Skip to main content
Erschienen in: Journal of Neurology 5/2024

Open Access 05.03.2024 | Short Commentary

CHD8-related disorders redefined: an expanding spectrum of dystonic phenotypes

verfasst von: Ugo Sorrentino, Sylvia Boesch, Diane Doummar, Claudia Ravelli, Tereza Serranova, Elisabetta Indelicato, Juliane Winkelmann, Lydie Burglen, Robert Jech, Michael Zech

Erschienen in: Journal of Neurology | Ausgabe 5/2024

Abstract

Background

Heterozygous loss-of-function variants in CHD8 have been associated with a syndromic neurodevelopmental-disease spectrum, collectively referred to as CHD8-related neurodevelopmental disorders. Several different clinical manifestations, affecting neurodevelopmental and systemic domains, have been described, presenting with highly variable expressivity. Some expressions are well established and comprise autism spectrum disorders, psychomotor delay with cognitive impairment, postnatal overgrowth with macrocephaly, structural brain abnormalities, gastrointestinal disturbances, and behavioral and sleep-pattern problems. However, the complete phenotypic spectrum of CHD8-related disorders is still undefined. In 2021, our group described two singular female patients with CHD8-related neurodevelopmental disorder and striking dystonic manifestations, prompting the suggestion that dystonia should be considered a possible component of this condition.

Case series presentation

We describe three additional unrelated female individuals, each carrying a different CHD8 frameshift variant and whose clinical presentations were primarily characterized by young-onset dystonia. Their dystonic manifestations were remarkably heterogeneous and ranged from focal, exercise-dependent, apparently isolated forms to generalized permanent phenotypes accompanied by spasticity and tremor. Neurocognitive impairment and autistic behaviors, typical of CHD8-related disorders, were virtually absent or at the mild end of the spectrum.

Conclusions

This work validates our previous observation that dystonia is part of the phenotypic spectrum of CHD8-related neurodevelopmental disorders with potential female preponderance, raising new challenges and opportunities in the diagnosis and management of this condition. It also highlights the importance of in-depth neurologic phenotyping of patients carrying variants associated with neurodevelopmental disorders, as the connection between neurodevelopmental and movement disorders is proving closer than previously appreciated.
Abkürzungen
CHD8-NDD
CHD8-related neurodevelopmental disorders
ASD
Autism spectrum disorders

Introduction

Human CHD8 is located on chromosomal region 14q11.2. Its main transcript comprises 38 exons encoding for a 290-kDa Chromodomain-Helicase-DNA-binding protein, which acts as an ATP-dependent chromatin remodeler [1]. Through its dynamic interaction with different transcriptional cofactors, which include beta-catenin, CHD7, CTCF, E2F, and p53, the CHD8 protein is involved in upregulating or downregulating the expression of several genes playing pivotal roles in the central nervous system at various stages of development, as well as genes relevant to cell cycle control, epigenetic modifications, and to the proliferation and differentiation of neural progenitor cells and neuroglia [24]. Furthermore, CHD8 dosage loss has been shown to be embryonically lethal in animal models [5]. It is therefore unsurprising that loss-of-function variants in CHD8 have been associated with a spectrum of syndromic neurodevelopmental disorders (CHD8-NDD), displaying a wide range of clinical variability, with a yet unexplained higher penetrance in male subjects, and allelic heterogeneity [68]. Heterozygous truncating variants are the most common cause of disease, followed by missense variants and inframe insertions/deletions. Reported variants span across the whole length of the gene, without any clear genotype–phenotype correlation recognized to date. The vast majority arise de novo in the probands; however, several familial cases have been documented as well, proving that a proportion of individuals at the milder end of the clinical spectrum may preserve their fitness [9].
The core clinical manifestations reported in individuals harboring CHD8 pathogenic variants include autism spectrum disorders (ASD) (76% of recorded patients), psychomotor delay, cognitive impairment (68%), postnatal overgrowth with macrocephaly (52%), musculoskeletal defects (79%), abnormal neuroimaging findings (including ventriculomegaly and cerebellar vermis atrophy) (15%), gastrointestinal problems (53%), and behavioral (88%) and sleep-pattern abnormalities (28%) [8]. Seizures, hypotonia, and dysmorphic facial and skeletal features have also been described. However, the growing implementation of non-targeted high-throughput genomic profiling assays, in the forms of whole-exome and whole-genome sequencing analyses, for the diagnosis of patients not primarily referred for neurodevelopmental abnormalities, has been adding new layers to the complexity of CHD8-related phenotypes. In 2021, our group described two probands with pathogenic CHD8 truncating variants and childhood-onset progressive dystonia, suggesting that the spectrum of CHD8-related disorders may include a dystonic component, whose characteristics of progressive intensification and generalization are capable of exerting a major impact on the quality of life of affected individuals [10].
Here, we expand our case series by describing three additional, previously unidentified patients with variable dystonic phenotypes harboring heterozygous CHD8 (likely) pathogenic variants, broadening the clinical spectrum of CHD8-related movement disorders, and highlighting the implications in terms of diagnosis and clinical management.

