Pillay; L. Pisani; I.M. Purmer; T.C.D. Rettig; J.P Roozeman; M.T.U. Schuijt; M.J. Schultz; A. Serpa Neto; M.E. Sleeswijk; M.R. Smit; P.E. Spronk; W. Stilma; A.C. Strang; A. M. Tsonas; P.R Tuinman; C.M.A. Valk; F.L.Veen; A.P.J. Vlaar; L.I. Veldhuis; P. van Velzen; W.H. van der Ven; P. van Vliet; P. van der Voort; H.H. van der Wier; L. van Welie; H.J.F.T. Wesselink; B. van Wijk; T. Winters; W.Y. Wong; A.R.H. van Zanten.

Declarations

The institutional review boards of the participating centers approved the study protocol and need for patient informed consent was waived.
Not applicable.

Competing interests

ASN reports personal fees from Dräger, outside of the submitted work. The other authors declare no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Lim ZJ, Subramaniam A, Reddy MP, Blecher G, Kadam U, Afroz A, et al. Case fatality rates for covid-19 patients requiring invasive mechanical ventilation: a meta-analysis. Am J Respir Crit Care Med. 2021;203:54–66.CrossRef Lim ZJ, Subramaniam A, Reddy MP, Blecher G, Kadam U, Afroz A, et al. Case fatality rates for covid-19 patients requiring invasive mechanical ventilation: a meta-analysis. Am J Respir Crit Care Med. 2021;203:54–66.CrossRef
2.
Zurück zum Zitat Domecq JP, Lal A, Sheldrick CR, Kumar VK, Boman K, Bolesta S, et al. Outcomes of patients with coronavirus disease 2019 receiving organ support therapies: the international viral infection and respiratory illness universal study registry. Crit Care Med. 2021;437–48. Domecq JP, Lal A, Sheldrick CR, Kumar VK, Boman K, Bolesta S, et al. Outcomes of patients with coronavirus disease 2019 receiving organ support therapies: the international viral infection and respiratory illness universal study registry. Crit Care Med. 2021;437–48.
3.
Zurück zum Zitat Ferrando C, Malado-Artigas R, Gea A, Arruti E, Aldecoa C, Bordell A, et al. Patient characteristics, clinical course and factors associated to ICU mortality in critically ill patients infected with SARS-CoV-2 in Spain: A prospective, cohort, multicentre study. Rev Esp Anestesiol Reanim. 2020;67:425–37.CrossRef Ferrando C, Malado-Artigas R, Gea A, Arruti E, Aldecoa C, Bordell A, et al. Patient characteristics, clinical course and factors associated to ICU mortality in critically ill patients infected with SARS-CoV-2 in Spain: A prospective, cohort, multicentre study. Rev Esp Anestesiol Reanim. 2020;67:425–37.CrossRef
4.
Zurück zum Zitat Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, Hernández M, Gea A, Arruti E, et al. Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Med. 2020;46:2200–11.CrossRef Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, Hernández M, Gea A, Arruti E, et al. Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Med. 2020;46:2200–11.CrossRef
5.
Zurück zum Zitat Wendel Garcia PD, Fumeaux T, Guerci P, Heuberger DM, Montomoli J, Roche-Campo F, et al. Prognostic factors associated with mortality risk and disease progression in 639 critically ill patients with COVID-19 in Europe: initial report of the international RISC-19-ICU prospective observational cohort. EClinicalMedicine. 2020;25:1–11.CrossRef Wendel Garcia PD, Fumeaux T, Guerci P, Heuberger DM, Montomoli J, Roche-Campo F, et al. Prognostic factors associated with mortality risk and disease progression in 639 critically ill patients with COVID-19 in Europe: initial report of the international RISC-19-ICU prospective observational cohort. EClinicalMedicine. 2020;25:1–11.CrossRef
6.
Zurück zum Zitat Li Q, Zhang T, Li F, Mao Z, Kang H, Tao L, et al. Acute kidney injury can predict in-hospital mortality in elderly patients with covid-19 in the ICU: a single-center study. Clin Interv Aging. 2020;15:2095–107.CrossRef Li Q, Zhang T, Li F, Mao Z, Kang H, Tao L, et al. Acute kidney injury can predict in-hospital mortality in elderly patients with covid-19 in the ICU: a single-center study. Clin Interv Aging. 2020;15:2095–107.CrossRef
7.
Zurück zum Zitat Alharthy A, Aletreby W, Faqihi F, Balhamar A, Alaklobi F, Alanezi K, et al. Clinical characteristics and predictors of 28-day mortality in 352 critically ill patients with COVID-19: a retrospective study. J Epidemiol Glob Health. 2020;11:98.CrossRef Alharthy A, Aletreby W, Faqihi F, Balhamar A, Alaklobi F, Alanezi K, et al. Clinical characteristics and predictors of 28-day mortality in 352 critically ill patients with COVID-19: a retrospective study. J Epidemiol Glob Health. 2020;11:98.CrossRef
8.