Methods

In-depth clinical and radiological phenotyping was conducted to assess neurological and systemic abnormalities previously described in CHD8-NDD-affected patients from the literature [8]. Whole-exome and whole-genome sequencing was performed on genomic DNA extracted from peripheral leukocytes using previously validated protocols and analysis pipelines [11, 12]. CHD8 variants were reported according to RefSeq transcript NM_001170629.2; for the predicted protein change, RefSeq NP_001164100.1 was used. Variant interpretation was conducted according to international ACMG/AMP criteria [13]. All patients involved in this case series, or their legal representatives, provided written informed consent as appropriate and in line with ethical guidelines.

Results

Case series presentation

Patient 1, a 53-year-old woman, was diagnosed with cerebral palsy soon after birth, initially interpreted as a consequence of birth trauma due to prolonged labor. She was the fifth child of non-consanguineous parents, and family history was unremarkable. A generalized dystonic movement disorder and tremor of the left upper extremity were present since childhood. Infancy was also characterized by delayed psychomotor development, which then transitioned into moderate cognitive impairment without apparent features of progressivity. As an adult, the patient managed to be employed as a sheltered worker, but according to her caregivers, she never reached complete autonomy in her daily living activities. She showed poor response to stressful situations. During her mid-30 s, her dystonic disorder became more aggravating, with increasing symptoms of cervical dystonia and associated pain. At the age of 43 years, she was referred to neurological re-assessment, revealing pronounced right mobile latero-torticollis in the context of a cerebral-palsy syndrome with four-limb muscular hypertonia and distal dystonic posturing (arms > legs). She received symptomatic treatment with tizanidine and botulinum toxin injections, with positive response. The most recent neurological examination also documented truncal dystonia, significant gait instability, postural arm tremor bilaterally (left > right), hyperreflexia, and positive Babinski sign on the right; there were dysarthria, hypermetric saccades, and mild facial dysmorphia with mandibular prognathism. Brain MRI showed no characteristic pathological changes.
Patient 2 was first referred for neurological evaluation as a 25-year-old woman with action-induced upper limb dystonia manifesting since the age of 22 years. Her childhood was unremarkable with normal developmental milestones, but she expressed mild behavioral deficits. She reported having stiffness of the fingers (right > left) and progressive difficulty in performing fine motor tasks. No history for movement disorders was present in her parents and healthy sibling, the only noteworthy information being that her mother was diagnosed with psychiatric disease (schizophrenia). Examination revealed wrist extension and abnormal movements of the fingers III–V when writing. In addition to the writer`s cramp, twisting movements compatible with dystonic episodes of both forearms and hands appeared when performing certain tasks or maintaining a posture. There were no alleviating maneuvers. The patient´s MRI scan was normal, and her physical examination did not detect syndromic features. She was cognitively intact, although her educational level was low. Over a 3-year follow-up, dystonia remained confined to the upper extremities; a trial of levodopa [2 months] was non-beneficial.
Patient 3, a 7-year-old girl with history of mild neurodevelopmental delay and hypotonia, was diagnosed with exercise-induced lower limb dystonia at the age of 3 years. No analogous or otherwise remarkable clinical features were reported in other family members. Examination showed ideo-motor slowness, clumsiness, and fatigability since early childhood. She also presented drooling, which improved by the age of 6 years. At the age of 7, bilateral upper limb dystonic posturing associated with myoclonic jerks was observed, in the absence of ataxia or spasticity. She also had mild intellectual impairment and anxiety disorder. She presented normal growth with slight macrocephaly (+ 2 standard deviations from the mean by age and sex) and mild facial dysmorphia, including elongated face, downslanting palpebral fissures, and large low-set ears. No autistic, sleep-pattern, or digestive abnormalities were noted, and brain MRI did not reveal structural anomalies or basal-ganglia alterations. Extensive routine diagnostic tests were initially unyielding; further lab work-up with determination of her neurotransmitter profile showed mild dopamine and biopterin deficiency, and she was thus treated with levodopa (with partial response). Her condition was gradually progressive over time.

Molecular analyses

A CHD8 heterozygous truncating variant was identified in each proband. The analysis performed in patient 1 detected a single-nucleotide insertion c.3524_3525insC, p.(Leu1175Phefs*3), predicted to induce a shift in the open reading frame and a premature stop codon in exon 18. Patient 2 harbored another frameshift variant, caused by a single-nucleotide duplication, c.3832dup, p.(Asp1278Glyfs*2), in exon 19. Patient 3 carried a c.1172dup, p.(Gln392Thrfs*29) frameshift variant in exon 3. All three predicted mutant transcripts are expected to undergo nonsense-mediated mRNA decay, leading to haploinsufficiency in agreement with the well-established monoallelic loss-of-function mechanism in CHD8-related conditions [5]. The variants were previously unreported, being absent from major variation archives (ClinVar, LOVD, HGMD) as well as from gnomAD and > 20,000 internal control samples. Genetic analyses performed in the context of the observed clinical features did not reveal any plausible alternative etiologic explanations for the probands´ phenotypes. Segregation analysis confirmed the de novo occurrence of the p.(Gln392Thrfs*29) variant in patient 3, which was therefore classified as “pathogenic” (Class V ACMG) according to PVS1, PM6, and PM2 criteria. Relatives of patients 1 and 2 were unavailable for segregation testing, and therefore, their respective CHD8 variants were each classified as “likely pathogenic” (Class IV ACMG; PVS1 and PM2 criteria).
Relevant clinical and molecular data collected from the three novel patients hereby described and the two reported previously by Doummar et al. are recapitulated in Table 1.
Table 1
Comparison of the phenotypic features of reported CHD8-NDD patients in which dystonic manifestation have been described. DBS: deep brain stimulation
 
Patient 1
Patient 2
Patient 3
Patient 1 (Doummar et al. 2021)
Patient 2 (Doummar et al. 2021)
Protein variant (heterozygous)
p.(Leu1175Phefs*3)
p.(Asp1278Glyfs*2)
p.(Gln392Thrfs*29)
p.(Arg2217*)
p.(Gly1602Cysfs*5)
Variant origin
Unknown
Unknown
De novo
Unknown
Unknown
Age at onset of the dystonic phenotype
Early childhood
22 yrs
3 yrs
10 yrs
9 yrs
Age at last evaluation
53 yrs
25 yrs
7 yrs
53 yrs
17 yrs
Sex
F
F
F
F
F
Abnormality of prenatal development or birth
Prolonged labor, diagnosis of cerebral palsy
Born at term after complicated delivery, no congenital anomalies
Movement disorders
Generalized dystonia (with progression of cervical dystonia in her mid-30 s), tremor, spasticity
Action-induced limb dystonia, writer´s cramp
Exercise-induced limb dystonia, myoclonic movements, clumsiness, and ideo-motor slowness
Action-dependent involuntary cramps, generalized abnormal muscle contractions, generalized dystonia comprising oromandibular and cervical dystonia, dysdiadochokinesia
Initial neck and upper limb dystonia, progressive generalization to lower limb and axial dystonia
Brain imaging
Normal
Normal
Normal
Flattened caudate nuclei and atrophy of the cerebellar vermis
Slight cerebellar vermis atrophy and bilateral alterations of globus pallidus
Psychomotor development and cognitive function
Delayed psychomotor development, cognitive impairment
Reportedly normal, low educational level
Delayed psychomotor development with hypotonia, mild intellectual disability
Mild intellectual impairment with deficits in verbal fluency and visual working memory
Axial hypotonia, delayed motor milestones; normal intelligence
Autism spectrum disorder or autistic behavior
Not reported/not tested
Speech and nonverbal communication impairment with stereotypic behaviors
Behavioral problems
Social anxiety, inadequate response to stressful situations
Mild
Anxiety disorder
Difficulties in social interactions
Dysmorphic signs and growth abnormalities
Prognathism
Slight macrocephaly (+ 2 standard deviations) and facial dysmorphia (downslanting palpebral fissures)
CC > 98th percentile, high forehead, supraorbital ridge, and pointed chin
Current/most effective medication
Tizanidine for spasticity, botulinum toxin (I.M. injection) for dystonia
Levodopa without effect
Levodopa (partial response)
DBS
DBS