Zurück zum Zitat Botta M, Tsonas AM, Pillay J, Boers LS, Algera AG, Bos LDJ, et al. Ventilation management and clinical outcomes in invasively ventilated patients with COVID-19 (PRoVENT-COVID): a national, multicentre, observational cohort study. Lancet Respir Med. 2021;9:139–48.CrossRef Botta M, Tsonas AM, Pillay J, Boers LS, Algera AG, Bos LDJ, et al. Ventilation management and clinical outcomes in invasively ventilated patients with COVID-19 (PRoVENT-COVID): a national, multicentre, observational cohort study. Lancet Respir Med. 2021;9:139–48.CrossRef
9.
Zurück zum Zitat Grasselli G, Greco M, Zanella A, Albano G, Antonelli M, Bellani G, et al. Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy, Italy. JAMA Intern Med. 2020;180:1345–55.CrossRef Grasselli G, Greco M, Zanella A, Albano G, Antonelli M, Bellani G, et al. Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy, Italy. JAMA Intern Med. 2020;180:1345–55.CrossRef
10.
Zurück zum Zitat Grasselli G, Tonetti T, Protti A, Langer T, Girardis M, Bellani G, et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respir Med. 2020;8:1201–8.CrossRef Grasselli G, Tonetti T, Protti A, Langer T, Girardis M, Bellani G, et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respir Med. 2020;8:1201–8.CrossRef
11.
Zurück zum Zitat COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. Intensive Care Med. 2021;47:60–73. COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. Intensive Care Med. 2021;47:60–73.
12.
Zurück zum Zitat Amato MBP, Meade MO, Slutsky AS, Brochard L, Costa ELV, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747–55.CrossRef Amato MBP, Meade MO, Slutsky AS, Brochard L, Costa ELV, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747–55.CrossRef
13.
Zurück zum Zitat Serpa Neto A, Deliberato RO, Johnson AEW, Bos LD, Amorim P, Pereira SM, et al. Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med. 2018;44:1914–22.CrossRef Serpa Neto A, Deliberato RO, Johnson AEW, Bos LD, Amorim P, Pereira SM, et al. Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med. 2018;44:1914–22.CrossRef
14.
Zurück zum Zitat Protti A, Andreis DT, Monti M, Santini A, Sparacino CC, Langer T, et al. Lung stress and strain during mechanical ventilation: Any difference between statics and dynamics? Crit Care Med. 2013;41:1046–55.CrossRef Protti A, Andreis DT, Monti M, Santini A, Sparacino CC, Langer T, et al. Lung stress and strain during mechanical ventilation: Any difference between statics and dynamics? Crit Care Med. 2013;41:1046–55.CrossRef
15.
Zurück zum Zitat Gattinoni L, Tonetti T, Cressoni M, Cadringher P, Herrmann P, Moerer O, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42:1567–75.CrossRef Gattinoni L, Tonetti T, Cressoni M, Cadringher P, Herrmann P, Moerer O, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42:1567–75.CrossRef
16.
Zurück zum Zitat Urner M, Jüni P, Hansen B, Wettstein MS, Ferguson ND, Fan E. Time-varying intensity of mechanical ventilation and mortality in patients with acute respiratory failure: a registry-based, prospective cohort study. Lancet Respir Med. 2020;8:905–13.CrossRef Urner M, Jüni P, Hansen B, Wettstein MS, Ferguson ND, Fan E. Time-varying intensity of mechanical ventilation and mortality in patients with acute respiratory failure: a registry-based, prospective cohort study. Lancet Respir Med. 2020;8:905–13.CrossRef
17.
Zurück zum Zitat Zhang Z, Zheng B, Liu N, Ge H, Hong Y. Mechanical power normalized to predicted body weight as a predictor of mortality in patients with acute respiratory distress syndrome. Intensive Care Med. 2019;45:856–64.CrossRef Zhang Z, Zheng B, Liu N, Ge H, Hong Y. Mechanical power normalized to predicted body weight as a predictor of mortality in patients with acute respiratory distress syndrome. Intensive Care Med. 2019;45:856–64.CrossRef
18.
Zurück zum Zitat Tonna JE, Peltan I, Brown SM, Herrick JS, Keenan HT, Grissom CK, et al. Mechanical power and driving pressure as predictors of mortality among patients with ARDS. Intensive Care Med. 2020;46:1941–3.CrossRef Tonna JE, Peltan I, Brown SM, Herrick JS, Keenan HT, Grissom CK, et al. Mechanical power and driving pressure as predictors of mortality among patients with ARDS. Intensive Care Med. 2020;46:1941–3.CrossRef
19.
Zurück zum Zitat Coppola S, Caccioppola A, Froio S, Formenti P, De Giorgis V, Galanti V, et al. Effect of mechanical power on intensive care mortality in ARDS patients. Crit Care. 2020;24:1–10.CrossRef Coppola S, Caccioppola A, Froio S, Formenti P, De Giorgis V, Galanti V, et al. Effect of mechanical power on intensive care mortality in ARDS patients. Crit Care. 2020;24:1–10.CrossRef