Discussion and conclusions

Since its identification as a morbid gene in 2012 [6], the role of CHD8 in neurodevelopmental disorders has been thoroughly investigated, with more than a hundred cases affected by pathogenic variants reported to date. An extreme phenotypic variability, in terms both of range and intensity of expressivity of clinical manifestations, has been highlighted to date. In this landscape, movement abnormalities are beginning to emerge as an under-recognized component. In a recent extensive review of CHD8-NDD cases, “involuntary movements” were reported in 17% of patients in whom this aspect could be assessed [8]. However, very few well-characterized instances have so far been described, limiting our understanding of the actual relevance of such manifestations in the overall clinical presentation and management of CHD8-NDD patients. The case series presented in this work validates the observation, made by Doummar et al. in 2021, that CHD8 heterozygous loss-of-function variants can be associated with phenotypes prominently characterized by young-onset dystonia, with mild-to-moderate, in some cases even barely detectable signs of neurocognitive disorders [10]. Despite the limited number of cases, a heterogeneous spectrum of dystonic manifestations has already been recorded, ranging from focal to generalized, from paroxysmal or action-induced to permanent, from apparently isolated to complex with spasticity and cerebral palsy-like pictures. CHD8-related dystonia appears to be progressive: focal, paroxysmal, or action-induced dystonic phenotypes were observed mostly in younger probands, often paired with mild neurobehavioral abnormalities and developmental milestones delay; on the other hand, patients with a sufficiently long documented history of disease, namely both individuals from the Doummar series and Patient 1 from this work, showed increasingly aggravating, painful, and poorly controlled manifestations, including tremor and spasticity. Although dystonic tremor and essential tremor are often difficult to discriminate [14], tremor in CHD8 patients was observed only in the context of generalized dystonia/cerebral palsy-like pictures and in body parts that were also affected by dystonia, and it was therefore classified as a dystonic tremor by movement disorder experts.
Although it is possible that dystonia is an overall rare manifestation across the spectrum of CHD8-related disorders, the low rate of cases so far reported in the literature could also partly be attributable to referral biases, as most case series involved patients primarily referred for ASD, the severity of which could have hindered proper assessment of movement patterns and possible associated clinical comorbidities. Furthermore, as highlighted by our series, some of the most debilitating motor manifestations arose in late childhood/early adulthood, when patients may have already been lost for follow-up. At the same time, our series suffers from a bias on its own, as all our patients were referred primarily for their dystonic manifestations. Further studies on larger, unbiased case series are necessary to determine the actual prevalence of CHD8-related movement disorders. Careful, focused motor system re-assessment of previously published cases may also provide further insight into the topic.
Establishing valid genotype–phenotype correlations in CHD8-NDD has so far proved to be a complex effort, due to the apparently even distribution of causative variants across the whole gene and the overall higher prevalence of truncating variants [8, 15]. This observation seems consistent with our study group, as all identified variants were truncating and were predicted to result in haploinsufficiency, leading to comparable effects on protein expression. Hence, it could be hypothesized that factors other than allelic variations in CHD8, whether genetic or non-genetic, could have more significant relevance in this context.
An interesting observation in this regard can be made about the gender of our CHD8-dystonic probands. As opposed to the overall prevalence of CHD8-related ASD, which is characterized by a solid 2:1 male-to-female ratio despite the autosomal dominant mode of transmission of the causative gene [8], all dystonic CHD8 patients from our case series and the one from Doummar et al. happened to be females. With all due caution relative to the small sample size and the uncertainty ascribable to the possible incomplete phenotyping of male CHD8-NDD patients reported so far in the literature, the available data suggest a possible gender unbalance with regards to CHD8-related dystonia. The hypothesis that dystonia is more common in CHD8 female patients than in their male counterparts would be further corroborated by the anecdotal observation that neither of the two male sons of the adult dystonic patient described by Doummar et al. showed any sign of movement disorder, despite carrying the same causative variant of the mother and exhibiting an otherwise penetrant phenotype, with manifest signs of neurodevelopmental impairment. If confirmed, such an oppositely skewed distribution of ASD and dystonia between males and females in CHD8 patients could represent an interesting model for both the long speculated female protection effect in ASD [16], and the increased prevalence of specific forms of idiopathic dystonia commonly observed in female patients from the general population [17].
The confirmation of movement disorders as a part of the CHD8 phenotypic spectrum, to a point where dystonia can even be the most prominent and earliest manifestation of CHD8-related disorder, prompts a series of further considerations. First it strongly raises the question of whether a neurologic evaluation focused on the assessment of possible movement disorders should be included in the first-line clinical management of all newly diagnosed CHD8 patients and be proposed at least once to the ones already in follow-up. Second, it remarks the potential diagnostic weakness of targeted custom gene panels in the investigation of neurologic disorders, as even apparently isolated forms could mask more complex, syndromic conditions, leading to possible delays in providing the correct diagnosis for the disease and the subsequent counseling to the proband and their family. Finally, it highlights the importance of continuing pursuing a more and more comprehensive neurologic phenotyping of patients harboring genomic variations which have so far been primarily associated with neurodevelopmental disorders. This consideration is especially relevant regarding genes involved in regulatory processes or showing a higher expression in the central nervous system even in postnatal life [18]. The pathophysiological bases of motor system involvement in CHD8-related disorders are still unclear; however, the characterization of important CHD8 targets relevant to movement disorders such as beta-catenin and SCN2A [19], the recurrent identification of cerebellar structural abnormalities in probands [8, 10], and recent animal experiments highlighting a crucial role for CHD8 in extrapyramidal nervous structures’ development [20], represent promising research prospects for investigating the etiological plausibility of this connection.
In conclusion, we characterized three additional unrelated cases of syndromic and non-syndromic movement disorder patients harboring CHD8 pathogenic or likely pathogenic variants, confirming our previous observation that movement disorders should be considered a non-neglectable component of the CHD8-NDD spectrum and emphasizing the increasingly evident connection between movement and neurodevelopmental disorders.

Acknowledgements

JW and MZ receive research support from the German Research Foundation (DFG 458949627; WI-1820/14-1; ZE 1213/2-1). MZ acknowledges grant support by the European Joint Programme on Rare Diseases (EJP-RD Joint Transnational Call 2022), and the German Federal Ministry of Education and Research (BMBF, Bonn, Germany), awarded to the project PreDYT (PREdictive biomarkers in DYsTonia, 01GM2302), by the Federal Ministry of Education and Research (BMBF) and the Free State of Bavaria under the Excellence Strategy of the Federal Government and the Länder, as well as by the Technical University of Munich—Institute for Advanced Study. M.Z. is a member of the Medical and Scientific Advisory Council of the Dystonia Medical Research Foundation and a member of the Governance Council of the International Cerebral Palsy Genomics Consortium. MZ`s research is supported by a “Schlüsselprojekt” grant from the Else Kröner-Fresenius-Stiftung (2022_EKSE.185). RJ is supported by the National Institute for Neurological Research, Czech Republic, Programme EXCELES, ID Project No. LX22NPO5107, funded by the European Union—Next Generation EU and also by the Charles University: Cooperation Program in Neuroscience. EI acknowledges support by the European Joint Programme on Rare Diseases (EJP-RD WP17 research mobility fellowship). EI and SB are members of the European Reference Network for Rare Neurological Diseases—Project ID No 101085584.

Declarations

Conflict of interest

The authors have no conflict of interest to declare.
Ethical approval for genetic studies and publication of deidentified clinical and molecular data was obtained according to ethical guidelines.
All patients involved in this study, or their legal representatives, provided written informed consent as appropriate and in line with ethical guidelines.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