20.
Zurück zum Zitat Parhar KKS, Zjadewicz K, Soo A, Sutton A, Zjadewicz M, Doig L, et al. Epidemiology, mechanical power, and 3-year outcomes in acute respiratory distress syndrome patients using standardized screening: an observational cohort study. Ann Am Thorac Soc. 2019;16:1263–72.CrossRef Parhar KKS, Zjadewicz K, Soo A, Sutton A, Zjadewicz M, Doig L, et al. Epidemiology, mechanical power, and 3-year outcomes in acute respiratory distress syndrome patients using standardized screening: an observational cohort study. Ann Am Thorac Soc. 2019;16:1263–72.CrossRef
21.
Zurück zum Zitat Boers NS, Botta M, Tsonas AM, Algera AG, Pillay J, Dongelmans DA, et al. PRactice of VENTilation in Patients with Novel Coronavirus Disease (PRoVENT-COVID): rationale and protocol for a national multicenter observational study in The Netherlands. Ann Transl Med. 2020;8:1251.CrossRef Boers NS, Botta M, Tsonas AM, Algera AG, Pillay J, Dongelmans DA, et al. PRactice of VENTilation in Patients with Novel Coronavirus Disease (PRoVENT-COVID): rationale and protocol for a national multicenter observational study in The Netherlands. Ann Transl Med. 2020;8:1251.CrossRef
23.
Zurück zum Zitat Gattinoni L, Marini JJ, Collino F, Maiolo G, Rapetti F, Tonetti T, et al. The future of mechanical ventilation: Lessons from the present and the past. Crit Care. 2017;21:1–11.CrossRef Gattinoni L, Marini JJ, Collino F, Maiolo G, Rapetti F, Tonetti T, et al. The future of mechanical ventilation: Lessons from the present and the past. Crit Care. 2017;21:1–11.CrossRef
24.
Zurück zum Zitat Vasques F, Duscio E, Pasticci I, Romitti F, Vassalli F, Quintel M, et al. Is the mechanical power the final word on ventilator-induced lung injury? We are not sure. Ann Transl Med. 2018;6:395–395.CrossRef Vasques F, Duscio E, Pasticci I, Romitti F, Vassalli F, Quintel M, et al. Is the mechanical power the final word on ventilator-induced lung injury? We are not sure. Ann Transl Med. 2018;6:395–395.CrossRef
25.
Zurück zum Zitat Giosa L, Busana M, Pasticci I, Bonifazi M, Macrì MM, Romitti F, et al. Mechanical power at a glance: a simple surrogate for volume-controlled ventilation. Intensive Care Med Exp. 2019;7:61.CrossRef Giosa L, Busana M, Pasticci I, Bonifazi M, Macrì MM, Romitti F, et al. Mechanical power at a glance: a simple surrogate for volume-controlled ventilation. Intensive Care Med Exp. 2019;7:61.CrossRef
27.
Zurück zum Zitat Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA. 2020;323:2052–9.CrossRef Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA. 2020;323:2052–9.CrossRef
28.
Zurück zum Zitat Richards-Belle A, Orzechowska I, Gould DW, Thomas K, Doidge JC, Mouncey PR, et al. COVID-19 in critical care: epidemiology of the first epidemic wave across England, Wales and Northern Ireland. Intensive Care Med. 2020;46:2035–47.CrossRef Richards-Belle A, Orzechowska I, Gould DW, Thomas K, Doidge JC, Mouncey PR, et al. COVID-19 in critical care: epidemiology of the first epidemic wave across England, Wales and Northern Ireland. Intensive Care Med. 2020;46:2035–47.CrossRef
29.
Zurück zum Zitat Cummings MJ, Baldwin MR, Abrams D, Jacobson SD, Meyer BJ, Balough EM, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020;395:1763–70.CrossRef Cummings MJ, Baldwin MR, Abrams D, Jacobson SD, Meyer BJ, Balough EM, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020;395:1763–70.CrossRef
30.
Zurück zum Zitat Chiumello D, Gotti M, Guanziroli M, Formenti P, Umbrello M, Pasticci I, et al. Bedside calculation of mechanical power during volume- and pressure-controlled mechanical ventilation. Crit Care. 2020;24:417–23.CrossRef Chiumello D, Gotti M, Guanziroli M, Formenti P, Umbrello M, Pasticci I, et al. Bedside calculation of mechanical power during volume- and pressure-controlled mechanical ventilation. Crit Care. 2020;24:417–23.CrossRef
Metadaten
Titel
Association of intensity of ventilation with 28-day mortality in COVID-19 patients with acute respiratory failure: insights from the PRoVENT-COVID study
verfasst von
Michiel T. U. Schuijt
Marcus J. Schultz
Frederique Paulus
Ary Serpa Neto
for the PRoVENT–COVID Collaborative Group
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Schlagwort
COVID-19
Erschienen in
Critical Care / Ausgabe 1/2021
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-021-03710-6

Weitere Artikel der Ausgabe 1/2021

Critical Care 1/2021 Zur Ausgabe

Blutdrucksenkung schon im Rettungswagen bei akutem Schlaganfall?

31.05.2024 Apoplex Nachrichten

Der optimale Ansatz für die Blutdruckkontrolle bei Patientinnen und Patienten mit akutem Schlaganfall ist noch nicht gefunden. Ob sich eine frühzeitige Therapie der Hypertonie noch während des Transports in die Klinik lohnt, hat jetzt eine Studie aus China untersucht.

Ähnliche Überlebensraten nach Reanimation während des Transports bzw. vor Ort

29.05.2024 Reanimation im Kindesalter Nachrichten

Laut einer Studie aus den USA und Kanada scheint es bei der Reanimation von Kindern außerhalb einer Klinik keinen Unterschied für das Überleben zu machen, ob die Wiederbelebungsmaßnahmen während des Transports in die Klinik stattfinden oder vor Ort ausgeführt werden. Jedoch gibt es dabei einige Einschränkungen und eine wichtige Ausnahme.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Häusliche Gewalt in der orthopädischen Notaufnahme oft nicht erkannt

28.05.2024 Häusliche Gewalt Nachrichten

In der Notaufnahme wird die Chance, Opfer von häuslicher Gewalt zu identifizieren, von Orthopäden und Orthopädinnen offenbar zu wenig genutzt. Darauf deuten die Ergebnisse einer Fragebogenstudie an der Sahlgrenska-Universität in Schweden hin.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.