Neuer Inhalt

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Thompson BA, Tremblay V, Lin G, Bochar DA (2008) CHD8 is an ATP-dependent chromatin remodeling factor that regulates beta-catenin target genes. Mol Cell Biol 28(12):3894–3904CrossRefPubMedPubMedCentral Thompson BA, Tremblay V, Lin G, Bochar DA (2008) CHD8 is an ATP-dependent chromatin remodeling factor that regulates beta-catenin target genes. Mol Cell Biol 28(12):3894–3904CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Shi X, Lu C, Corman A, Nikish A, Zhou Y, Platt RJ et al (2023) Heterozygous deletion of the autism-associated gene CHD8 impairs synaptic function through widespread changes in gene expression and chromatin compaction. Am J Hum Genet 110(10):1750–1768CrossRefPubMedPubMedCentral Shi X, Lu C, Corman A, Nikish A, Zhou Y, Platt RJ et al (2023) Heterozygous deletion of the autism-associated gene CHD8 impairs synaptic function through widespread changes in gene expression and chromatin compaction. Am J Hum Genet 110(10):1750–1768CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Ostrowski PJ, Zachariou A, Loveday C, Beleza-Meireles A, Bertoli M, Dean J et al (2019) The CHD8 overgrowth syndrome: a detailed evaluation of an emerging overgrowth phenotype in 27 patients. Am J Med Genet C Semin Med Genet 181(4):557–564CrossRefPubMed Ostrowski PJ, Zachariou A, Loveday C, Beleza-Meireles A, Bertoli M, Dean J et al (2019) The CHD8 overgrowth syndrome: a detailed evaluation of an emerging overgrowth phenotype in 27 patients. Am J Med Genet C Semin Med Genet 181(4):557–564CrossRefPubMed
5.
Zurück zum Zitat Katayama Y, Nishiyama M, Shoji H, Ohkawa Y, Kawamura A, Sato T et al (2016) CHD8 haploinsufficiency results in autistic-like phenotypes in mice. Nature 537(7622):675–679CrossRefPubMed Katayama Y, Nishiyama M, Shoji H, Ohkawa Y, Kawamura A, Sato T et al (2016) CHD8 haploinsufficiency results in autistic-like phenotypes in mice. Nature 537(7622):675–679CrossRefPubMed
6.
Zurück zum Zitat O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP et al (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485(7397):246–250CrossRefPubMedPubMedCentral O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP et al (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485(7397):246–250CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O et al (2014) Disruptive CHD8 mutations define a subtype of autism early in development. Cell 158(2):263–276CrossRefPubMedPubMedCentral Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O et al (2014) Disruptive CHD8 mutations define a subtype of autism early in development. Cell 158(2):263–276CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Dingemans AJM, Truijen KMG, Van De Ven S, Bernier R, Bongers EMHF, Bouman A et al (2022) The phenotypic spectrum and genotype–phenotype correlations in 106 patients with variants in major autism gene CHD8. Transl Psychiatry 12(1):421CrossRefPubMedPubMedCentral Dingemans AJM, Truijen KMG, Van De Ven S, Bernier R, Bongers EMHF, Bouman A et al (2022) The phenotypic spectrum and genotype–phenotype correlations in 106 patients with variants in major autism gene CHD8. Transl Psychiatry 12(1):421CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Guo H, Wang T, Wu H, Long M, Coe BP, Li H et al (2018) Inherited and multiple de novo mutations in autism/developmental delay risk genes suggest a multifactorial model. Mol Autism 9:64CrossRefPubMedPubMedCentral Guo H, Wang T, Wu H, Long M, Coe BP, Li H et al (2018) Inherited and multiple de novo mutations in autism/developmental delay risk genes suggest a multifactorial model. Mol Autism 9:64CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Doummar D, Treven M, Qebibo L, Devos D, Ghoumid J, Ravelli C et al (2021) Childhood-onset progressive dystonia associated with pathogenic truncating variants in CHD8. Ann Clin Transl Neurol 8(10):1986–1990CrossRefPubMedPubMedCentral Doummar D, Treven M, Qebibo L, Devos D, Ghoumid J, Ravelli C et al (2021) Childhood-onset progressive dystonia associated with pathogenic truncating variants in CHD8. Ann Clin Transl Neurol 8(10):1986–1990CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Poggio E, Barazzuol L, Salmaso A, Milani C, Deligiannopoulou A, Cazorla ÁG et al (2023) ATP2B2 de novo variants as a cause of variable neurodevelopmental disorders that feature dystonia, ataxia, intellectual disability, behavioral symptoms, and seizures. Genet Med 25(12):100971CrossRefPubMed Poggio E, Barazzuol L, Salmaso A, Milani C, Deligiannopoulou A, Cazorla ÁG et al (2023) ATP2B2 de novo variants as a cause of variable neurodevelopmental disorders that feature dystonia, ataxia, intellectual disability, behavioral symptoms, and seizures. Genet Med 25(12):100971CrossRefPubMed
12.
Zurück zum Zitat Cif L, Demailly D, Lin JP, Barwick KE, Sa M, Abela L et al (2020) KMT2B -related disorders: expansion of the phenotypic spectrum and long-term efficacy of deep brain stimulation. Brain 143(11):3242–3261CrossRefPubMedPubMedCentral Cif L, Demailly D, Lin JP, Barwick KE, Sa M, Abela L et al (2020) KMT2B -related disorders: expansion of the phenotypic spectrum and long-term efficacy of deep brain stimulation. Brain 143(11):3242–3261CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424CrossRefPubMedPubMedCentral Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Bédard P, Panyakaew P, Cho HJ, Hallett M, Horovitz SG (2022) Multimodal imaging of essential tremor and dystonic tremor. NeuroImage Clin 36:103247CrossRefPubMedPubMedCentral Bédard P, Panyakaew P, Cho HJ, Hallett M, Horovitz SG (2022) Multimodal imaging of essential tremor and dystonic tremor. NeuroImage Clin 36:103247CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Douzgou S, Liang HW, Metcalfe K, Somarathi S, Tischkowitz M, Mohamed W et al (2019) The clinical presentation caused by truncating CHD8 variants. Clin Genet 96(1):72–84CrossRefPubMed Douzgou S, Liang HW, Metcalfe K, Somarathi S, Tischkowitz M, Mohamed W et al (2019) The clinical presentation caused by truncating CHD8 variants. Clin Genet 96(1):72–84CrossRefPubMed
16.
Zurück zum Zitat Wigdor EM, Weiner DJ, Grove J, Fu JM, Thompson WK, Carey CE et al (2022) The female protective effect against autism spectrum disorder. Cell Genomics 2(6):100134CrossRefPubMedPubMedCentral Wigdor EM, Weiner DJ, Grove J, Fu JM, Thompson WK, Carey CE et al (2022) The female protective effect against autism spectrum disorder. Cell Genomics 2(6):100134CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Medina A, Nilles C, Martino D, Pelletier C, Pringsheim T (2022) The prevalence of idiopathic or inherited isolated Dystonia: a systematic review and meta-analysis. Mov Disord Clin Pract 9(7):860–868CrossRefPubMedPubMedCentral Medina A, Nilles C, Martino D, Pelletier C, Pringsheim T (2022) The prevalence of idiopathic or inherited isolated Dystonia: a systematic review and meta-analysis. Mov Disord Clin Pract 9(7):860–868CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Peall KJ, Owen MJ, Hall J. Rare genetic brain disorders with overlapping neurological and psychiatric phenotypes. Nat Rev Neurol. 2023 Nov 24; Peall KJ, Owen MJ, Hall J. Rare genetic brain disorders with overlapping neurological and psychiatric phenotypes. Nat Rev Neurol. 2023 Nov 24;
19.
Zurück zum Zitat Sugathan A, Biagioli M, Golzio C, Erdin S, Blumenthal I, Manavalan P et al (2014) CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proc Natl Acad Sci U S A 111(42):E4468-4477CrossRefPubMedPubMedCentral Sugathan A, Biagioli M, Golzio C, Erdin S, Blumenthal I, Manavalan P et al (2014) CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proc Natl Acad Sci U S A 111(42):E4468-4477CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Kawamura A, Katayama Y, Kakegawa W, Ino D, Nishiyama M, Yuzaki M et al (2021) The autism-associated protein CHD8 is required for cerebellar development and motor function. Cell Rep 35(1):108932CrossRefPubMed Kawamura A, Katayama Y, Kakegawa W, Ino D, Nishiyama M, Yuzaki M et al (2021) The autism-associated protein CHD8 is required for cerebellar development and motor function. Cell Rep 35(1):108932CrossRefPubMed
Metadaten
Titel
CHD8-related disorders redefined: an expanding spectrum of dystonic phenotypes
verfasst von
Ugo Sorrentino
Sylvia Boesch
Diane Doummar
Claudia Ravelli
Tereza Serranova
Elisabetta Indelicato
Juliane Winkelmann
Lydie Burglen
Robert Jech
Michael Zech
Publikationsdatum
05.03.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Neurology / Ausgabe 5/2024
Print ISSN: 0340-5354
Elektronische ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-024-12271-x

Weitere Artikel der Ausgabe 5/2024

Journal of Neurology 5/2024 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.